1
|
Colman RJ, Capuano S, Bakker J, Keeley J, Nakamura K, Ross C. Marmosets: Welfare, Ethical Use, and IACUC/Regulatory Considerations. ILAR J 2020; 61:167-178. [PMID: 33620069 PMCID: PMC9214643 DOI: 10.1093/ilar/ilab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022] Open
Abstract
Use of marmosets in biomedical research has increased dramatically in recent years due, in large part, to their suitability for transgenic applications and utility as models for neuroscience investigations. This increased use includes the establishment of new colonies and involvement of people new to marmoset research. To facilitate the use of the marmoset as a research model, we provide an overview of issues surrounding the ethics and regulations associated with captive marmoset research, including discussion of the history of marmosets in research, current uses of marmosets, ethical considerations related to marmoset use, issues related to importation of animals, and recommendations for regulatory oversight of gene-edited marmosets. To understand the main concerns that oversight bodies have regarding captive biomedical research with marmosets, we developed a brief, 15-question survey that was then sent electronically to academic and biomedical research institutions worldwide that were believed to house colonies of marmosets intended for biomedical research. The survey included general questions regarding the individual respondent's colony, status of research use of the colony and institutional oversight of both the colony itself and the research use of the colony. We received completed surveys from a total of 18 institutions from North America, Europe, and Asia. Overall, there appeared to be no clear difference in regulatory oversight body concerns between countries/regions. One difference that we were able to appreciate was that while biomedical research with marmosets was noted to be either stable or decreasing in Europe, use was clearly increasing elsewhere.
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jo Keeley
- University of Cambridge, Cambridge, United Kingdom
| | | | - Corinna Ross
- Department of Life Sciences, Texas A&M University, San Antonio, Texas, USA; and Population Health, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
3
|
Patterson JL, Lanford RE. Experimental Infections of the Common Marmoset (Callithrix jacchus). THE COMMON MARMOSET IN CAPTIVITY AND BIOMEDICAL RESEARCH 2019. [PMCID: PMC7149626 DOI: 10.1016/b978-0-12-811829-0.00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in the use of marmosets for experimental infectious disease has dramatically increased in the last decade. These animals are native to the Atlantic coastal forests in northeastern Brazil. The majority of experimental animals come from the National Primate Research Centers and other breeding facilities. They are advantageous because of their relative small size, weighting 350–400 g as adults, their life span is compact compared with other nonhuman primate (NHP), and they produce offspring by 3 years of age. They are free of Herpes B virus and, it is believed, to date, other dangerous human pathogens (Abbot et al., 2003) [1]. We describe here the experimental infections of marmosets to human pathogens. While it is always interesting to compare various NHPs with each other, the importance of an animal model is always in comparing its similarities to human infections.
Collapse
|
4
|
Suzuki S, Mori KI, Higashino A, Iwasaki Y, Yasutomi Y, Maki N, Akari H. Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey. Microbiol Immunol 2016; 60:26-34. [PMID: 26634303 DOI: 10.1111/1348-0421.12349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.
Collapse
Affiliation(s)
- Saori Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Ken-Ichi Mori
- Advanced Life Science Institute, 2-10-23 Maruyamadai, Wako, Saitama 351-0112
| | - Atsunori Higashino
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Yuki Iwasaki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843
| | - Noboru Maki
- Advanced Life Science Institute, 2-10-23 Maruyamadai, Wako, Saitama 351-0112
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506.,Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Manickam C, Reeves RK. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front Microbiol 2014; 5:690. [PMID: 25538700 PMCID: PMC4259104 DOI: 10.3389/fmicb.2014.00690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection has become a global public health burden costing billions of dollars in health care annually. Even with rapidly advancing scientific technologies this disease still poses a significant threat due to a lack of vaccines and affordable treatment options. The immune correlates of protection and predisposing factors toward chronicity remain major obstacles to development of HCV vaccines and immunotherapeutics due, at least in part, to lack of a tangible infection animal model. This review discusses the currently available animal models for HCV disease with a primary focus on GB virus B (GBV-B) infection of New World primates that recapitulates the dual Hepacivirus phenotypes of acute viral clearance and chronic pathologic disease. HCV and GBV-B are also closely phylogenetically related and advances in characterization of the immune systems of New World primates have already led to the use of this model for drug testing and vaccine trials. Herein, we discuss the benefits and caveats of the GBV-B infection model and discuss potential avenues for future development of novel vaccines and immunotherapies.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| |
Collapse
|
6
|
Nelson M, Salguero FJ, Dean RE, Ngugi SA, Smither SJ, Atkins TP, Lever MS. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus). Int J Exp Pathol 2014; 95:378-91. [PMID: 25477002 DOI: 10.1111/iep.12105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/29/2014] [Indexed: 01/24/2023] Open
Abstract
Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.
Collapse
Affiliation(s)
- Michelle Nelson
- Biomedical Sciences, Defence Science and Technology Laboratory (Dstl), Salisbury, Wiltshire, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Nelson M, Loveday M. Exploring the innate immunological response of an alternative nonhuman primate model of infectious disease; the common marmoset. J Immunol Res 2014; 2014:913632. [PMID: 25170519 PMCID: PMC4129158 DOI: 10.1155/2014/913632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is increasingly being utilised as a nonhuman primate model for human disease, ranging from autoimmune to infectious disease. In order to fully exploit these models, meaningful comparison to the human host response is necessary. Commercially available reagents, primarily targeted to human cells, were utilised to assess the phenotype and activation status of key immune cell types and cytokines in naive and infected animals. Single cell suspensions of blood, spleen, and lung were examined. Generally, the phenotype of cells was comparable between humans and marmosets, with approximately 63% of all lymphocytes in the blood of marmosets being T cells, 25% B-cells, and 12% NK cells. The percentage of neutrophils in marmoset blood were more similar to human values than mouse values. Comparison of the activation status of cells following experimental systemic or inhalational infection exhibited different trends in different tissues, most obvious in cell types active in the innate immune response. This work significantly enhances the ability to understand the immune response in these animals and fortifies their use as models of infectious disease.
Collapse
Affiliation(s)
- M. Nelson
- Biomedical Science Department, DSTL, Porton Down, Salisbury SP4 0JQ, UK
| | - M. Loveday
- Biomedical Science Department, DSTL, Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
8
|
Kitaura K, Fujii Y, Matsutani T, Shirai K, Suzuki S, Takasaki T, Shimada S, Kametani Y, Shiina T, Takabayashi S, Katoh H, Ogasawara K, Kurane I, Suzuki R. A new method for quantitative analysis of the T cell receptor V region repertoires in healthy common marmosets by microplate hybridization assay. J Immunol Methods 2012; 384:81-91. [PMID: 22841578 DOI: 10.1016/j.jim.2012.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The common marmoset, Callithrix jacchus, is one of the smallest primates and is increasingly used for an experimental nonhuman primate model in many research fields. Analysis of T cell receptor (TCR) repertoires is a powerful tool to investigate T cell immunity in terms of antigen specificity and variability of TCR expression. However, monoclonal antibodies specific for many TCR Vα or Vβ chains have not been created. We have recently identified a large number of TCRα chain variable (TRAV) and TCRβ chain variable (TRBV) sequences from a cDNA library of common marmosets. The purpose of this study is to develop a new method for analysis of TCR repertoires in the common marmoset using this sequence information. This method is based on a microplate hybridization technique using 32 TRAV-specific and 32 TRBV-specific oligoprobes following an adaptor-ligation PCR. This enables the easy quantitation of the respective TRAV and TRBV expression levels. No cross-hybridization among specific-oligoprobes and very low variances in repeated measures of the same samples was found, demonstrating high specificity and reproducibility. Furthermore, this method was validated by an antihuman Vβ23 antibody which specifically bound to marmoset Vβ23. Using this method, we analyzed TCR repertoires from various tissue samples (PBMCs, spleen, lymph node and thymus) and isolated T cell subpopulations (CD4+CD8+, CD4+CD8− and CD4−CD8+) from the thymus of 10 common marmosets. Neither tissue-specific nor T cell subpopulation-specific differences was found in TRAV and TRBV repertoires. These results suggest that, unlike mice, TCR repertoires in the common marmoset are not affected by endogenous superantigens and are conserved among individuals, among tissues, and among T cell subpopulations. Thus, TCR repertoire analysis with high specificity and reproducibility is a very useful technique, with the potential to replace flow cytometric analysis using a panel of TRV-specific antibodies, many of which remain unavailable.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihra National Hospital, National Hospital Organization, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matsutani T, Fujii Y, Kitaura K, Suzuki S, Tsuruta Y, Takasaki T, Ogasawara K, Nishimoto N, Kurane I, Suzuki R. Increased positive selection pressure within the complementarity determining regions of the T-cell receptor β gene in New World monkeys. Am J Primatol 2011; 73:1082-92. [PMID: 21769905 DOI: 10.1002/ajp.20976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 05/26/2011] [Accepted: 06/04/2011] [Indexed: 11/06/2022]
Abstract
Because of the long-term co-evolution of TCR and MHC molecules, numerous nucleotide substitutions have accumulated within the domains of TCRβ genes. We previously found that nonsynonymous nucleotide substitutions occurred more frequently in complementarity determining region (CDR)β than in CDRα, even though only a limited number of common marmoset (Callithrix jacchus) and human T-cell receptor β variable (TRBV) sequences were compared. This interesting finding raised the question of whether the increased selective pressure within CDRβ was species-specific. In this study, we identified 21 TRBV region sequences from the common marmoset and performed comparative sequence analyses of the T-cell receptor α variable (TRAV) and TRBV regions from human, chimpanzee, rhesus monkey, cotton-top tamarin, Ma's night monkey, and common marmoset. The ratios of the number of nonsynonymous nucleotide substitutions per site (d(N) ) to the d(S) values (d(N) /d(S) ) were less than 1 within the framework regions (FRs) of TRAV and TRBV region sequences, suggesting that purifying selection is largely dominant within the FRs. In contrast, the d(N) values were statistically significantly greater for CDRβ than for CDRα only in New World monkeys. Also, increased d(N) /d(S) ratios (d(N) /d(S) >1) were observed within CDRβ between humans and New World monkeys and, interestingly, between New World monkeys, which share a relatively recent common ancestor. Moreover, phylogenetic analysis by maximum likelihood analysis provided firm evidence to support that positive selection occurred within CDRβ along New World monkey lineages. These results suggest that increased positive selection pressure within CDRβ is common in New World monkeys rather than being species-specific. This study provides an intriguing insight into the co-evolution of TCR and MHC molecules within primates.
Collapse
Affiliation(s)
- Takaji Matsutani
- Laboratory of Immune Regulation, Wakayama Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Benureau Y, Warter L, Malcolm BA, Martin A. A comparative analysis of the substrate permissiveness of HCV and GBV-B NS3/4A proteases reveals genetic evidence for an interaction with NS4B protein during genome replication. Virology 2010; 406:228-40. [PMID: 20701941 DOI: 10.1016/j.virol.2010.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/04/2010] [Accepted: 07/11/2010] [Indexed: 01/09/2023]
Abstract
The hepatitis C virus (HCV) serine protease (NS3/4A) processes the NS3-NS5B segment of the viral polyprotein and also cleaves host proteins involved in interferon signaling, making it an important target for antiviral drug discovery and suggesting a wide breadth of substrate specificity. We compared substrate specificities of the HCV protease with that of the GB virus B (GBV-B), a distantly related nonhuman primate hepacivirus, by exchanging amino acid sequences at the NS4B/5A and/or NS5A/5B cleavage junctions between these viruses within the backbone of subgenomic replicons. This mutagenesis study demonstrated that the GBV-B protease had a broader substrate tolerance, a feature corroborated by structural homology modeling. However, despite efficient polyprotein processing, GBV-B RNAs containing HCV sequences at the C-terminus of NS4B had a pseudo-lethal replication phenotype. Replication-competent revertants contained second-site substitutions within the NS3 protease or NS4B N-terminus, providing genetic evidence for an essential interaction between NS3 and NS4B during genome replication.
Collapse
Affiliation(s)
- Yann Benureau
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Department of Virology, F-75015 Paris, France
| | | | | | | |
Collapse
|
11
|
Pfeiffer JK. Innate host barriers to viral trafficking and population diversity: lessons learned from poliovirus. Adv Virus Res 2010; 77:85-118. [PMID: 20951871 PMCID: PMC3234684 DOI: 10.1016/b978-0-12-385034-8.00004-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poliovirus is an error-prone enteric virus spread by the fecal-oral route and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the prevaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease.
Collapse
Affiliation(s)
- Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
HCV animal models: a journey of more than 30 years. Viruses 2009; 1:222-40. [PMID: 21994547 PMCID: PMC3185497 DOI: 10.3390/v1020222] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/05/2009] [Accepted: 08/18/2009] [Indexed: 12/13/2022] Open
Abstract
In the 1970s and 1980s it became increasingly clear that blood transfusions could induce a form of chronic hepatitis that could not be ascribed to any of the viruses known to cause liver inflammation. In 1989, the hepatitis C virus (HCV) was discovered and found to be the major causative agent of these infections. Because of its narrow tropism, the in vivo study of this virus was, especially in the early days, limited to the chimpanzee. In the past decade, several alternative animal models have been created. In this review we review these novel animal models and their contribution to our current understanding of the biology of HCV.
Collapse
|