1
|
Komine T, Fukano H, Yoshida M, Miyamoto Y, Nakaya M, Fujinaga A, Doke K, Hoshino Y. A rapid and simple MALDI-TOF MS lipid profiling method for differentiating Mycobacterium ulcerans from Mycobacterium marinum. J Clin Microbiol 2025:e0140024. [PMID: 39868779 DOI: 10.1128/jcm.01400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Mycobacterium ulcerans, a slow-growing nontuberculous mycobacterium, causes Buruli ulcer, a neglected tropical disease. Distinguishing M. ulcerans from related species, including Mycobacterium marinum, poses challenges with respect to making accurate identifications. In this study, we developed a rapid and simple identification method based on mycobacterial lipid profiles and used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the lipid profiles of M. ulcerans (n = 35) and M. marinum (n = 19) isolates. Bacterial colonies pre-cultured on 2% Ogawa egg slants for 2 months were collected, and total lipids were extracted using an MBT Lipid Xtract kit. Spectra were obtained in negative ion mode using a MALDI Biotyper Sirius system, with ClinProTools v3.0 being used to analyze the spectra based on the application of three algorithms (genetic algorithm [GA], supervised neural network [SNN], and quick classifier [QC)]). Cross-validation was performed using a 20% leave-out set randomly selected from the samples. Models generated using GA, SNN, and QC showed cross-validation values of 100%, 100%, and 97.9%, respectively, and all algorithms achieved 100% recognition capability values. Our findings indicate that MALDI-TOF analysis of lipid profiles can accurately differentiate two mycobacterial species (M. ulcerans and M. marinum) that are difficult to distinguish using conventional protein-targeting methods.IMPORTANCEBuruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease. However, distinguishing M. ulcerans from related species, including Mycobacterium marinum, presents certain challenges. In this study, we demonstrate the utility of a rapid yet simple method for differentiating isolates of these mycobacteria based on their lipid profiles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This new approach can accurately identify species that are otherwise difficult to distinguish using conventional techniques. This represents a significant diagnostic advance for clinical laboratories, in that it enables a more rapid and precise identification, thereby leading to earlier treatment initiation and more appropriate treatment regimens for infections caused by these bacteria.
Collapse
Affiliation(s)
- Takeshi Komine
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Makoto Nakaya
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Azumi Fujinaga
- Application Department, Microbiology & Diagnostics MID Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Kohei Doke
- Application Department, Microbiology & Diagnostics MID Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
2
|
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 2024; 16:528. [PMID: 39728786 PMCID: PMC11678992 DOI: 10.3390/toxins16120528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure-activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott-Aldrich Syndrome protein (WASP)/neural Wiskott-Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed.
Collapse
Affiliation(s)
| | - Kingsley Bampoe Asiedu
- Department of Neglected Tropical Diseases, World Health Organization, 1211 Geneva, Switzerland;
| | | |
Collapse
|
3
|
Fujimori T, Hagiya H, Iio K, Yamasaki O, Miyamoto Y, Hoshino Y, Kakehi A, Okura M, Minabe H, Yokoyama Y, Otsuka F, Higashikage A. Buruli ulcer caused by Mycobacterium ulcerans subsp. shinshuense: A case report. J Infect Chemother 2023; 29:523-526. [PMID: 36813163 DOI: 10.1016/j.jiac.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Buruli ulcer is the third most common mycobacterial infection worldwide and is mainly diagnosed in tropical regions. Globally, this progressive disease is caused by Mycobacterium ulcerans; however, Mycobacterium ulcerans subsp. shinshuense, an Asian variant, has been exclusively identified in Japan. Because of insufficient clinical cases, the clinical features of M. ulcerans subsp. shinshuense-associated Buruli ulcer remain unclear. A 70-year-old Japanese woman presented with erythema on her left backhand. The skin lesion deteriorated without an apparent etiology of inflammation, and she was referred to our hospital 3 months after disease onset. A biopsy specimen was incubated in 2% Ogawa medium at 30 °C. After 66 days, we detected small yellow-pigmented colonies, suggesting scotochromogens. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI Biotyper; Bruker Daltonics, Billerica, MA, USA) indicated that the organism was Mycobacterium pseudoshottsii or Mycobacterium marinum. However, additional PCR testing for the insertion sequence 2404 (IS2404) was positive, suggesting that the pathogen was either M. ulcerans or M. ulcerans subsp. shinshuense. Further examination by 16S rRNA sequencing analysis, focusing on nucleotide positions 492, 1247, 1288, and 1449-1451, we finally identified the organism as M. ulcerans subsp. shinshuense. The patient was successfully treated with 12 weeks of clarithromycin and levofloxacin treatment. Mass spectrometry is the latest microbial diagnostic method; however, it cannot be used to identify M. ulcerans subsp. shinshuense. To accurately detect this enigmatic pathogen and uncover its epidemiology and clinical characteristics in Japan, more accumulation of clinical cases with accurate identification of the causative pathogen is essential.
Collapse
Affiliation(s)
- Takumi Fujimori
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Osamu Yamasaki
- Department of Dermatology, Shimane University Faculty of Medicine, Shimane, 693-8501, Japan.
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan.
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan.
| | - Ayaka Kakehi
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Mami Okura
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Hiroshi Minabe
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Yukika Yokoyama
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | - Akihito Higashikage
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan.
| |
Collapse
|
4
|
Inohana M, Komine T, Tanaka Y, Kurata O, Wada S. Genital mycobacteriosis caused by Mycobacterium marinum detected in two captive sharks by peptide nucleic acid-fluorescence in situ hybridization. JOURNAL OF FISH DISEASES 2023; 46:47-59. [PMID: 36130072 PMCID: PMC10087912 DOI: 10.1111/jfd.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Mycobacterium marinum is a prevalent nontuberculous mycobacterium (NTM)-infecting teleosts. Conversely, little is known about mycobacteriosis in elasmobranchs, and M. marinum infection has never been reported from the subclass. This study investigated the histopathological characteristics and localization of this mycobacterium through molecular analysis of two captive sharks, a scalloped hammerhead Sphyrna lewini and a Japanese bullhead shark Heterodontus japonicus, exhibited in the same aquarium tank. We detected genital mycobacteriosis caused by M. marinum infection using molecular analyses, including polymerase chain reaction (PCR) and DNA sequencing targeting the 60 kDa heat-shock protein gene (hsp65), and peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) targeting the 16S rRNA gene. Both sharks showed granulomas in connective tissues of the gonads without central necrosis or surrounding fibrous capsules, which is unlike the typical mycobacterial granulomas seen in teleosts. This study reveals that elasmobranchs can be aquatic hosts of M. marinum. Because M. marinum is a representative waterborne NTM and a potential zoonotic agent, cautious and intensive research is needed to overcome a lack of data on the relationship between NTM and the aquatic environment in association with this subclass of Chondrichthyes.
Collapse
Affiliation(s)
- Mari Inohana
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | - Takeshi Komine
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | | | - Osamu Kurata
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | - Shinpei Wada
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| |
Collapse
|
5
|
Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A Systematic Review on Suitability of Molecular Techniques for Diagnosis and Research into Infectious Diseases of Concern in Resource-Limited Settings. Curr Issues Mol Biol 2022; 44:4367-4385. [PMID: 36286015 PMCID: PMC9601131 DOI: 10.3390/cimb44100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Selasie Ahiatrogah
- Department of Obstetrics and Gynaecology, College of Medicine, Pan African University of Life and Earth Sciences Institute, University of Ibadan, Ibadan P.O. Box 22133, Nigeria
| | - Anna A. Kafintu-Kwashie
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Diana Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Akua K. Botwe
- Molecular Biology Unit, Kintampo Health Research Centre, Ghana Health Service, Kintampo P.O. Box 200, Ghana
| | - Mildred A. Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
- Correspondence: ; Tel.: +233-54-827-6424
| |
Collapse
|
6
|
Amewu RK, Akolgo GA, Asare ME, Abdulai Z, Ablordey AS, Asiedu K. Evaluation of the fluorescent-thin layer chromatography (f-TLC) for the diagnosis of Buruli ulcer disease in Ghana. PLoS One 2022; 17:e0270235. [PMID: 35917367 PMCID: PMC9345483 DOI: 10.1371/journal.pone.0270235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background Buruli ulcer is a tissue necrosis infection caused by an environmental mycobacterium called Mycobacterium ulcerans (MU). The disease is most prevalent in rural areas with the highest rates in West and Central African countries. The bacterium produces a toxin called mycolactone which can lead to the destruction of the skin, resulting in incapacitating deformities with an enormous economic and social burden on patients and their caregivers. Even though there is an effective antibiotic treatment for BU, the control and management rely on early case detection and rapid diagnosis to avert morbidities. The diagnosis of Mycobacterium ulcerans relies on smear microscopy, culture histopathology, and PCR. Unfortunately, all the current laboratory diagnostics have various limitations and are not available in endemic communities. Consequently, there is a need for a rapid diagnostic tool for use at the community health centre level to enable diagnosis and confirmation of suspected cases for early treatment. The present study corroborated the diagnostic performance and utility of fluorescent-thin layer chromatography (f-TLC) for the diagnosis of Buruli ulcer. Methodology/Principal findings The f-TLC method was evaluated for the diagnosis of Buruli ulcer in larger clinical samples than previously reported in an earlier preliminary study Wadagni et al. (2015). A total of 449 patients suspected of BU were included in the final data analysis out of which 122 (27.2%) were positive by f-TLC and 128 (28.5%) by PCR. Using a composite reference method generated from the two diagnostic methods, 85 (18.9%) patients were found to be truly infected with M. ulcerans, 284 (63.3%) were uninfected, while 80 (17.8%) were misidentified as infected or noninfected by the two methods. The data obtained was used to determine the discriminatory accuracy of the f-TLC against the gold standard IS2404 PCR through the analysis of its sensitivity, specificity, positive (+LR), and negative (–LR) likelihood ratio. The positive (PPV) and negative (NPV) predictive values, area under the receiver operating characteristic curve Azevedo et al. (2014), and diagnostic odds ratio were used to assess the predictive accuracy of the f-TLC method. The sensitivity of f-TLC was 66.4% (85/128), specificity was 88.5% (284/321), while the diagnostic accuracy was 82.2% (369/449). The AUC stood at 0.774 while the PPV, NPV, +LR, and–LR were 69.7% (85/122), 86.9% (284/327), 5.76, and 0.38, respectively. The use of the rule-of-thumb interpretation of diagnostic tests suggests that the method is good for use as a diagnostic tool. Conclusions/Significance Larger clinical samples than previously reported had been used to evaluate the f-TLC method for the diagnosis of Buruli ulcer. A sensitivity of 66.4%, a specificity of 88.5%, and diagnostic accuracy of 82.2% were obtained. The method is good for diagnosis and will help in making early clinical decisions about the patients as well as patient management and facilitating treatment decisions. However, it requires a slight modification to address the challenge of background interference and lack of automatic readout to become an excellent diagnostic tool.
Collapse
Affiliation(s)
- Richard K. Amewu
- Department of Chemistry, University of Ghana, Accra, Ghana
- * E-mail:
| | | | | | - Zigli Abdulai
- Department of Chemistry, University of Ghana, Accra, Ghana
| | - Anthony S. Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
DNA Extraction from Clinical Specimens for the Direct Detection of Mycobacterium ulcerans by Real-Time PCR. Methods Mol Biol 2021. [PMID: 34643901 DOI: 10.1007/978-1-0716-1779-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mycobacterium ulcerans is a slow-growing environmental bacterium that causes a severe skin disease known as Buruli ulcer (BU). Rapid detection of M. ulcerans in clinical specimens is essential for early diagnosis so that patients can be treated appropriately as soon as possible. This chapter describes suitable methods for the extraction of M. ulcerans DNA from the most common specimens submitted to the laboratory for confirmation of BU: swabs, fresh tissue biopsies, and fixed tissue sections. The resulting DNA extracts may be used for downstream procedures including standard gel-based PCR and real-time PCR assays. Protocols for direct detection of M. ulcerans DNA by real-time PCR are described in Chapter 8 .
Collapse
|
8
|
Nalefski EA, Patel N, Leung PJY, Islam Z, Kooistra RM, Parikh I, Marion E, Knott GJ, Doudna JA, Le Ny ALM, Madan D. Kinetic analysis of Cas12a and Cas13a RNA-Guided nucleases for development of improved CRISPR-Based diagnostics. iScience 2021; 24:102996. [PMID: 34505008 PMCID: PMC8411246 DOI: 10.1016/j.isci.2021.102996] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial CRISPR systems provide acquired immunity against invading nucleic acids by activating RNA-programmable RNases and DNases. Cas13a and Cas12a enzymes bound to CRISPR RNA (crRNA) recognize specific nucleic acid targets, initiating cleavage of the targets as well as non-target (trans) nucleic acids. Here, we examine the kinetics of single-turnover target and multi-turnover trans-nuclease activities of both enzymes. High-turnover, non-specific Cas13a trans-RNase activity is coupled to rapid binding of target RNA. By contrast, low-turnover Cas12a trans-nuclease activity is coupled to relatively slow cleavage of target DNA, selective for DNA over RNA, indifferent to base identity, and preferential for single-stranded substrates. Combining multiple crRNA increases detection sensitivity of targets, an approach we use to quantify pathogen DNA in samples from patients suspected of Buruli ulcer disease. Results reveal that these enzymes are kinetically adapted to play distinct roles in bacterial adaptive immunity and show how kinetic analysis can be applied to CRISPR-based diagnostics. Cas13a HEPN trans-RNase activation is directly coupled to rapid target RNA binding Cas12a RuvC trans-nuclease activity is coupled to slow target DNA cleavage Individual crRNA generate widely varying levels of targeted trans-cleavage Pooling multiple crRNA allows pathogen quantification without target amplification
Collapse
Affiliation(s)
- Eric A Nalefski
- Global Health Labs, Bellevue, WA 98007, USA.,Center for In Vitro Diagnostics, Intellectual Ventures Global Good Fund, Bellevue, WA 98007, USA
| | | | - Philip J Y Leung
- Global Health Labs, Bellevue, WA 98007, USA.,Center for In Vitro Diagnostics, Intellectual Ventures Global Good Fund, Bellevue, WA 98007, USA
| | - Zeba Islam
- Global Health Labs, Bellevue, WA 98007, USA
| | - Remy M Kooistra
- Global Health Labs, Bellevue, WA 98007, USA.,Center for In Vitro Diagnostics, Intellectual Ventures Global Good Fund, Bellevue, WA 98007, USA
| | | | | | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94704, USA.,Monash Biomedicine Discovery Institute, Department of Chemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94704, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94704, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94704, USA.,Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Anne-Laure M Le Ny
- Global Health Labs, Bellevue, WA 98007, USA.,Center for In Vitro Diagnostics, Intellectual Ventures Global Good Fund, Bellevue, WA 98007, USA
| | - Damian Madan
- Global Health Labs, Bellevue, WA 98007, USA.,Center for In Vitro Diagnostics, Intellectual Ventures Global Good Fund, Bellevue, WA 98007, USA
| |
Collapse
|
9
|
Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Negl Trop Dis 2021; 15:e0009678. [PMID: 34437549 PMCID: PMC8389476 DOI: 10.1371/journal.pntd.0009678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer. Buruli ulcer is a debilitating skin and soft tissue disease characterised by large ulcerative wounds that are treated with antibiotics or with adjunctive surgery for advanced cases. Found predominantly in West Africa and Southeast Australia, the causative agent is the environmental bacterial pathogen Mycobacterium ulcerans. Lack of understanding of transmission pathways, combined with the absence of a vaccine, has hindered efforts to control the spread of M. ulcerans. Here, in order to identify probable transmission pathways and inform future studies, we review literature linking M. ulcerans to environmental reservoirs, mammalian hosts, and potential invertebrate vectors. We also summarise factors and behaviours that reduce the risk of developing Buruli ulcer, to inform effective prevention strategies and further shed light on transmission pathways.
Collapse
Affiliation(s)
- Anthony J. Muleta
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Lappan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
10
|
Demangel C. Immunity against Mycobacterium ulcerans: The subversive role of mycolactone. Immunol Rev 2021; 301:209-221. [PMID: 33607704 DOI: 10.1111/imr.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer, a neglected tropical skin disease manifesting as chronic wounds that can leave victims with major, life-long deformity and disability. Differently from other mycobacterial pathogens, M ulcerans produces mycolactone, a diffusible lipid factor with unique cytotoxic and immunomodulatory properties. Both traits result from mycolactone targeting Sec61, the entry point of the secretory pathway in eukaryotic cells. By inhibiting Sec61, mycolactone prevents the host cell's production of secreted proteins, and most of its transmembrane proteins. This molecular blockade dramatically alters the functions of immune cells, thereby the generation of protective immunity. Moreover, sustained inhibition of Sec61 triggers proteotoxic stress responses leading to apoptotic cell death, which can stimulate vigorous immune responses. The dynamics of bacterial production of mycolactone and elimination by infected hosts thus critically determine the balance between its immunostimulatory and immunosuppressive effects. Following an introduction summarizing the essential information on Buruli ulcer disease, this review focuses on the current state of knowledge regarding mycolactone's regulation and biodistribution. We then detail the consequences of mycolactone-mediated Sec61 blockade on initiation and maintenance of innate and adaptive immune responses. Finally, we discuss the key questions to address in order to improve immunity to M ulcerans, and how increased knowledge of mycolactone biology may pave the way to innovative therapeutics.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Omansen TF, Erbowor-Becksen A, Yotsu R, van der Werf TS, Tiendrebeogo A, Grout L, Asiedu K. Global Epidemiology of Buruli Ulcer, 2010-2017, and Analysis of 2014 WHO Programmatic Targets. Emerg Infect Dis 2020; 25:2183-2190. [PMID: 31742506 PMCID: PMC6874257 DOI: 10.3201/eid2512.190427] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by Myocobacterium ulcerans; it manifests as a skin lesion, nodule, or ulcer that can be extensive and disabling. To assess the global burden and the progress on disease control, we analyzed epidemiologic data reported by countries to the World Health Organization during 2010–2017. During this period, 23,206 cases of Buruli ulcer were reported. Globally, cases declined to 2,217 in 2017, but local epidemics seem to arise, such as in Australia and Liberia. In 2013, the World Health Organization formulated 4 programmatic targets for Buruli ulcer that addressed PCR confirmation, occurrence of category III (extensive) lesions and ulcerative lesions, and movement limitation caused by the disease. In 2014, only the movement limitation goal was met, and in 2019, none are met, on a global average. Our findings support discussion on future Buruli ulcer policy and post-2020 programmatic targets.
Collapse
|
12
|
Frimpong M, Ahor HS, Sakyi SA, Agbavor B, Akowuah E, Phillips RO. Rapid Extraction Method of Mycobacterium ulcerans DNA from Clinical Samples of Suspected Buruli Ulcer Patients. Diagnostics (Basel) 2019; 9:diagnostics9040204. [PMID: 31779247 PMCID: PMC6963521 DOI: 10.3390/diagnostics9040204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
Isothermal amplification techniques such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) for diagnosing Buruli ulcer, a necrotic skin disease caused by Mycobacterium ulcerans, have renewed hope for the molecular diagnosis of clinically suspected Buruli ulcer cases in endemic districts. If these techniques are applied at district-level hospitals or clinics, they will help facilitate early case detection with prompt treatment, thereby reducing disability and associated costs of disease management. The accuracy as well as the application of these molecular techniques at point of need is dependent on simple and fast DNA extraction. We have modified and tested a rapid extraction protocol for use with an already developed recombinase polymerase amplification assay. The entire procedure from “sample in, extraction and DNA amplification” was conducted in a mobile suitcase laboratory within 40 min. The DNA extraction procedure was performed within 15 min, with only two manipulation/pipetting steps needed. The diagnostic sensitivity and specificity of this extraction protocol together with M. ulcerans RPA in comparison with standard DNA extraction with real-time PCR was 87% (n = 26) and 100% (n = 13), respectively. We have established a simple, fast and efficient protocol for the extraction and detection of M. ulcerans DNA in clinical samples that is adaptable to field conditions.
Collapse
Affiliation(s)
- Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Correspondence: ; Tel.: +233-265940908
| | - Hubert Senanu Ahor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
| | - Emmanuel Akowuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| |
Collapse
|
13
|
Eddyani M, Sopoh GE, Ayelo G, Brun LVC, Roux JJ, Barogui Y, Affolabi D, Faber WR, Boelaert M, Van Rie A, Portaels F, de Jong BC. Diagnostic Accuracy of Clinical and Microbiological Signs in Patients With Skin Lesions Resembling Buruli Ulcer in an Endemic Region. Clin Infect Dis 2019. [PMID: 29538642 PMCID: PMC6117443 DOI: 10.1093/cid/ciy197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The diagnosis of the neglected tropical skin and soft tissue disease Buruli ulcer (BU) is made on clinical and epidemiological grounds, after which treatment with BU-specific antibiotics is initiated empirically. Given the current decline in BU incidence, clinical expertise in the recognition of BU is likely to wane and laboratory confirmation of BU becomes increasingly important. We therefore aimed to determine the diagnostic accuracy of clinical signs and microbiological tests in patients presenting with lesions clinically compatible with BU. Methods A total of 227 consecutive patients were recruited in southern Benin and evaluated by clinical diagnosis, direct smear examination (DSE), polymerase chain reaction (PCR), culture, and histopathology. In the absence of a gold standard, the final diagnosis in each patient was made using an expert panel approach. We estimated the accuracy of each test in comparison to the final diagnosis and evaluated the performance of 3 diagnostic algorithms. Results Among the 205 patients with complete data, the attending clinicians recognized BU with a sensitivity of 92% (95% confidence interval [CI], 85%–96%), which was higher than the sensitivity of any of the laboratory tests. However, 14% (95% CI, 7%–24%) of patients not suspected to have BU at diagnosis were classified as BU by the expert panel. The specificities of all diagnostics were high (≥91%). All diagnostic algorithms had similar performances. Conclusions A broader clinical suspicion should be recommended to reduce missed BU diagnoses. Taking into consideration diagnostic accuracy, time to results, cost-effectiveness, and clinical generalizability, a stepwise diagnostic approach reserving PCR to DSE-negative patients performed best.
Collapse
Affiliation(s)
- Miriam Eddyani
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ghislain E Sopoh
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli, Allada
| | - Gilbert Ayelo
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli, Allada
| | - Luc V C Brun
- Département d'Anatomie Pathologique, Faculté de Medécine, Université de Parakou, Benin
| | | | - Yves Barogui
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli, Lalo
| | | | - William R Faber
- Academic Medical Centre, Department of Dermatology, University of Amsterdam, The Netherlands
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Annelies Van Rie
- Global Health Institute, Department of Epidemiology and Social Medicine, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Françoise Portaels
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
14
|
Ibrahim YL, Masouyé I, Tschanz E, Atangana P, Etard JF, Serafini M, Mueller YK, Toutous Trellu L. Diagnostic Value of Histological Analysis of Punch Biopsies in Suspected Cutaneous Buruli Ulcer: A Study on 32 Cases of Confirmed Buruli Ulcer in Cameroon. Dermatopathology (Basel) 2019; 6:28-36. [PMID: 31192197 PMCID: PMC6547264 DOI: 10.1159/000498969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/15/2019] [Indexed: 11/17/2022] Open
Abstract
Background Buruli ulcer (BU) is a cutaneous infectious disease caused by Mycobacterium ulcerans. In this prospective study, we aim to clarify the main histopathological features of cutaneous BU based on 4-mm skin punch biopsies and to evaluate the diagnostic value of this method. Methods Between 2011 and 2013, a prospective study was conducted in Cameroon. Dry swabs from ulcerative lesions and fine-needle aspirates of nonulcerative lesions were examined for Ziehl-Neelsen (ZN) staining, followed by PCR targeting IS2404 and culture. Two 4-mm punch biopsies were performed in the center and in the periphery of each lesion. Results The 364 patients included in the study had 422 lesions (381 were ulcerative and 357 lesions were biopsied). Among the 99 ulcerated lesions with a final diagnosis of BU, histological features for BU were fulfilled in 32 lesions. 32/32 showed subcutaneous necrosis with a neutrophilic inflammatory infiltrate. 26/32 presented alcohol-resistant bacilli confirmed by ZN stain on histology. Conclusion Punch biopsies help in establishing the correct diagnosis of BU and also in the differential diagnosis of chronic ulcers. The main histological feature for BU is diffuse coagulative necrosis of subcutaneous tissue, with acid-fast bacilli detected by ZN stain.
Collapse
Affiliation(s)
| | - Isabelle Masouyé
- Division of Dermatology, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Jean-François Etard
- Epicentre, Paris, France & Institut de Recherche pour le Développement (IRD) UMI 233-INSERM U 1175, Montpellier University, Montpellier, France
| | | | - Yolanda K Mueller
- Institut Universitaire de Médecine de Famille (IUMF), Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
15
|
Frimpong M, Ahor HS, Wahed AAE, Agbavor B, Sarpong FN, Laing K, Wansbrough-Jones M, Phillips RO. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Negl Trop Dis 2019; 13:e0007155. [PMID: 30707706 PMCID: PMC6373974 DOI: 10.1371/journal.pntd.0007155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background Access to an accurate diagnostic test for Buruli ulcer (BU) is a research priority according to the World Health Organization. Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect Mycobacterium ulcerans (M. ulcerans), the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Isothermal DNA amplification systems such as the recombinase polymerase amplification (RPA) have emerged as a molecular diagnostic tool with similar accuracy to PCR but having the advantage of amplifying a template DNA at a constant lower temperature in a shorter time. The aim of this study was to develop RPA for the detection of M. ulcerans and evaluate its use in Buruli ulcer disease. Methodology and principal findings A specific fragment of IS2404 of M. ulcerans was amplified within 15 minutes at a constant 42°C using RPA method. The detection limit was 45 copies of IS2404 molecular DNA standard per reaction. The assay was highly specific as all 7 strains of M. ulcerans tested were detected, and no cross reactivity was observed to other mycobacteria or clinically relevant bacteria species. The clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. All results were compared to a highly sensitive real-time PCR. The clinical specificity of the Mu-RPA assay was 100% (95% CI, 84–100), whiles the sensitivity was 88% (95% CI, 77–95). Conclusion The Mu-RPA assay represents an alternative to PCR, especially in areas with limited infrastructure. Current diagnostic methods to detect M. ulcerans suffer from delayed time-to-results in most endemic countries by the prolonged period of time for the shipment and storage of samples to a distant, centralized laboratory. The M. ulcerans recombinase polymerase amplification assay (Mu-RPA) is a new, rapid diagnostic test developed for the detection of M. ulcerans infection, known commonly as Buruli ulcer, a chronic, debilitating, necrotizing disease of the skin and soft tissues. This assay is suitable for use on a portable detection device, with the potential to be used for quick diagnosis at the point of need, providing timely results to health workers at Buruli ulcer treatment clinics.
Collapse
Affiliation(s)
- Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Hubert Senanu Ahor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, Georg-August University, Goettingen, Germany
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francisca Naana Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kenneth Laing
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Mark Wansbrough-Jones
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
16
|
Bretzel G, Beissner M. PCR detection of Mycobacterium ulcerans-significance for clinical practice and epidemiology. Expert Rev Mol Diagn 2018; 18:1063-1074. [PMID: 30381977 DOI: 10.1080/14737159.2018.1543592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Buruli ulcer (BU) is a neglected disease which has been reported from mostly impoverished, remote rural areas from 35 countries worldwide. BU affects skin, subcutaneous tissue, and bones, and may cause massive tissue destruction and life-long disabilities if not diagnosed and treated early. Without laboratory confirmation diagnostic and treatment errors may occur. This review describes the application of IS2404 PCR, the preferred diagnostic test, in the area of individual patient management and clinico-epidemiological studies. Areas covered: A Medline search included publications on clinical sample collection, DNA extraction, and PCR detection formats of the past and present, potential and limitations of clinical application, as well as clinico-epidemiological studies. Expert commentary: A global network of reference laboratories basically provides the possibility for PCR confirmation of 70% of all BU cases worldwide as requested by the WHO. Keeping laboratory confirmation on a constant level requires continuous outreach activities. Among the potential measures to maintain sustainability of laboratory confirmation and outreach activities are decentralized or mobile diagnostics available at point of care, such as IS2404-based LAMP, which complement the standard IS2404-based diagnostic tools available at central level.
Collapse
Affiliation(s)
- Gisela Bretzel
- a Division of Infectious Diseases and Tropical Medicine , University Hospital, Ludwigs-Maximilians-University , Munich , Germany
| | - Marcus Beissner
- a Division of Infectious Diseases and Tropical Medicine , University Hospital, Ludwigs-Maximilians-University , Munich , Germany
| |
Collapse
|
17
|
Hayami T, Takahashi T, Kato T, Tanaka T, Fujimoto N. Mapping biopsy for Buruli ulcer self-medicated with occlusive dressing. J Dermatol 2017; 45:72-75. [PMID: 28891259 DOI: 10.1111/1346-8138.14039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022]
Abstract
Buruli ulcer is the third most common mycobacterial infection next to tuberculosis and leprosy caused by Mycobacterium ulcerans. Although it affects the skin, subcutaneous tissues, muscles and sometimes bones, there is no reliable evidence to determine the extent of debridement. We present here a case of Buruli ulcer treated successfully with a preoperative mapping biopsy procedure, which had been self-medicated with occlusive dressing. Because Buruli ulcer is accompanied by subtle pain, patients and clinicians tend to initially treat the ulcer with occlusive dressing therapy, which leads to the misdiagnosis of Buruli ulcer as a common bacterial infection only judging from bacterial culture of the surface of the ulcer. We propose the efficacy of mapping biopsy for treating Buruli ulcer.
Collapse
Affiliation(s)
- Takuma Hayami
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | | | - Takeshi Kato
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Toshihiro Tanaka
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
18
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Douine M, Gozlan R, Nacher M, Dufour J, Reynaud Y, Elguero E, Combe M, Velvin CJ, Chevillon C, Berlioz-Arthaud A, Labbé S, Sainte-Marie D, Guégan JF, Pradinaud R, Couppié P. Mycobacterium ulcerans infection (Buruli ulcer) in French Guiana, South America, 1969-2013: an epidemiological study. Lancet Planet Health 2017; 1:e65-e73. [PMID: 29851583 DOI: 10.1016/s2542-5196(17)30009-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mycobacterium ulcerans infection is the third most common mycobacterial disease in the world after tuberculosis and leprosy. To date, transmission pathways from its environmental reservoir to humans are still unknown. In South America, French Guiana has the highest reported number of M ulcerans infections across the continent. This empirical study aimed to characterise the epidemiology of M ulcerans infection in French Guiana between 1969 and 2013. METHODS Data were collected prospectively mainly by two dermatologists at Cayenne Hospital's dermatology department between Jan 1, 1969, and Dec 31, 2013, for age, date of diagnosis, sex, residence, location of the lesion, type of lesion, associated symptoms, and diagnostic method (smear, culture, PCR, or histology) for all confirmed and suspected cases of M ulcerans. We obtained population data from censuses. We calculated mean M ulcerans infection incidences, presented as the number of cases per 100 000 person-years. FINDINGS 245 patients with M ulcerans infections were reported at Cayenne Hospital's dermatology department during the study period. M ulcerans infection incidence decreased over time, from 6·07 infections per 100 000 person-years (95% CI 4·46-7·67) in 1969-83 to 4·77 infections per 100 000 person-years (3·75-5·79) in 1984-98 and to 3·49 infections per 100 000 person-years (2·83-4·16) in 1999-2013. The proportion of children with infections also declined with time, from 42 (76%) of 55 patients in 1969-83 to 26 (31%) of 84 in 1984-98 and to 22 (21%) of 106 in 1999-2013. Most cases occurred in coastal areas surrounded by marshy savannah (incidence of 21·08 per 100 000 person-years in Sinnamary and 21·18 per 100 000 person-years in Mana). Lesions mainly affected limbs (lower limbs 161 [66%] patients; upper limbs 60 [24%] patients). We diagnosed no bone infections. INTERPRETATION The decrease of M ulcerans infection incidence and the proportion of children with infections over a 45 year period in this ultra-peripheral French territory might have been mostly driven by improving living conditions, prophylactic recommendations, and access to health care. FUNDING Agence Nationale de la Recherche.
Collapse
Affiliation(s)
- Maylis Douine
- Centre d'Investigation Clinique, Institut National de la Santé et de la Recherche Médicale 1424, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana
| | - Rodolphe Gozlan
- Institut de Recherche pour le Développement Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, Paris, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique, Institut National de la Santé et de la Recherche Médicale 1424, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana
| | - Julie Dufour
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana
| | - Yann Reynaud
- Institut Pasteur de la Guadeloupe, Tuberculosis and Mycobacteria Unit, Morne Jolivière, Les Abymes, Guadeloupe, France
| | - Eric Elguero
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Marine Combe
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Camilla J Velvin
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Christine Chevillon
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Alain Berlioz-Arthaud
- Institut Pasteur de la Guyane, Laboratoire de Biologie Médicale, Cayenne, French Guiana
| | - Sylvain Labbé
- Service D'Anatomie-Pathologique, Cayenne Hospital, Cayenne, French Guiana
| | | | - Jean-François Guégan
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France; Future Earth United Nations International Programme, OneHealth Research Initiative, Montréal, QC, Canada
| | - Roger Pradinaud
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana
| | - Pierre Couppié
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana.
| |
Collapse
|
20
|
16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria. PLoS One 2016; 11:e0164138. [PMID: 27749897 PMCID: PMC5066948 DOI: 10.1371/journal.pone.0164138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.
Collapse
|
21
|
Shinoda N, Nakamura H, Watanabe M. Detection of Mycobacterium ulcerans by real-time PCR with improved primers. Trop Med Health 2016; 44:28. [PMID: 27610043 PMCID: PMC5009631 DOI: 10.1186/s41182-016-0028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2016] [Indexed: 12/04/2022] Open
Abstract
Background Buruli ulcer is a severe skin disease caused by Mycobacterium ulcerans. Real-time PCR targeting the IS2404 sequence has been used as a reliable and rapid method for the diagnosis of Buruli ulcer and detection of M. ulcerans in the environment. The genome of M. ulcerans contains hundreds of IS2404 copies, which have variability in certain sequences. Therefore, the design of new primers specific to conserved IS2404 regions may potentially improve the sensitivity of M. ulcerans detection and, consequently, the diagnosis of Buruli ulcer, thus ensuring timely treatment of the disease. Results In silico analysis indicates that DNA sequences of the IS2404 elements are highly variable within a single strain. As the binding sites of conventional IS2404-specific primers used for M. ulcerans detection contain polymorphic sequences, we designed new primers, which enabled the detection of M. ulcerans by real-time PCR with higher sensitivity and similar specificity with respect to that of conventional primers. However, the increase in sensitivity with the new primers depended on the M. ulcerans strain. Conclusions The results suggest that real-time PCR based on the new primers could improve Buruli ulcer diagnosis and M. ulcerans detection in environmental samples. Electronic supplementary material The online version of this article (doi:10.1186/s41182-016-0028-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noriko Shinoda
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan
| | - Hajime Nakamura
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533 Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan ; Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan
| |
Collapse
|
22
|
Sakyi SA, Aboagye SY, Darko Otchere I, Yeboah-Manu D. Clinical and Laboratory Diagnosis of Buruli Ulcer Disease: A Systematic Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:5310718. [PMID: 27413382 PMCID: PMC4931084 DOI: 10.1155/2016/5310718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023]
Abstract
Background. Buruli ulcer (BU) is a necrotizing cutaneous infection caused by Mycobacterium ulcerans. Early diagnosis is crucial to prevent morbid effects and misuse of drugs. We review developments in laboratory diagnosis of BU, discuss limitations of available diagnostic methods, and give a perspective on the potential of using aptamers as point-of-care. Methods. Information for this review was searched through PubMed, web of knowledge, and identified data up to December 2015. References from relevant articles and reports from WHO Annual Meeting of the Global Buruli Ulcer initiative were also used. Finally, 59 articles were used. Results. The main laboratory methods for BU diagnosis are microscopy, culture, PCR, and histopathology. Microscopy and PCR are used routinely for diagnosis. PCR targeting IS2404 is the gold standard for laboratory confirmation. Culture remains the only method that detects viable bacilli, used for diagnosing relapse and accrued isolates for epidemiological investigation as well as monitoring drug resistance. Laboratory confirmation is done at centers distant from endemic communities reducing confirmation to a quality assurance. Conclusions. Current efforts aimed at developing point-of-care diagnostics are saddled with major drawbacks; we, however, postulate that selection of aptamers against MU target can be used as point of care.
Collapse
Affiliation(s)
- Samuel A. Sakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Y. Aboagye
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
23
|
Ruf MT, Bolz M, Vogel M, Bayi PF, Bratschi MW, Sopho GE, Yeboah-Manu D, Um Boock A, Junghanss T, Pluschke G. Spatial Distribution of Mycobacterium ulcerans in Buruli Ulcer Lesions: Implications for Laboratory Diagnosis. PLoS Negl Trop Dis 2016; 10:e0004767. [PMID: 27253422 PMCID: PMC4890796 DOI: 10.1371/journal.pntd.0004767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
Background Current laboratory diagnosis of Buruli ulcer (BU) is based on microscopic detection of acid fast bacilli, quantitative real-time PCR (qPCR), histopathology or cultivation. Insertion sequence (IS) 2404 qPCR, the most sensitive method, is usually only available at reference laboratories. The only currently available point-of-care test, microscopic detection of acid fast bacilli (AFB), has limited sensitivity and specificity. Methodology/ Principal Findings Here we analyzed AFB positive tissue samples (n = 83) for the presence, distribution and amount of AFB. AFB were nearly exclusively present in the subcutis with large extracellular clusters being most frequently (67%) found in plaque lesions. In ulcerative lesions small clusters and dispersed AFB were more common. Beside this, 151 swab samples from 37 BU patients were analyzed by IS2404 qPCR and ZN staining in parallel. The amount of M. ulcerans DNA in extracts from swabs correlated well with the probability of finding AFB in direct smear microscopy, with 56.1% of the samples being positive in both methods and 43.9% being positive only in qPCR. By analyzing three swabs per patient instead of one, the probability to have at least one positive swab increased from 80.2% to 97.1% for qPCR and from 45% to 66.1% for AFB smear examination. Conclusion / Significance Our data show that M. ulcerans bacteria are primarily located in the subcutis of BU lesions, making the retrieval of the deep subcutis mandatory for examination of tissue samples for AFB. When laboratory diagnosis is based on the recommended less invasive collection of swab samples, analysis of three swabs from different areas of ulcerative lesions instead of one increases the sensitivity of both qPCR and of smear microscopy substantially. Currently, four laboratory methods are available to diagnose Buruli ulcer, a neglected tropical skin disease caused by Mycobacterium ulcerans affecting mainly children in remote rural areas of West Africa. Only one of the four methods, direct microscopic examination of wound exudate for acid fast bacilli, is suitable as point-of-care test. The others, histopathology, culture and IS2404 quantitative PCR, require sophisticated laboratory infrastructure. However, in comparison to the current gold standard, IS2404 quantitative PCR, microscopic smear examination has limited sensitivity. Our results on the distribution of M. ulcerans in Buruli ulcer lesions emphasize that the sensitivity of Buruli ulcer laboratory diagnosis is dependent on optimal sampling procedures. Accurate histopathology crucially depends on tissue samples containing all three skin layers, including the subcutis in which the majority of the bacteria are found. For IS2404 quantitative PCR, culture and direct smear detection, the margin of ulcerative lesions should be sampled at several positions, since bacteria and bacterial DNA are unevenly distributed. With optimized sampling, well-trained laboratory personnel and good microscopy infrastructure, direct smear examination reached a sensitivity of 73%, as compared to IS2404 quantitative PCR.
Collapse
Affiliation(s)
- Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Moritz Vogel
- Section Clinical Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Pierre F. Bayi
- Fairmed, Bureau Régional pour l’Afrique, B.P. 5807, Yaoundé, Cameroon
| | - Martin W. Bratschi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Alphonse Um Boock
- Fairmed, Bureau Régional pour l’Afrique, B.P. 5807, Yaoundé, Cameroon
| | - Thomas Junghanss
- Section Clinical Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Niang F, Sarfo FS, Frimpong M, Guenin-Macé L, Wansbrough-Jones M, Stinear T, Phillips RO, Demangel C. Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease. Sci Rep 2015; 5:17693. [PMID: 26634444 PMCID: PMC4669498 DOI: 10.1038/srep17693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022] Open
Abstract
Infection of human skin with Mycobacterium ulcerans, the causative agent of Buruli ulcer, is associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with progressive disease show alterations in their serum proteome, likely reflecting the inhibition of secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, lysolipids and purine catabolites. Together, these data demonstrate that M. ulcerans infection causes systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells.
Collapse
Affiliation(s)
- Fatoumata Niang
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| | | | | | - Laure Guenin-Macé
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| | | | - Timothy Stinear
- University of Melbourne, Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard O Phillips
- Komfo Anokye Teaching Hospital, Kumasi, Ghana.,Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Caroline Demangel
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| |
Collapse
|
25
|
Wadagni A, Frimpong M, Phanzu DM, Ablordey A, Kacou E, Gbedevi M, Marion E, Xing Y, Babu VS, Phillips RO, Wansbrough-Jones M, Kishi Y, Asiedu K. Simple, Rapid Mycobacterium ulcerans Disease Diagnosis from Clinical Samples by Fluorescence of Mycolactone on Thin Layer Chromatography. PLoS Negl Trop Dis 2015; 9:e0004247. [PMID: 26583925 PMCID: PMC4652903 DOI: 10.1371/journal.pntd.0004247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction Mycobacterium ulcerans infection, known as Buruli ulcer, is a disease of the skin and subcutaneous tissues which is an important but neglected tropical disease with its major impact in rural parts of West and Central Africa where facilities for diagnosis and management are poorly developed. We evaluated fluorescent thin layer chromatography (f-TLC) for detection of mycolactone in the laboratory using samples from patients with Buruli ulcer and patients with similar lesions that gave a negative result on PCR for the IS2404 repeat sequence of M. ulcerans Methodology/Principal findings Mycolactone and DNA extracts from fine needle aspiration (FNA), swabs and biopsy specimen were used to determine the sensitivity and specificity of f-TLC when compared with PCR for the IS2404. For 71 IS2404 PCR positive and 28 PCR negative samples the sensitivity was 73.2% and specificity of 85.7% for f-TLC. The sensitivity was similar for swabs (73%), FNAs (75%) and biopsies (70%). Conclusions We have shown that mycolactone can be detected from M. ulcerans infected skin tissue by f-TLC technique. The technique is simple, easy to perform and read with minimal costs. In this study it was undertaken by a member of the group from each endemic country. It is a potentially implementable tool at the district level after evaluation in larger field studies. Mycobacterium ulcerans infection, known as Buruli ulcer, is a disease that affects the skin and underlying tissues. The organism responsible for the infection produces a potent toxin called mycolactone that causes extensive skin damage. Easy to perform and cheaper techniques are needed for diagnostic confirmation. We have evaluated fluorescent thin layer chromatography (fTLC) for detection of mycolactone in skin samples from patients with Buruli ulcer comparing them with samples from similar non-Buruli ulcer lesions that gave a negative result in the standard polymerase chain reaction (PCR) test for M. ulcerans. Fluorescent TLC had sensitivity of 73.2% and specificity of 85.7% when compared with PCR whether the skin sample was a swab, a biopsy or a fine needle aspirate. This study shows that mycolactone can be detected reliably from M. ulcerans infected skin tissue by the simple, low cost technique of fluorescent thin layer chromatography that could be developed for point of care use. It requires further evaluation in countries where Buruli ulcer disease is endemic.
Collapse
Affiliation(s)
- Anita Wadagni
- Centre de Dépistage et de Traitement de l’Ulcère de Buruli d’Allada, Allada, Bénin
| | - Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Mirabelle Gbedevi
- Centre de Dépistage et de Traitement de l’Ulcère de Buruli d’Allada, Allada, Bénin
| | - Estelle Marion
- Centre de Diagnostic et de Traitement de l'Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Yalan Xing
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vaddela Sudheer Babu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- * E-mail:
| | | | - Yoshito Kishi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
26
|
Lepra und Buruli-Ulkus. Monatsschr Kinderheilkd 2015. [DOI: 10.1007/s00112-015-3378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance. Antimicrob Agents Chemother 2015; 59:5967-75. [PMID: 26169415 DOI: 10.1128/aac.04634-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/06/2015] [Indexed: 12/27/2022] Open
Abstract
Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria.
Collapse
|
28
|
Effectiveness of routine BCG vaccination on buruli ulcer disease: a case-control study in the Democratic Republic of Congo, Ghana and Togo. PLoS Negl Trop Dis 2015; 9:e3457. [PMID: 25569674 PMCID: PMC4287572 DOI: 10.1371/journal.pntd.0003457] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022] Open
Abstract
Background The only available vaccine that could be potentially beneficial against mycobacterial diseases contains live attenuated bovine tuberculosis bacillus (Mycobacterium bovis) also called Bacillus Calmette-Guérin (BCG). Even though the BCG vaccine is still widely used, results on its effectiveness in preventing mycobacterial diseases are partially contradictory, especially regarding Buruli Ulcer Disease (BUD). The aim of this case-control study is to evaluate the possible protective effect of BCG vaccination on BUD. Methodology The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. Principal Findings After stratification by the three countries, two sexes and four age groups, no significant correlation was found between the presence of BCG scar and BUD status of individuals. Multivariate analysis has shown that the independent variables country (p = 0.31), sex (p = 0.24), age (p = 0.96), and presence of a BCG scar (p = 0.07) did not significantly influence the development of BUD category I or category II/III. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or time to healing of lesions. Conclusions In our study, we did not observe significant evidence of a protective effect of routine BCG vaccination on the risk of developing either BUD or severe forms of BUD. Since accurate data on BCG strains used in these three countries were not available, no final conclusion can be drawn on the effectiveness of BCG strain in protecting against BUD. As has been suggested for tuberculosis and leprosy, well-designed prospective studies on different existing BCG vaccine strains are needed also for BUD. After tuberculosis and leprosy, Buruli Ulcer Disease (BUD) is the third most common human mycobacterial disease. The only available vaccine that could be potentially beneficial against these diseases is BCG. Even though BCG vaccine is widely used, the results on its effectiveness are partially contradictory, probably since different BCG strains are used. The aim of this study was to evaluate the possible protective effect of BCG vaccines on BUD. The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. Considering the three countries, sex, and age, the analysis confirmed that the BCG vaccination did not significantly decrease the risk for developing BUD or for developing severe forms of BUD. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or to time to healing of lesions. In our study, we could not find any evidence of a protective effect of routine BCG vaccination on BUD.
Collapse
|
29
|
Phillips RO, Sarfo FS, Landier J, Oldenburg R, Frimpong M, Wansbrough-Jones M, Abass K, Thompson W, Forson M, Fontanet A, Niang F, Demangel C. Combined inflammatory and metabolic defects reflected by reduced serum protein levels in patients with Buruli ulcer disease. PLoS Negl Trop Dis 2014; 8:e2786. [PMID: 24722524 PMCID: PMC3983110 DOI: 10.1371/journal.pntd.0002786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host's protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease.
Collapse
Affiliation(s)
- Richard O. Phillips
- Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jordi Landier
- Institut Pasteur, Unité de Recherche et d'Expertise Epidémiologie des Maladies Emergentes, Paris, France
| | - Reid Oldenburg
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France
- CNRS URA 1961, Paris, France
| | | | | | | | | | | | - Arnaud Fontanet
- Institut Pasteur, Unité de Recherche et d'Expertise Epidémiologie des Maladies Emergentes, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Fatoumata Niang
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France
- CNRS URA 1961, Paris, France
| | - Caroline Demangel
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Genetic diversity of PCR-positive, culture-negative and culture-positive Mycobacterium ulcerans isolated from Buruli ulcer patients in Ghana. PLoS One 2014; 9:e88007. [PMID: 24520343 PMCID: PMC3919753 DOI: 10.1371/journal.pone.0088007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Culture of Mycobacterium ulcerans from Buruli ulcer patients has very low sensitivity. Thus confirmation of M. ulcerans infection is primarily based on PCR directed against IS2404. In this study we compare the genotypes obtained by variable number of tandem repeat analysis of DNA from IS2404-PCR positive cultures with that obtained from IS2404 positive, culture-negative tissue. A significantly greater genetic heterogeneity was found among culture-negative samples compared with that found in cultured strains but a single genotype is over-represented in both sample sets. This study provides evidence that both the focal location of bacteria in a lesion as well as differences in the ability to culture a particular genotype may underlie the low sensitivity of culture. Though preliminary, data from this work also suggests that mycobacteria previously associated with fish disease (M. pseudoshottsii) may be pathogenic for humans.
Collapse
|
31
|
Narh CA, Mosi L, Quaye C, Tay SC, Bonfoh B, de Souza DK. Genotyping Tools for Mycobacterium ulcerans-Drawbacks and Future Prospects. ACTA ACUST UNITED AC 2014; 4:1000149. [PMID: 24900947 PMCID: PMC4040416 DOI: 10.4172/2161-1068.1000149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mycobacterium ulcerans infection (Buruli ulcer) is a neglected but treatable skin disease endemic in over 30 countries. M. ulcerans is an environmental mycobacteria with an elusive mode of transmission to humans. Ecological and Molecular epidemiological studies to identify reservoirs and transmission vectors are important for source tracking infections especially during outbreaks and elucidating transmission routes. Research efforts have therefore focused on genotyping strains of the mycobacteria from clinical and environmental samples. This review discusses genotyping tools for differentiating M. ulcerans strains from other environmental and Mycolactone Producing Mycobacteria (MPMs). We highlight tools that have been adapted from related fields and propose ways these could be enhanced to resolve intra-species variation for epidemiological, transmission, evolutionary studies, and detection of emerging drug resistant strains. In the wake of increasing cases of Buruli ulcer, cumulative efforts including improvement in diagnostic methods and fine-tuning of genotyping tools are crucial to complement public health efforts in reducing infections.
Collapse
Affiliation(s)
- Charles A Narh
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana ; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast ; Clinical Microbiology Department, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | - Lydia Mosi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast ; Biochemistry, Cell and Molecular Biology Department, University of Ghana
| | - Charles Quaye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana ; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast
| | - Samuel Ck Tay
- Clinical Microbiology Department, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast
| | - Dziedzom K de Souza
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| |
Collapse
|
32
|
Leigheb G, Zavattaro E, Molicotti P, Cannas S, Zanetti S, Clemente C, Johnson RC, Sopoh GE, Dossou AD, Colombo E. Clinical considerations on Buruli ulcer employing two molecular tests for the detection of Mycobacterium ulcerans in 100 skin biopsies. Int J Dermatol 2013; 53:213-20. [PMID: 24320698 DOI: 10.1111/ijd.12249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Buruli ulcer (BU) is an infected cutaneous lesion, the etiological agent of which is Mycobacterium ulcerans. Diagnosis is confirmed by the identification of acid-fast bacilli and culture. In clinically suspicious forms with negative bacteriological or Ziehl-Neelsen (ZN) findings, molecular tests are used. This study compared the concordance of nested polymerase chain reaction (PCR) (targeting IS2404) and PCR (targeting IS2606) in different clinical situations. METHODS A total of 57 samples were sourced from 39 BU patients. Control samples (n = 43) were obtained from non-BU ulcers in 38 patients. Samples were divided into two pieces and submitted to, respectively, histological examination and ZN staining, and PCR. Subsamples submitted to PCR were divided and submitted to nested PCR IS2404 and PCR IS2606, respectively. RESULTS Of the 57 BU biopsies, positive results were obtained by nested PCR in 18 (31.6%) and by IS2606 PCR in 37 (64.9%) cases. Sequencing of the positive samples confirmed the specificity of amplicons in all nested PCR samples and in 26 of 37 (70.2%) samples positive to IS2606. Hence, nested PCR was more specific (100% vs. 93%) and less sensitive (32% vs. 46%) than IS2606 PCR. In the BU samples, nested PCR was negative in 15 instances, and IS2606 PCR was negative in 11 instances in which ZN histology had been positive (false negatives). Both PCRs were positive in six ZN-negative smears. CONCLUSIONS We considered 57 samples from 39 BU patients in various clinical stages and at different times after the beginning of therapy. These provided positive results in 18 cases with IS2404 nested PCR and in 37 cases with PCR IS2606; only 26 of the latter remained positive subsequent to sequencing. Hence, even if IS2404 PCR is considered more specific, in subjects who appear to fail to respond to therapy, it is advisable to also carry out IS2606 PCR. A possible interpretation of the discordance between the two techniques due to unavoidable technical errors as well as to different sensitivity of the two tests at M. ulcerans DNA low concentration (i.e. in recent infection and in well-treated cases) is discussed.
Collapse
Affiliation(s)
- Giorgio Leigheb
- Dermatology Unit, Department of Translational Medicine, University of Piemonte Orientale Amedeo Avogadro, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 2013; 58:1161-6. [PMID: 24323473 DOI: 10.1128/aac.02165-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Buruli ulcer, an ulcerating skin disease caused by Mycobacterium ulcerans infection, is common in tropical areas of western Africa. We determined the clinical and microbiological responses to administration of rifampin and streptomycin for 2 weeks followed by administration of rifampin and clarithromycin for 6 weeks in 43 patients with small laboratory-confirmed Buruli lesions and monitored for recurrence-free healing. Bacterial load in tissue samples before and after treatment for 6 and 12 weeks was monitored by semiquantitative culture. The success rate was 93%, and there was no recurrence after a 12-month follow-up. Eight percent had a positive culture 4 weeks after antibiotic treatment, but their lesions went on to heal. The findings indicate that rifampin and clarithromycin can replace rifampin and streptomycin for the continuation phase after rifampin and streptomycin administration for 2 weeks without any apparent loss of efficacy.
Collapse
|
34
|
Beissner M, Huber KL, Badziklou K, Halatoko WA, Maman I, Vogel F, Bidjada B, Awoussi KS, Piten E, Helfrich K, Mengele C, Nitschke J, Amekuse K, Wiedemann FX, Diefenhardt A, Kobara B, Herbinger KH, Kere AB, Prince-David M, Löscher T, Bretzel G. Implementation of a national reference laboratory for Buruli ulcer disease in Togo. PLoS Negl Trop Dis 2013; 7:e2011. [PMID: 23359828 PMCID: PMC3554568 DOI: 10.1371/journal.pntd.0002011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78% (including qPCR confirmation at external reference laboratory) suggest high standards of BUD diagnostics. The increase of non-ulcerative lesions, as well as the decrease in diagnostic delay and category III lesions, prove the effect of comprehensive EQA and training measures involving also procedures outside the laboratory. Buruli ulcer disease (BUD), the third most common mycobacterial disease worldwide, is treated with standardized antimycobacterial therapy. According to WHO recommendations at least 50% of cases should be laboratory confirmed by polymerase chain reaction (PCR). In a previous study PCR analysis of clinical samples from suspected BUD cases from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as time and effort associated with shipment of clinical samples abroad necessitated the availability of a local BUD reference laboratory and the implementation of stringent EQA measures. All processes in the laboratories as well as in the field were defined by standard operating procedures, microscopy conducted at regional facilities was subjected to EQA at national and external reference level, and PCR samples were analyzed in parallel at national and external reference laboratories. Inter-laboratory concordance rates of >90% and case confirmation rates of 50% (microscopy) and >70% (PCR) respectively suggest high standards of BUD diagnostics. Furthermore, an increase of non-ulcerative lesions and a decrease in diagnostic delay and category III lesions reflect the impact of comprehensive EQA measures also involving procedures outside the laboratory on the quality of BUD control.
Collapse
Affiliation(s)
- Marcus Beissner
- Department of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Direct detection of Mycobacterium ulcerans in clinical specimens and environmental samples. Methods Mol Biol 2013; 943:201-16. [PMID: 23104291 DOI: 10.1007/978-1-60327-353-4_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mycobacterium ulcerans is a slow-growing environmental bacterium that causes a severe skin disease known as Buruli ulcer. Rapid detection of M. ulcerans in clinical specimens is essential to ensure early diagnosis and prevention of disability. This chapter describes a real-time PCR method for the direct detection of M. ulcerans from swabs, fresh tissue biopsies, and fixed tissue sections, which are the most common types of specimens used in the diagnosis of Buruli ulcer. The chapter also briefly describes methods for PCR detection of M. ulcerans in environmental samples, as reliable detection of M. ulcerans in the environment is becoming increasingly important for understanding the ecology and transmission of this important pathogen.
Collapse
|
36
|
NAKANAGA K, HOSHINO Y, YOTSU RR, MAKINO M, ISHII N. Laboratory procedures for the detection and identification of cutaneous non-tuberculous mycobacterial infections. J Dermatol 2012; 40:151-9. [DOI: 10.1111/1346-8138.12047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/24/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Kazue NAKANAGA
- Leprosy Research Center; National Institute of Infectious Diseases; Tokyo; Japan
| | - Yoshihiko HOSHINO
- Leprosy Research Center; National Institute of Infectious Diseases; Tokyo; Japan
| | - Rie R. YOTSU
- Department of Dermatology; National Center for Global Health and Medicine; Tokyo; Japan
| | - Masahiko MAKINO
- Leprosy Research Center; National Institute of Infectious Diseases; Tokyo; Japan
| | - Norihisa ISHII
- Leprosy Research Center; National Institute of Infectious Diseases; Tokyo; Japan
| |
Collapse
|
37
|
Imajoh M, Sugiura H, Hashida Y, Hatai K, Oshima SI, Daibata M, Kawai K. Genotypic characteristics of a Mycobacterium sp. isolated from yellowtail Seriola quinqueradiata and striped jack Pseudocaranx dentex in Japan. Microbiol Immunol 2012; 57:13-20. [PMID: 23043488 DOI: 10.1111/j.1348-0421.2012.00514.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/02/2012] [Accepted: 09/29/2012] [Indexed: 11/30/2022]
Abstract
In Japan, a Mycobacterium marinum-like mycobacterium was isolated from the yellowtail, Seriola quinqueradiata. The species was identified as M. marinum by a commercial mycobacterial DNA-DNA hybridization kit. Nevertheless, PCR restriction analysis of the DNA of its RNA polymerase β-subunit gene definitively showed that this Mycobacterium sp. was M. ulcerans. PCR analysis revealed the genotypic characteristics of M. ulcerans in the Mycobacterium sp., only the mup053 gene sequence being absent, as has been found previously in other piscine mycobacteria such as M. marinum strains DL240490 and DL045 and M. pseudoshottsii. With one exception, this Mycobacterium sp. and M. pseudoshottsii had identical 16S rRNA gene sequences, which is also probably true of M. marinum strains DL240490 and DL045. Similarly, according to comparisons of the 16S rRNA gene, ITS region, and hsp65 gene sequences, this Mycobacterium sp. is more closely related to M. pseudoshottsii than to M. ulcerans or M. marinum. A PCR product of approximately 2000 bp was amplified from region of difference 9 in the Mycobacterium sp. The nucleotide sequence revealed insertion of IS2404, the sequence of which is 1366 bp long. The novel single nucleotide polymorphisms identified in this region distinguished this Mycobacterium sp. from M. marinum strain DL240490 and M. pseudoshottsii. The present findings raise the possibility that these species have a common ancestor. Further studies are required to improve our understanding of the relationship between their geographical origin and genetic diversity.
Collapse
Affiliation(s)
- Masayuki Imajoh
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Boyd SC, Athan E, Friedman ND, Hughes A, Walton A, Callan P, McDonald A, O'Brien DP. Epidemiology, clinical features and diagnosis of Mycobacterium ulcerans in an Australian population. Med J Aust 2012; 196:341-4. [DOI: 10.5694/mja12.10087] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Daniel P O'Brien
- Barwon Health, Geelong, VIC
- Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Melbourne, VIC
| |
Collapse
|
39
|
A quick and cost effective method for the diagnosis of Mycobacterium ulcerans infection. BMC Infect Dis 2012; 12:8. [PMID: 22257432 PMCID: PMC3398261 DOI: 10.1186/1471-2334-12-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background Buruli ulcer (BU), a neglected tropical skin disease caused by Mycobacterium ulcerans, has been reported in over 30 countries worldwide and is highly endemic in rural West and Central Africa. The mode of transmission remains unknown and treatment is the only alternative to disease control. Early and effective treatment to prevent the morbid effects of the disease depends on early diagnosis; however, current diagnosis based on clinical presentation and microscopy has to be confirmed by PCR and other tests in reference laboratories. As such confirmed BU diagnosis is either late, inefficient, time consuming or very expensive, and there is the need for an early diagnosis tool at point of care facilities. In this paper we report on a simple, quick and inexpensive diagnostic test that could be used at point of care facilities, in resource-poor settings. Methods The methodology employed is based on the loop mediated isothermal amplification (LAMP) technique. Four sets of Primers, targeting the mycolactone encoding plasmid genome sequence of M. ulcerans were designed. The BU-LAMP assay was developed and tested on five M. ulcerans strains from patients in Ghana and two American Type Culture Control (ATCC) reference isolates; Ghana #970321 (D19F9) and Benin #990826 (D27D14). We also tested the assay on other closely related, mycolactone-producing mycobacterial strains; M. marinum 1218, M. marinum DL240490, M. liflandii and M. pseudoshotsii, as well as experimentally infected laboratory animal and clinical samples. Results The results revealed a high specificity of the BU-LAMP assay for selectively detecting M. ulcerans. Compared to the conventional IS-2404 PCR, the new assay is cheaper and simpler and ten times more sensitive. Test results can be obtained within 1 hour. Conclusions This study indicates that the BU-LAMP assay could be suitable for early disease diagnosis and application in low-resource health facilities.
Collapse
|
40
|
Effects of decontamination, DNA extraction, and amplification procedures on the molecular diagnosis of Mycobacterium ulcerans disease (Buruli ulcer). J Clin Microbiol 2012; 50:1195-8. [PMID: 22259213 DOI: 10.1128/jcm.05592-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
We compared two DNA extraction methods (a semiautomated method using a Maxwell kit and a modified Boom method) and three amplification procedures (a single-step PCR, a nested PCR, and a real-time quantitative PCR) on 74 surgical tissue specimens from patients with clinically suspected Buruli ulcer. All of these procedures were compared before and after decontamination. We observed that, among the procedures tested, real-time PCR after the modified Boom extraction method or a single-run PCR assay after the Maxwell 16 extraction method, performed on nondecontaminated suspensions, are the best for the molecular diagnosis of Mycobacterium ulcerans disease.
Collapse
|
41
|
Abstract
The etiology, clinical manifestations, and treatment of 19 sporadic cases of Buruli ulcer (BU) in Japan are described. The cases originated in different regions of Honshu Island, with no evidence of patient contact with an aquatic environment. The majority (73.7%) of cases occurred in females, with an average age of 39.1 years for females and 56.8 years for males. All patients developed ulcers on exposed areas of the skin (e.g., face, extremities). Most ulcers were <5 cm in diameter (category I), except in one severe progressive case (category II). Pain was absent in 10 of the 19 cases. Fourteen ulcers were surgically excised, and nine patients needed skin grafting. All cases were treated with various antibiotic regimens, with no reported recurrences as of March 2011. Mycobacterium ulcerans-specific IS2404 was detected in all cases. Ten isolates had identical 16S rRNA gene sequences, which were similar to those of M. ulcerans. However, the rpoB gene showed a closer resemblance to Mycobacterium marinum or Mycobacterium pseudoshottsii. PCR identified pMUM001 in all isolates but failed to detect one marker. DNA-DNA hybridization misidentified all isolates as M. marinum. The drug susceptibility profile of the isolates also differed from that of M. ulcerans. Sequence analysis revealed "Mycobacterium ulcerans subsp. shinshuense" as the etiologic agent of BU in Japan. Clinical manifestations were comparable to those of M. ulcerans but differed as follows: (i) cases were not concentrated in a particular area; (ii) there was no suspected connection to an aquatic environment; (iii) drug susceptibility was different; and (iv) bacteriological features were different.
Collapse
|
42
|
Efficiency of fine-needle aspiration compared with other sampling techniques for laboratory diagnosis of Buruli ulcer disease. J Clin Microbiol 2010; 48:3732-4. [PMID: 20739480 DOI: 10.1128/jcm.01549-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In accordance with recent WHO recommendations, this study evaluates the sensitivities of PCR and microscopy for fine-needle aspiration (FNA) versus techniques involving swabs and punch biopsy specimens and suggests that FNA can replace punch biopsies for nonulcerative lesions and may serve as an alternative for ulcerative lesions in cases where scarred edges prevent the collection of swabs.
Collapse
|
43
|
Beissner M, Herbinger KH, Bretzel G. Laboratory diagnosis of Buruli ulcer disease. Future Microbiol 2010; 5:363-70. [PMID: 20210548 DOI: 10.2217/fmb.10.3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer disease (BUD), caused by Mycobacterium ulcerans, has become the third most common mycobacterial disease worldwide. Antimycobacterial therapy is considered the treatment of choice. With the introduction of antimycobacterial treatment, laboratory confirmation of clinically suspected cases became crucial for the clinical management of BUD. Currently available diagnostic laboratory tests include microscopy, culture, histopathology and IS2404 PCR. Several IS2404 PCR assays were applied for case confirmation in endemic countries, and IS2404 PCR is considered the most sensitive method for the laboratory confirmation of BUD. Due to the extended presence of mycobacterial DNA under antimycobacterial treatment, however, PCR is not suitable for monitoring of treatment success. Currently, cultures are considered the only valid confirmatory test for the detection of viable bacilli.
Collapse
Affiliation(s)
- Marcus Beissner
- Department of Infectious Diseases & Tropical Medicine, Ludwig Maximilians University Munich, Leopoldstrasse 5, 80802 Munich, Germany.
| | | | | |
Collapse
|
44
|
Use of fine-needle aspiration for diagnosis of Mycobacterium ulcerans infection. J Clin Microbiol 2010; 48:2263-4. [PMID: 20375229 DOI: 10.1128/jcm.00558-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noninvasive methods for the bacteriological diagnosis of early-stage Mycobacterium ulcerans infection are not available. It was recently shown that fine-needle aspiration (FNA) could be used for diagnosing M. ulcerans infection in ulcerative lesions. We report that FNA is an appropriate sampling method for diagnosing M. ulcerans infection in nonulcerative lesions.
Collapse
|
45
|
Nienhuis WA, Stienstra Y, Thompson WA, Awuah PC, Abass KM, Tuah W, Awua-Boateng NY, Ampadu EO, Siegmund V, Schouten JP, Adjei O, Bretzel G, van der Werf TS. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet 2010; 375:664-72. [PMID: 20137805 DOI: 10.1016/s0140-6736(09)61962-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Surgical debridement was the standard treatment for Mycobacterium ulcerans infection (Buruli ulcer disease) until WHO issued provisional guidelines in 2004 recommending treatment with antimicrobial drugs (streptomycin and rifampicin) in addition to surgery. These recommendations were based on observational studies and a small pilot study with microbiological endpoints. We investigated the efficacy of two regimens of antimicrobial treatment in early-stage M ulcerans infection. METHODS In this parallel, open-label, randomised trial undertaken in two sites in Ghana, patients were eligible for enrolment if they were aged 5 years or older and had early (duration <6 months), limited (cross-sectional diameter <10 cm), M ulcerans infection confirmed by dry-reagent-based PCR. Eligible patients were randomly assigned to receive intramuscular streptomycin (15 mg/kg once daily) and oral rifampicin (10 mg/kg once daily) for 8 weeks (8-week streptomycin group; n=76) or streptomycin and rifampicin for 4 weeks followed by rifampicin and clarithromycin (7.5 mg/kg once daily), both orally, for 4 weeks (4-week streptomycin plus 4-week clarithromycin group; n=75). Randomisation was done by computer-generated minimisation for study site and type of lesion (ulceration or no ulceration). The randomly assigned allocation was sent from a central site by cell-phone text message to the study coordinator. The primary endpoint was lesion healing at 1 year after the start of treatment without lesion recurrence or extensive surgical debridement. Analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT00321178. FINDINGS Four patients were lost to follow-up (8-week streptomycin, one; 4-week streptomycin plus 4-week clarithromycin, three). Since these four participants had healed lesions at their last assessment, they were included in the analysis for the primary endpoint. 73 (96%) participants in the 8-week streptomycin group and 68 (91%) in the 4-week streptomycin plus 4-week clarithromycin group had healed lesions at 1 year (odds ratio 2.49, 95% CI 0.66 to infinity; p=0.16, one-sided Fisher's exact test). No participants had lesion recurrence at 1 year. Three participants had vestibulotoxic events (8-week streptomycin, one; 4-week streptomycin plus 4-week clarithromycin, two). One participant developed an injection abscess and two participants developed an abscess close to the initial lesion, which was incised and drained (all three participants were in the 4-week streptomycin plus 4-week clarithromycin group). INTERPRETATION Antimycobacterial treatment for M ulcerans infection is effective in early, limited disease. 4 weeks of streptomycin and rifampicin followed by 4 weeks of rifampicin and clarithromycin has similar efficacy to 8 weeks of streptomycin and rifampicin; however, the number of injections of streptomycin can be reduced by switching to oral clarithromycin after 4 weeks. FUNDING European Union (EU FP6 2003-INCO-Dev2-015476) and Buruli Ulcer Groningen Foundation.
Collapse
Affiliation(s)
- Willemien A Nienhuis
- Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McGann H, Stragier P, Portaels F, Gascoyne Binzi D, Collyns T, Lucas S, Mawer D. Buruli ulcer in United Kingdom tourist returning from Latin America. Emerg Infect Dis 2010; 15:1827-9. [PMID: 19891876 PMCID: PMC2857232 DOI: 10.3201/eid1511.090460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report a case of Buruli ulcer in a tourist from the United Kingdom. The disease was almost certainly acquired in Brazil, where only 1 case had previously been reported. The delay in diagnosis highlights the need for physicians to be aware of the disease and its epidemiology.
Collapse
Affiliation(s)
- Hugh McGann
- Department of Infection and Travel Medicine, St. James's University Hospital, Beckett St, Leeds, LS9 7TF, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Sarfo FS, Phillips RO, Rangers B, Mahrous EA, Lee RE, Tarelli E, Asiedu KB, Small PL, Wansbrough-Jones MH. Detection of Mycolactone A/B in Mycobacterium ulcerans-Infected Human Tissue. PLoS Negl Trop Dis 2010; 4:e577. [PMID: 20052267 PMCID: PMC2791843 DOI: 10.1371/journal.pntd.0000577] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Mycobacterium ulcerans disease (Buruli ulcer) is a neglected tropical disease common amongst children in rural West Africa. Animal experiments have shown that tissue destruction is caused by a toxin called mycolactone. Methodology/Principal Findings A molecule was identified among acetone-soluble lipid extracts from M. ulcerans (Mu)-infected human lesions with chemical and biological properties of mycolactone A/B. On thin layer chromatography this molecule had a retention factor value of 0.23, MS analyses showed it had an m/z of 765.6 [M+Na+] and on MS:MS fragmented to produce the core lactone ring with m/z of 429.4 and the polyketide side chain of mycolactone A/B with m/z of 359.2. Acetone-soluble lipids from lesions demonstrated significant cytotoxic, pro-apoptotic and anti-inflammatory activities on cultured fibroblast and macrophage cell lines. Mycolactone A/B was detected in all of 10 tissue samples from patients with ulcerative and pre-ulcerative Mu disease. Conclusions/Significance Mycolactone can be detected in human tissue infected with Mu. This could have important implications for successful management of Mu infection by antibiotic treatment but further studies are needed to measure its concentration. Skin infection with bacteria called Mycobacterium ulcerans causes Buruli ulcer, a disease common in West Africa and mainly affecting children. M. ulcerans is the only mycobacterium to cause disease by production of a toxin. This lipid molecule called mycolactone diffuses from the site of infection, killing surrounding cells and, at low concentration, suppressing the immune response. The aim of this study was to show that mycolactone can be detected among lipids extracted from human M. ulcerans lesions in order to study its role in the pathogenesis of M. ulcerans disease. Lipids were extracted from skin biopsies and tested for the presence of mycolactone using thin layer chromatography and mass spectrometry. The extracts were shown to kill cultured cells in a cytotoxicity assay. Mycolactone was detected in both pre-ulcerative and ulcerative forms of the disease and also in lesions during antibiotic treatment but with reduced bioactivity, suggesting a lower concentration compared to untreated lesions. These findings indicate that there is mycolactone in affected skin at all stages of M. ulcerans disease and it could be used as a biomarker for monitoring the clinical response to antibiotic treatment.
Collapse
Affiliation(s)
| | - Richard O. Phillips
- Komfo Anokye Teaching Hospital, Kumasi, Ghana
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Brian Rangers
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Engy A. Mahrous
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard E. Lee
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Edward Tarelli
- St. George's, University of London, London, United Kingdom
| | | | - Pamela L. Small
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | | |
Collapse
|
48
|
Fine-needle aspiration, an efficient sampling technique for bacteriological diagnosis of nonulcerative Buruli ulcer. J Clin Microbiol 2009; 47:1700-4. [PMID: 19386847 DOI: 10.1128/jcm.00197-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive punch or incisional skin biopsy specimens are currently employed for the bacteriological confirmation of the clinical diagnosis of Buruli ulcer (BU), a cutaneous infectious disease caused by Mycobacterium ulcerans. The efficacy of fine-needle aspirates (FNA) using fine-gauge needles (23G by 25 mm) for the laboratory confirmation of BU was compared with that of skin tissue fragments obtained in parallel by excision or punch biopsy. In three BU treatment centers in Benin, both types of diagnostic material were obtained from 33 clinically suspected cases of BU and subjected to the same laboratory analyses: i.e., direct smear examination, IS2404 PCR, and in vitro culture. Twenty-three patients, demonstrating 17 ulcerative and 6 nonulcerative lesions, were positive by at least two tests and were therefore confirmed to have active BU. A total of 68 aspirates and 68 parallel tissue specimens were available from these confirmed patients. When comparing the sensitivities of the three confirmation tests between FNA and tissue specimens, the latter yielded more positive results, but only for PCR was this significant. When only nonulcerative BU lesions were considered, however, the sensitivities of the confirmation tests using FNA and tissue specimens were not significantly different. Our results show that the minimally invasive FNA technique offers enough sensitivity to be used for the diagnosis of BU in nonulcerative lesions.
Collapse
|
49
|
Sensitivity of PCR targeting Mycobacterium ulcerans by use of fine-needle aspirates for diagnosis of Buruli ulcer. J Clin Microbiol 2009; 47:924-6. [PMID: 19204098 DOI: 10.1128/jcm.01842-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we reported that the sensitivity of PCR targeting the IS2404 insertion sequence of Mycobacterium ulcerans was 98% when it was applied to 4-mm punch biopsy samples of Buruli lesions. Fine-needle aspiration (FNA) is a less traumatic sampling technique for nonulcerated lesions, and we have studied the sensitivity of PCR using FNA samples. Fine-needle aspirates were taken with a 21-gauge needle from 43 patients diagnosed clinically with M. ulcerans disease. Four-millimeter punch biopsies were obtained for microscopy, culture, and PCR targeting the IS2404 insertion sequence. The sensitivity of PCR using samples obtained by FNA was 86% (95% confidence interval [95% CI], 72 to 94%) compared with that for PCR using punch biopsy samples. In this study, the sensitivities of culture and microscopy for punch biopsy samples were 44% (95% CI, 29 to 60%) and 26% (95% CI, 14 to 41%), respectively. This demonstrates that PCR on an FNA sample is a viable minimally invasive technique to diagnose M. ulcerans lesions.
Collapse
|
50
|
Durnez L, Stragier P, Roebben K, Ablordey A, Leirs H, Portaels F. A comparison of DNA extraction procedures for the detection of Mycobacterium ulcerans, the causative agent of Buruli ulcer, in clinical and environmental specimens. J Microbiol Methods 2009; 76:152-8. [DOI: 10.1016/j.mimet.2008.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
|