1
|
Abbasian S, Heidari H, Abbasi Tadi D, Kardan-Yamchi J, Taji A, Darbandi A, Asadollahi P, Maleki A, Kazemian H. Epidemiology of first- and second-line drugs-resistant pulmonary tuberculosis in Iran: Systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2024; 35:100430. [PMID: 38560029 PMCID: PMC10981085 DOI: 10.1016/j.jctube.2024.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Drug resistance among Mycobacterium tuberculosis (MTB) strains is a growing concern in developing countries. We conducted a comprehensive search for relevant studies in Iran on PubMed, Scopus, and Embase until June 12, 2020. Our study focused on determining the prevalence of antibiotic resistance in MTB isolates, with subgroup analyses based on year, location, and drug susceptibility testing (DST) methods. Statistical analyses were performed using STATA software. Our meta-analysis included a total of 47 articles. Among new TB cases, we found the following prevalence rates: Any-resistance to first-line drugs: 31 % (95 % CI, 24-38), mono-drug resistance: 15 % (95 % CI, 10-22), and multidrug resistance to first-line drugs: 6 % (95 % CI, 4-8). There was a significant variation in the rate of MDR among new TB cases based on the year of publication, location, and DST methods (P < 0.0001). We observed substantial variability in multidrug-resistant TB rates among new cases across the studies. Stratified analyses revealed that publication years and DST methods significantly affected resistance rates. Studies from southern and central Iran reported higher any-drug resistance rates, suggesting regional differences. Among retreatment cases, the prevalence rates were as follows: Any resistance: 68 % (95 % CI 58-78), mono-resistance: 19 % (95 % CI 7-34), multidrug resistance: 28 % (95 % CI 15-43). Our study revealed that the prevalence of drug-resistant TB (DR-TB) among TB cases in Iran is higher than the global average. Particularly, MDR-TB among retreatment TB cases is a significant public health issue.
Collapse
Affiliation(s)
- Sara Abbasian
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Danyal Abbasi Tadi
- Department of Veterinary, Azad University of Shahr-e Kord, Shahr-e Kord, Iran
| | - Jalil Kardan-Yamchi
- Quality Control and Screening Management Office, Deputy of Technical and New Technologies, Iranian Blood Transfusion Organization, Tehran, Iran
| | - Asieh Taji
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Atieh Darbandi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Guo S, Chongsuvivatwong V, Lei S. Comparison on Major Gene Mutations Related to Rifampicin and Isoniazid Resistance between Beijing and Non-Beijing Strains of Mycobacterium tuberculosis: A Systematic Review and Bayesian Meta-Analysis. Genes (Basel) 2022; 13:genes13101849. [PMID: 36292734 PMCID: PMC9601453 DOI: 10.3390/genes13101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: The Beijing strain of Mycobacterium tuberculosis (MTB) is controversially presented as the predominant genotype and is more drug resistant to rifampicin and isoniazid compared to the non-Beijing strain. We aimed to compare the major gene mutations related to rifampicin and isoniazid drug resistance between Beijing and non-Beijing genotypes, and to extract the best evidence using the evidence-based methods for improving the service of TB control programs based on genetics of MTB. Method: Literature was searched in Google Scholar, PubMed and CNKI Database. Data analysis was conducted in R software. The conventional and Bayesian random-effects models were employed for meta-analysis, combining the examinations of publication bias and sensitivity. Results: Of the 8785 strains in the pooled studies, 5225 were identified as Beijing strains and 3560 as non-Beijing strains. The maximum and minimum strain sizes were 876 and 55, respectively. The mutations prevalence of rpoB, katG, inhA and oxyR-ahpC in Beijing strains was 52.40% (2738/5225), 57.88% (2781/4805), 12.75% (454/3562) and 6.26% (108/1724), respectively, and that in non-Beijing strains was 26.12% (930/3560), 28.65% (834/2911), 10.67% (157/1472) and 7.21% (33/458), separately. The pooled posterior value of OR for the mutations of rpoB was 2.72 ((95% confidence interval (CI): 1.90, 3.94) times higher in Beijing than in non-Beijing strains. That value for katG was 3.22 (95% CI: 2.12, 4.90) times. The estimate for inhA was 1.41 (95% CI: 0.97, 2.08) times higher in the non-Beijing than in Beijing strains. That for oxyR-ahpC was 1.46 (95% CI: 0.87, 2.48) times. The principal patterns of the variants for the mutations of the four genes were rpoB S531L, katG S315T, inhA-15C > T and oxyR-ahpC intergenic region. Conclusion: The mutations in rpoB and katG genes in Beijing are significantly more common than that in non-Beijing strains of MTB. We do not have sufficient evidence to support that the prevalence of mutations of inhA and oxyR-ahpC is higher in non-Beijing than in Beijing strains, which provides a reference basis for clinical medication selection.
Collapse
Affiliation(s)
- Shengqiong Guo
- Guizhou Provincial Center for Disease Prevention and Control, Guiyang 550004, China
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence:
| | | | - Shiguang Lei
- Guizhou Provincial Center for Disease Prevention and Control, Guiyang 550004, China
| |
Collapse
|
3
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Bahraminia F, Azimi T, Zangiabadian M, Nasiri MJ, Goudarzi M, Dadashi M, Imani Fooladi AA. Rifampicin-resistant tuberculosis in Iran: A systematic review and meta-analysis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:720-725. [PMID: 34630948 PMCID: PMC8487596 DOI: 10.22038/ijbms.2021.47360.10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Farhad Bahraminia
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Zangiabadian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Guo Y, Cao X, Yang J, Wu X, Liu Y, Wan B, Hu L, Wang H, Yu F. Rifampin-resistance-associated mutations in the rifampin-resistance-determining region of the rpoB gene of Mycobacterium tuberculosis clinical isolates in Shanghai, PR China. J Med Microbiol 2021; 70. [PMID: 33507146 DOI: 10.1099/jmm.0.001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Resistance to rifampin (RIF) in Mycobacterium tuberculosis infection is associated with mutations in the rpoB gene coding for the β-subunit of RNA polymerase. The contribution of various rpoB mutations to the development and level of RIF resistance remains elusive.Hypothesis/Gap Statement. Various rpoB mutations may be associated with differential levels of RIF resistance.Aim. This study aimed to investigate the relationship between specific rpoB mutations and the MICs of RIF and rifabutin (RFB) against M. tuberculosis.Methodology. Of the 195 clinical isolates, 105 and 90 isolates were randomly selected from isolates resistant to RIF and sensitive to RIF, respectively. The MICs of 12 agents for M. tuberculosis isolates were determined using commercial Sensititre M. tuberculosis MIC plates and the broth microdilution method. Strains were screened for rpoB mutations by DNA extraction, rpoB gene amplification and DNA sequence analysis.Results. One hundred isolates (95.24 %) were found to have mutations in the RIF-resistance-determining region (RRDR) of the rpoB gene. Three rpoB mutations were identified in 90 RIF-susceptible isolates. Out of 105 isolates, 86 (81.90 %) were cross-resistant to both RIF and RFB. The most frequent mutation occurred at codons 450 and 445. We also found a novel nine-nucleotide (ATCATGCAT) deletion (between positions 1543 and 1551) in the rpoB gene in two strains (1.90 %) with resistance to RIF, but susceptibility to RFB. In addition, the mutation frequency at codon 450 was significantly higher in RIF-resistant/RFB-resistant (RIFR/RFBR) strains than in RIFR/RFBS strains (75.58 % versus 21.05 %, P<0.01), whereas the mutation frequency at codon 435 was significantly lower in RIFR/RFBR strains than in RIFR/RFBS strains (1.16 % versus 26.32 %, P<0.01).Conclusion. Our data support previous findings, which reported that various rpoB mutations are associated with differential levels of RIF resistance. The specific mutations in the rpoB gene in RIFR/RFBR isolates differed from those in the RIFR/RFBS isolates. A novel deletion mutation in the RRDR might be associated with resistance to RIF, but not to RFB. Further clinical studies are required to investigate the efficacy of RFB in the treatment of infections caused by M. tuberculosis strains harbouring these mutations.
Collapse
Affiliation(s)
- Yinjuan Guo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China.,Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Xingwei Cao
- Jiangxi Provincial Key laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, PR China
| | - Jinghui Yang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Xiaocui Wu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Baoshan Wan
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Longhua Hu
- Jiangxi Provincial Key laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, PR China
| | - Hongxiu Wang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, PR China
| |
Collapse
|
6
|
Lai LY, Hsu LY, Weng SH, Chung SE, Ke HE, Lin TL, Hsieh PF, Lee WT, Tsai HY, Lin WH, Jou R, Wang JT. A Glutamine Insertion at Codon 432 of RpoB Confers Rifampicin Resistance in Mycobacterium tuberculosis. Front Microbiol 2020; 11:583194. [PMID: 33193223 PMCID: PMC7604305 DOI: 10.3389/fmicb.2020.583194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious respiratory disease caused by Mycobacterium tuberculosis and one of the top 10 causes of death worldwide. Treating TB is challenging; successful treatment requires a long course of multiple antibiotics. Rifampicin (RIF) is a first-line drug for treating TB, and the development of RIF-resistant M. tuberculosis makes treatment even more difficult. To determine the mechanism of RIF resistance in these strains, we searched for novel mutations by sequencing. Four isolates, CDC-1, CDC-2, CDC-3, and CDC-4, had high-level RIF resistance and unique mutations encoding RpoB G158R, RpoB V168A, RpoB S188P, and RpoB Q432insQ, respectively. To evaluate their correlation with RIF resistance, plasmids carrying rpoB genes encoding these mutant proteins were transfected into the H37Rv reference strain. The plasmid complementation of RpoB indicated that G158R, V168A, and S188P did not affect the MIC of RIF. However, the MIC of RIF was increased in H37Rv carrying RpoB Q432insQ. To confirm the correlation between RIF resistance and Q432insQ, we cloned an rpoB fragment carrying the insertion (encoding RpoB Q432insQ) into H37Rv by homologous recombination using a suicide vector. All replacement mutants expressing RpoB Q432insQ were resistant to RIF (MIC > 1 mg/L). These results indicate that RpoB Q432insQ causes RIF resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Yu Hsu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shang-Hui Weng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuo-En Chung
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-En Ke
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Lee
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Hsing-Yuan Tsai
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Gholizadeh P, Pourlak T, Asgharzadeh M, Barhagi MHS, Taghizadeh S, Rezaee MA, Zarei A, Soltani E, Hosseinpour R, Kafil HS. Gene mutations related to rifampin resistance of tuberculosis in northwest of Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene. Proc Natl Acad Sci U S A 2020; 117:3185-3191. [PMID: 31992637 PMCID: PMC7022156 DOI: 10.1073/pnas.1919390117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Frameshift mutations have been reported in rpoB, an essential gene encoding the beta-subunit of RNA polymerase, in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis. These have never been experimentally validated, and no mechanisms of action have been proposed. We show that Escherichia coli with a +1-nt frameshift mutation centrally located in rpoB is viable and highly resistant to rifampicin. Spontaneous frameshifting occurs at a high rate on a heptanucleotide sequence downstream of the mutation, with production of active protein increased to 61–71% of wild-type level by a feedback mechanism that increases translation initiation. Accordingly, apparently lethal mutations can be viable and cause clinically relevant phenotypes, a finding that has broad significance for predictions of phenotype from genotype. A fundamental feature of life is that ribosomes read the genetic code in messenger RNA (mRNA) as triplets of nucleotides in a single reading frame. Mutations that shift the reading frame generally cause gene inactivation and in essential genes cause loss of viability. Here we report and characterize a +1-nt frameshift mutation, centrally located in rpoB, an essential gene encoding the beta-subunit of RNA polymerase. Mutant Escherichia coli carrying this mutation are viable and highly resistant to rifampicin. Genetic and proteomic experiments reveal a very high rate (5%) of spontaneous frameshift suppression occurring on a heptanucleotide sequence downstream of the mutation. Production of active protein is stimulated to 61–71% of wild-type level by a feedback mechanism increasing translation initiation. The phenomenon described here could have broad significance for predictions of phenotype from genotype. Several frameshift mutations have been reported in rpoB in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis (Mtb). These mutations have never been experimentally validated, and no mechanisms of action have been proposed. This work shows that frameshift mutations in rpoB can be a mutational mechanism generating antibiotic resistance. Our analysis further suggests that genetic elements supporting productive frameshifting could rapidly evolve de novo, even in essential genes.
Collapse
|
9
|
Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, Ld Siqueira V, Pavan FR. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol 2019; 14:185-194. [PMID: 30648892 DOI: 10.2217/fmb-2018-0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate modulatory effect of verapamil (VP) in rifampicin (RIF) activity and its effect in efflux pumps (EPs) transcript levels in Mycobacterium tuberculosis. MATERIALS & METHODS RIF and VP minimal inhibitory concentration, combinatory effect and detection of mutations were determined in 16 isolates. EPs transcript levels were determined in four isolates by real-time PCR after exposure to drugs. RESULTS VP showed good combinatory effect among RIF-resistant isolates. This effect was also observed in the relative transcript levels of EPs, mainly after 72 h of exposure, depending on the EP gene, genotype and the resistance profile of the isolate. CONCLUSION Additional regulatory mechanisms in the EP activities, as well as, interactions with other drug-specific resistance mechanisms need further investigation in M. tuberculosis.
Collapse
Affiliation(s)
- Katiany R Caleffi-Ferracioli
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - João Vp de Souza
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Letícia S Murase
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Pedro H Canezin
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Paulista State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
10
|
Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs. Antimicrob Agents Chemother 2018; 63:AAC.01243-18. [PMID: 30397062 DOI: 10.1128/aac.01243-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 01/25/2023] Open
Abstract
Poor-quality medicines undermine the treatment of infectious diseases, such as tuberculosis, which require months of treatment with rifampin and other drugs. Rifampin resistance is a critical concern for tuberculosis treatment. While subtherapeutic doses of medicine are known to select for antibiotic resistance, the effect of drug degradation products on the evolution of resistance is unknown. Here, we demonstrate that substandard drugs that contain degraded active pharmaceutical ingredients select for gene alterations that confer resistance to standard drugs. We generated drug-resistant Escherichia coli and Mycobacterium smegmatis strains by serially culturing bacteria in the presence of the rifampin degradation product rifampin quinone. We conducted Sanger sequencing to identify mutations in rifampin-resistant populations. Strains resistant to rifampin quinone developed cross-resistance to the standard drug rifampin, with some populations showing no growth inhibition at maximum concentrations of rifampin. Sequencing of the rifampin quinone-treated strains indicated that they acquired mutations in the DNA-dependent RNA polymerase B subunit. These mutations were localized in the rifampin resistance-determining region (RRDR), consistent with other reports of rifampin-resistant E. coli and mycobacteria. Rifampin quinone-treated mycobacteria also had cross-resistance to other rifamycin class drugs, including rifabutin and rifapentine. Our results strongly suggest that substandard drugs not only hinder individual patient outcomes but also restrict future treatment options by actively contributing to the development of resistance to standard medicines.
Collapse
|
11
|
Nguyen QH, Contamin L, Nguyen TVA, Bañuls A. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11:1498-1511. [PMID: 30344622 PMCID: PMC6183457 DOI: 10.1111/eva.12654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/01/2023] Open
Abstract
At present, the successful transmission of drug-resistant Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, in human populations, threatens tuberculosis control worldwide. Differently from many other bacteria, M. tuberculosis drug resistance is acquired mainly through mutations in specific drug resistance-associated genes. The panel of mutations is highly diverse, but depends on the affected gene and M. tuberculosis genetic background. The variety of genetic profiles observed in drug-resistant clinical isolates underlines different evolutionary trajectories towards multiple drug resistance, although some mutation patterns are prominent. This review discusses the intrinsic processes that may influence drug resistance evolution in M. tuberculosis, such as mutation rate, drug resistance-associated mutations, fitness cost, compensatory mutations and epistasis. This knowledge should help to better predict the risk of emergence of highly resistant M. tuberculosis strains and to develop new tools and strategies to limit the development and spread of MDR and XDR strains.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Department of Pharmacological, Medical and Agronomical BiotechnologyUniversity of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Lucie Contamin
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Anne‐Laure Bañuls
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| |
Collapse
|
12
|
Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect 2018; 7:98. [PMID: 29872078 PMCID: PMC5988693 DOI: 10.1038/s41426-018-0101-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/13/2023]
Abstract
Compensatory mutations have been suggested to promote multidrug-resistant tuberculosis (MDR-TB) transmission, but their role in facilitating the recent transmission of MDR-TB is unclear. To investigate the epidemiological significance of compensatory mutations, we analyzed a four-year population-based collection of MDR-TB strains from Shanghai (the most populous city in China) and 1346 published global MDR-TB strains. We report that MDR-TB strains with compensatory mutations in the rpoA, rpoB, or rpoC genes were neither more frequently clustered nor found in larger clusters than those without compensatory mutations. Our results suggest that compensatory mutations are not a major contributor to the current epidemic of MDR-TB.
Collapse
|
13
|
Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health 2018; 11:605-610. [PMID: 29706316 DOI: 10.1016/j.jiph.2018.04.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/05/2018] [Accepted: 04/08/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). METHODOLOGY Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. RESULTS The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. CONCLUSION Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended.
Collapse
Affiliation(s)
- Myo T Zaw
- Department of Pathobiological and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Malaysia
| | - Nor A Emran
- Department of Pathobiological and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Malaysia
| | - Zaw Lin
- Department of Pathobiological and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Malaysia.
| |
Collapse
|
14
|
Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun 2018; 9:352. [PMID: 29367657 PMCID: PMC5783932 DOI: 10.1038/s41467-017-02576-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022] Open
Abstract
Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients’ skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance. Leprosy is caused by the yet-uncultured pathogen Mycobacterium leprae. Here, Benjak et al. obtain M. leprae genome sequences from DNA extracted from patients' skin biopsies and, by analysing 154 genomes from 25 countries, provide insight into the pathogen’s evolution and antimicrobial resistance.
Collapse
|
15
|
Jing W, Pang Y, Zong Z, Wang J, Guo R, Huo F, Jiang G, Ma Y, Huang H, Chu N. Rifabutin Resistance Associated with Double Mutations in rpoB Gene in Mycobacterium tuberculosis Isolates. Front Microbiol 2017; 8:1768. [PMID: 28959248 PMCID: PMC5603767 DOI: 10.3389/fmicb.2017.01768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to investigate the cross-resistance between rifampin (RIF) and rifabutin (RFB) among clinical Mycobacterium tuberculosis (MTB) isolates, and the correlations between specific rpoB mutations and the minimum inhibitory concentrations (MICs) of RIF and RFB. A total of 256 RIF-resistant isolates were included from the National Tuberculosis Clinical Laboratory in China. The MICs of MTB isolates against RIF and RFB were determined by using a microplate alamarBlue assay. In addition, all the MTB isolates were sequenced for mutations in rpoB gene. 204 out of 256 isolates (79.7%) were resistant to RFB, whereas 52 (20.3%) were susceptible to RFB. RIF-resistant/INH-susceptible (RR) group had a significant lower proportion of RFB-resistance than MDR- (P = 0.04) and XDR-TB group (P < 0.01). DNA sequencing revealed that there were 218 isolates (85.2%) with a single mutation, 26 (10.1%) with double mutations, and 12 (4.7%) without mutation in rpoB gene. Notably, although the single substitution of Leu511Pro, Asp516Gly, and His526Asn did not result in RFB resistance, 77.8% (7/9) of the MTB isolates with these double mutations became resistant to RFB. Compared with RR group (38.9%, 7/18), MDR-TB (63.5%, 106/167) had significantly higher proportion of isolates with mutations in codon 531 of rpoB gene (P = 0.04). Our data demonstrate that various rpoB mutations are associated with differential resistance to RIF and RFB. A single specific mutation in codons 511, 516, 526, and 533 was linked to the susceptibility to RFB for MTB, while the strains with these double mutations irrelevantly conferring RFB resistance produced RFB-resistant phenotype.
Collapse
Affiliation(s)
- Wei Jing
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Zhaojing Zong
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Jing Wang
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Ru Guo
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Yifeng Ma
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Naihui Chu
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijing, China
| |
Collapse
|
16
|
Bentaleb EM, El Messaoudi MD, Abid M, Messaoudi M, Yetisen AK, Sefrioui H, Amzazi S, Ait Benhassou H. Plasmid-based high-resolution melting analysis for accurate detection of rpoB mutations in Mycobacterium tuberculosis isolates from Moroccan patients. BMC Infect Dis 2017; 17:548. [PMID: 28784099 PMCID: PMC5547500 DOI: 10.1186/s12879-017-2666-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
Background Rapid diagnosis of drug resistance in tuberculosis (TB) is pivotal for the timely initiation of effective antibiotic treatment to prevent the spread of drug-resistant strains. The development of low-cost, rapid and robust methods for drug-resistant TB detection is highly desirable for resource-limited settings. Methods We report the use of an in house plasmid-based quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis for the detection of mutations related to rifampicin-resistant Mycobacterium tuberculosis (MTB) in clinical isolates from Moroccan patients. Five recombinant plasmids containing predominant mutations (S531L, S531W, H526Y and D516V) and the wild-type sequence of the Rifampicin Resistance-Determining Region (RRDR) have been used as controls to screen 45 rifampicin-resistant and 22 rifampicin-susceptible MTB isolates. Results The sensitivity and the specificity of the qPCR-HRM analysis were 88.8% and 100% respectively as compared to rifampicin Drug Susceptibility Testing (DST). The results of qPCR-HRM and DNA sequencing had a concordance of 100%. Conclusion Our qPCR-HRM assay is a sensitive, accurate and cost-effective assay for the high-throughput screening of mutation-based drug resistance in TB reference laboratories.
Collapse
Affiliation(s)
- El Mehdi Bentaleb
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco.,Laboratory of Biochemistry and Immunology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | | - Mohammed Abid
- Laboratory of Mycobacteria Genetics, Pasteur Institute of Morocco, Tangier, Morocco
| | - Malika Messaoudi
- Laboratory of Tuberculosis, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Ali K Yetisen
- Harvard-MIT Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco
| | - Saaïd Amzazi
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hassan Ait Benhassou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
17
|
Nusrath Unissa A, Hanna LE. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb) 2017; 105:96-107. [DOI: 10.1016/j.tube.2017.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
18
|
Ahamad S, Rahman S, Khan FI, Dwivedi N, Ali S, Kim J, Imtaiyaz Hassan M. QSAR based therapeutic management of M. tuberculosis. Arch Pharm Res 2017; 40:676-694. [PMID: 28456911 DOI: 10.1007/s12272-017-0914-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis is responsible for severe mortality and morbidity worldwide but, under-developed and developing countries are more prone to infection. In search of effective and wide-spectrum anti-tubercular agents, interdisciplinary approaches are being explored. Of the several approaches used, computer based quantitative structure activity relationship (QSAR) have gained momentum. Structure-based drug design and discovery implies a combined knowledge of accurate prediction of ligand poses with the good prediction and interpretation of statistically validated models derived from the 3D-QSAR approach. The validated models are generally used to screen a small combinatorial library of potential synthetic candidates to identify hits which further subjected to docking to filter out compounds as novel potential emerging drug molecules to address multidrug-resistant tuberculosis. Several newer models are integrated to QSAR methods which include different types of chemical and biological data, and simultaneous prediction of pharmacological activities including toxicities and/or other safety profiles to get new compounds with desired activity. In the process, several newer molecules have been identified which are now being assessed for their clinical efficacy. Present review deals with the advances made in the field highlighting overall future prospects of the development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Department of Biotechnology, School of Engineering & Technology, IFTM University, Lodhipur-Rajput, Delhi Road, Moradabad, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Faez Iqbal Khan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan, 450001, China.,Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Neeraja Dwivedi
- Department of Biotechnology, School of Engineering & Technology, IFTM University, Lodhipur-Rajput, Delhi Road, Moradabad, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India.
| |
Collapse
|
19
|
Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages. J Clin Microbiol 2016; 55:865-876. [PMID: 28031436 PMCID: PMC5328454 DOI: 10.1128/jcm.01296-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents.
Collapse
|
20
|
Evaluation of Sensitivity of Molecular Methods for Detection of Rifampin-Resistant Strains Amongst Drug-resistant Mycobacterium tuberculosis Isolates. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.40580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Pourakbari B, Mamishi S, Mohammadzadeh M, Mahmoudi S. First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review. Front Microbiol 2016; 7:1139. [PMID: 27516756 PMCID: PMC4963398 DOI: 10.3389/fmicb.2016.01139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The spread of drug-resistant tuberculosis (TB) is one of the major public health problems through the world. Surveillance of anti-TB drug resistance is essential for monitoring of TB control strategies. The occurrence of drug resistance, particularly multi-drug resistance Mycobacterium tuberculosis (MDR), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), has become a significant public health dilemma. The status of drug-resistance TB in Iran, one of the eastern Mediterranean countries locating between Azerbaijan and Armenia and high-TB burden countries (such as Afghanistan and Pakistan) has been reported inconsistently. Therefore, the aim of this study was to summarize reports of first-line anti-tubercular drug resistance in M. tuberculosis in Iran. MATERIAL AND METHODS We systematically reviewed published studies on drug-resistant M. tuberculosis in Iran. The search terms were "Mycobacterium tuberculosis susceptibility" or "Mycobacterium tuberculosis resistant" and Iran. RESULTS Fifty-two eligible articles, published during 1998-2014, were included in this review. Most of the studies were conducted in Tehran. The most common used laboratory method for detecting M. tuberculosis drug resistant was Agar proportion. The highest resistance to first-line drugs was seen in Tehran, the capital city of Iran. The average prevalence of isoniazid (INH), rifampin (RIF), streptomycin (SM), and ethambotol (EMB) resistance via Agar proportion method in Tehran was 26, 23, 22.5, and 16%, respectively. In general, resistance to INH was more common than RIF, SM, and EMB in Tehran Conclusions: In conclusion, this systematic review summarized the prevalence and distribution of first-line anti-tubercular drug resistance of M. tuberculosis in Iran. Our results suggested that effective strategies to minimize the acquired drug resistance, to control the transmission of resistance and improve the diagnosis measures for TB control in Iran.
Collapse
Affiliation(s)
- Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical SciencesTehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical SciencesTehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical SciencesTehran, Iran
| | - Mona Mohammadzadeh
- Pediatric Infectious Disease Research Center, Tehran University of Medical SciencesTehran, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
22
|
Varghese B, Shoukri M, Memish Z, Abuljadayel N, Alhakeem R, Alrabiah F, Al-Hajoj S. Occurrence of diverse mutations in isoniazid- and rifampicin-resistant Mycobacterium tuberculosis isolates from autochthonous and immigrant populations of Saudi Arabia. Microb Drug Resist 2015; 20:623-31. [PMID: 25014484 DOI: 10.1089/mdr.2014.0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
For the first time in Saudi Arabia, the impact of a patient's ethnic background on mutations conferring resistance to rifampicin (RIF) and isoniazid (INH) in Mycobacterium tuberculosis isolates was analyzed on a nationwide sample collection. Four hundred fifteen isolates were subjected to drug susceptibility testing, mutation analysis, spoligotyping, and 24 loci-based Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeat typing, respectively. Phenotypically, 41 (9.9%) isolates were resistant to RIF, 239 (57.6%) to INH, and 135 (32.5%) to both RIF and INH, respectively. Forty (9.6%), 236 (56.8%), and 133 (32%) isolates were determined as resistant to RIF, INH, and to both by molecular assay. Codon 531 (S531L) mutations (69.4%) in the rpoB gene and codon 315 (S315T) mutations (67.2%) in the katG gene were the most prominent among RIF- and INH-resistant isolates, respectively. The autochthonous population showed a predominance of rpoB codon 516 and 526 mutations, while the inhA promoter position -15 and -8 mutations were prominent among immigrants. A strain cluster ratio of 32% (30 clusters) was observed and 24 clusters displayed identical mutations. Overall, Euro-American lineages were predominant. However, Beijing (56.7%) and EAI (42.7%) were noticed with the highest cluster rate. In Saudi Arabia, the occurrence of mutations responsible for INH and RIF resistance was significantly associated with the ethnic origin of the patient.
Collapse
Affiliation(s)
- Bright Varghese
- 1 Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre , Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
23
|
Field W, Hershberg R. Alarmingly High Segregation Frequencies of Quinolone Resistance Alleles within Human and Animal Microbiomes Are Not Explained by Direct Clinical Antibiotic Exposure. Genome Biol Evol 2015; 7:1743-57. [PMID: 26019163 PMCID: PMC4494058 DOI: 10.1093/gbe/evv102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance poses a major threat to human health. It is therefore important to characterize the frequency of resistance within natural bacterial environments. Many studies have focused on characterizing the frequencies with which horizontally acquired resistance genes segregate within natural bacterial populations. Yet, very little is currently understood regarding the frequency of segregation of resistance alleles occurring within the housekeeping targets of antibiotics. We surveyed a large number of metagenomic datasets extracted from a large variety of host-associated and non host-associated environments for such alleles conferring resistance to three groups of broad spectrum antibiotics: streptomycin, rifamycins, and quinolones. We find notable segregation frequencies of resistance alleles occurring within the target genes of each of the three antibiotics, with quinolone resistance alleles being the most frequent and rifamycin resistance alleles being the least frequent. Resistance allele frequencies varied greatly between different phyla and as a function of environment. The frequency of quinolone resistance alleles was especially high within host-associated environments, where it averaged an alarming ∼40%. Within host-associated environments, resistance to quinolones was most often conferred by a specific resistance allele. High frequencies of quinolone resistance alleles were also found within hosts that were not directly treated with antibiotics. Therefore, the high segregation frequency of quinolone resistance alleles occurring within the housekeeping targets of antibiotics in host-associated environments does not seem to be the sole result of clinical antibiotic usage.
Collapse
Affiliation(s)
- Wesley Field
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Mohajeri P, Sadri H, Farahani A, Norozi B, Atashi S. Frequency of Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis Strains Isolated from Patients in West of Iran. Microb Drug Resist 2014; 21:315-9. [PMID: 25526063 DOI: 10.1089/mdr.2014.0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Tuberculosis (TB) is a devastating infectious disease causing high mortality and morbidity worldwide. The most serious threat related to tuberculosis control is the recent emergence of drug-resistant tuberculosis strains. The aim of the present study was to identify various types of mutations in the rpoB region in rifampicin-resistant strains isolated from sputum of tuberculosis patients. MATERIALS AND METHODS Drug susceptibility of 125 Mycobacterium tuberculosis isolates was determined using the CDC standard conventional proportional method. Target DNA of M. tuberculosis was amplified by polymerase chain reaction, hybridized, and scanned. We used the low cost density array (LCD-array) to detect mutations within the 90-bp rpoB region. Each array is a transparent, prestructured polymer support using a nonfluorescent detection principle based on the precipitation of a clearly visible dark substrate. RESULTS Of the 125 M. tuberculosis isolates, 35 (28%) were found to be rifampicin-resistant and using the LCD array revealed point mutations at nine different codons as follows: S512T (AGC→ACC) (20%), D516V (GAC→GTC) (20%), H526D (CAC→GAC) (6%), H526R (CAC→CGC) (20%), H526Y (CAC→TAC) (23%), and S531W (TCG→TGG) (8%), and the most frequent site mutations were L511P (CCG→CTG) (46%), followed by S531l (TCG→TTG) (40%) and D516Y (GAC→TAC) (26%). CONCLUSION Our data significantly differs from previously reported mutation frequencies for codon 526 (CAC to GAC) among Italian isolates (40.1%) and Greek isolates (17.6%). Phenotypic testing is time-consuming and requires laboratory resources. Microarray rpoB is useful in detecting rifampicin resistance-determining region-associated site mutations of rifampicin-resistant M. tuberculosis isolates.
Collapse
Affiliation(s)
- Parviz Mohajeri
- 1Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Sadri
- 2Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbas Farahani
- 2Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Baharak Norozi
- 2Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Atashi
- 3West Tuberculosis Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Qazi O, Rahman H, Tahir Z, Qasim M, Khan S, Ahmad Anjum A, Yaqub T, Tayyab M, Ali N, Firyal S. Mutation pattern in rifampicin resistance determining region of rpoB gene in multidrug-resistant Mycobacterium tuberculosis isolates from Pakistan. Int J Mycobacteriol 2014; 3:173-7. [DOI: 10.1016/j.ijmyco.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
|
26
|
Kumar P, Balooni V, Sharma BK, Kapil V, Sachdeva KS, Singh S. High degree of multi-drug resistance and hetero-resistance in pulmonary TB patients from Punjab state of India. Tuberculosis (Edinb) 2014; 94:73-80. [PMID: 24184256 DOI: 10.1016/j.tube.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023]
Abstract
Line Probe Assays (LPAs) have been recommended for rapid screening of MDR-TB. Aims of this study were (1) to compare the performance of LPA with standard Bactec MGIT 960 system and (2) to ascertain the pattern of genetic mutations in the resistance isolates. In phase I, a total of 141 Mycobacterium tuberculosis isolates from our routine laboratory were tested by LPA and Bactec MGIT 960 for DST. In phase II, 578 sputum specimens of suspected DR-TB patients were received from the Punjab state of India. Of them 438 specimens or their cultures were subjected to LPA. The presence of mutant bands with their corresponding wild type band was identified as "hetero-resistance". In phase I, LPA showed high concordance with 96.4% positive agreement and 97.6% negative agreement with Bactec MGIT 960-DST. In phase II, 12 (2.7%) specimens were detected as invalid by LPA. Of the remaining 426 specimens, 184 (43.1%) had resistance to RIF and 142 (33.3%) to INH while 103 (24.1%) specimens showed resistance to both INH and RIF (MDR-TB) by LPA. Of the 142 INH resistant, 113 (79.5%) showed mutations in katG and 29 (20.4%) in inhA. A high rate of hetero-resistance pattern was observed in rpoB gene (28.8%) and katG gene (9.8%). The most frequent mutation was S531L (81.1%) in rpoB region and S315T1 (100%) in katG gene.
Collapse
MESH Headings
- Antitubercular Agents/pharmacology
- Bacterial Proteins/genetics
- Catalase/genetics
- DNA-Directed RNA Polymerases
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/immunology
- Female
- Humans
- India
- Male
- Microbial Sensitivity Tests
- Molecular Diagnostic Techniques
- Mutation
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/isolation & purification
- Sequence Analysis, DNA
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/genetics
- Tuberculosis, Multidrug-Resistant/immunology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- White People/genetics
Collapse
Affiliation(s)
- Parveen Kumar
- Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Veena Balooni
- Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Brijesh Kumar Sharma
- Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Virender Kapil
- Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - K S Sachdeva
- Central TB Division, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi 110 029, India.
| |
Collapse
|
27
|
Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated from south-central in China. J Antibiot (Tokyo) 2013; 67:291-7. [PMID: 24326341 DOI: 10.1038/ja.2013.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/01/2013] [Accepted: 11/15/2013] [Indexed: 11/08/2022]
Abstract
Rifampicin (RIF) and isoniazid (INH) Mycobacterium tuberculosis isolates were characterized from south-central China and transmission patterns within the Beijing genotype were detected in multidrug-resistant isolates. Six genetic regions, including rpoB for RIF, and katG, inhA, ahpC, mabA-inhA promoter and oxyR-ahpC intergenic region for INH were analyzed by DNA sequencing in 60 multidrug-resistant isolates, including 7 extensively drug-resistant isolates. The genomic deletion RD105 was characterized by genotyping. The results showed that 91.7% of MDR isolates carried mutations in the rpoB gene and 85.0% of the MDR isolates had at least one mutation in the INH resistance-associated loci detected. In total, these six genetic regions are responsible for 95.0% of MDR isolates. Mutations in the XDR isolates were focused on rpoB 531 or rpoB 526, and katG 315, correlating to a higher frequency level of resistance to RIF MIC ⩾8 μg ml⁻¹ and INH MIC ⩾4 μg m⁻¹. Three novel katG mutants (G273S, I266T and P232S) and three new alleles (E458A, S509R and P535S) in the rpoB gene were identified. Among the 85 clinical isolates, 78 are Beijing genotypes and the other 7 are non-Beijing genotypes. The results present the identification of genetic markers in M. tuberculosis isolates, some of which may be unique to this particular geographic niche. An understanding of the mutations in these drug-resistant strains may aid in choosing the appropriate chemotherapy regimens on the pharmacogenetic properties of the mutations for the prevention and control of tuberculosis.
Collapse
|
28
|
Shubladze N, Tadumadze N, Bablishvili N. Molecular patterns of multidrug resistance of Mycobacterium tuberculosis in Georgia. Int J Mycobacteriol 2013; 2:73-78. [PMID: 24904758 PMCID: PMC4042859 DOI: 10.1016/j.ijmyco.2013.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) infections caused by multidrug-resistant Mycobacterium tuberculosis (MDR MTB) remain a significant public health concern worldwide. Georgia has a high prevalence of MDR MTB. The genetic mechanisms underlying the emergence of MDR MTB strains in this region are poorly understood and need to be determined for developing better strategies for TB control. This study investigated the frequency of major drug resistance mutations across rpoB, katG and inhA loci of Georgian MDR MTB strains and explored differences between new and previously treated patients. A total of 634 MTB strains were examined for which an MDR phenotype had been previously determined by the proportions method. The GenoType®MTBDRplus system was applied to screen the strains for the presence of rpoB (S531L, H526D, H526Y, and D516V), katG (S315T) and inhA promoter region (C15T and T8C) mutations. The target loci were amplified by PCR and then hybridized with the respective site-specific and wild type (control) probes. RESULTS Out of the 634 isolates tested considered by phenotypic testing to be resistant to RIF and INH, this resistance was confirmed by the GenoType®MTBDRplus assay in 575 (90.7%) isolates. RIF resistance was seen in 589 (92.9%) and INH resistance was seen in 584 (92.1%); 67.2% and 84.3% of MDR strains harbored respectively rpoB S531L and katG S315T mutations (generally known as having low or no fitness cost in MTB). The inhA C15T mutation was detected in 22.6% of the strains, whereas rpoB H526D, rpoB H526Y, rpoB D516V and inhA T8C were revealed at a markedly lower frequency (≤5.2%). The specific mutations responsible for the RIF resistance of 110 isolates (17.4%) could not be detected as no corresponding mutant probe was indicated in the assay. There was no specific association of the presence of mutations with the gender/age groups. All types of prevailing mutations had higher levels in new cases. A great majority of the Georgian MDR MTB strains have a strong preference for the drug resistance mutations carrying no or low fitness cost. Thus, it can be suggested that MDR MTB strains with such mutations will continue to arise in Georgia at a high frequency even in the absence of antibiotic pressure.
Collapse
Affiliation(s)
- N. Shubladze
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - N. Tadumadze
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - N. Bablishvili
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| |
Collapse
|
29
|
Sirgel FA, Warren RM, Böttger EC, Klopper M, Victor TC, van Helden PD. The rationale for using rifabutin in the treatment of MDR and XDR tuberculosis outbreaks. PLoS One 2013; 8:e59414. [PMID: 23527189 PMCID: PMC3602005 DOI: 10.1371/journal.pone.0059414] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Frederick A Sirgel
- DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Science, Stellenbosch University, Stellenbosch, South Africa.
| | | | | | | | | | | |
Collapse
|
30
|
Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis. Antimicrob Agents Chemother 2012; 56:2008-13. [PMID: 22252831 DOI: 10.1128/aac.05831-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rifampin is a major drug used to treat leprosy and tuberculosis. The rifampin resistance of Mycobacterium leprae and Mycobacterium tuberculosis results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. A method for the molecular determination of rifampin resistance in these two mycobacteria would be clinically valuable, but the relationship between the mutations and susceptibility to rifampin must be clarified before its use. Analyses of mutations responsible for rifampin resistance using clinical isolates present some limitations. Each clinical isolate has its own genetic variations in some loci other than rpoB, which might affect rifampin susceptibility. For this study, we constructed recombinant strains of Mycobacterium smegmatis carrying the M. leprae or M. tuberculosis rpoB gene with or without mutation and disrupted their own rpoB genes on the chromosome. The rifampin and rifabutin susceptibilities of the recombinant bacteria were measured to examine the influence of the mutations. The results confirmed that several mutations detected in clinical isolates of these two pathogenic mycobacteria can confer rifampin resistance, but they also suggested that some mutations detected in M. leprae isolates or rifampin-resistant M. tuberculosis isolates are not involved in rifampin resistance.
Collapse
|
31
|
Mycobacterium tuberculosis "Beijing" epidemics: a race against mutations? Tuberculosis (Edinb) 2011; 92:92-4. [PMID: 22015174 DOI: 10.1016/j.tube.2011.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/02/2011] [Accepted: 09/20/2011] [Indexed: 11/21/2022]
Abstract
Multi Drug Resistant Tuberculosis Beijing strains exhibit different drug-resistance mutations (DRM) in different locations. By comparing DRM in Beijing reported from Tuberculosis endemic and epidemic locations, we propose that DRM selected in a population cannot tolerate biologically available drugs in different populations resulting in further evolution through novel DRM.
Collapse
|