1
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
Affiliation(s)
- Pinky Dutta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Andres Lõhmus
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Kristiina Mäkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| |
Collapse
|
2
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Patra AT, Tan E, Kok YJ, Ng SK, Bi X. Temporal insights into molecular and cellular responses during rAAV production in HEK293T cells. Mol Ther Methods Clin Dev 2024; 32:101278. [PMID: 39022743 PMCID: PMC11253160 DOI: 10.1016/j.omtm.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The gene therapy field seeks cost-effective, large-scale production of recombinant adeno-associated virus (rAAV) vectors for high-dosage therapeutic applications. Although strategies like suspension cell culture and transfection optimization have shown moderate success, challenges persist for large-scale applications. To unravel molecular and cellular mechanisms influencing rAAV production, we conducted an SWATH-MS proteomic analysis of HEK293T cells transfected using standard, sub-optimal, and optimal conditions. Gene Ontology and pathway analysis revealed significant protein expression variations, particularly in processes related to cellular homeostasis, metabolic regulation, vesicular transport, ribosomal biogenesis, and cellular proliferation under optimal transfection conditions. This resulted in a 50% increase in rAAV titer compared with the standard protocol. Additionally, we identified modifications in host cell proteins crucial for AAV mRNA stability and gene translation, particularly regarding AAV capsid transcripts under optimal transfection conditions. Our study identified 124 host proteins associated with AAV replication and assembly, each exhibiting distinct expression pattern throughout rAAV production stages in optimal transfection condition. This investigation sheds light on the cellular mechanisms involved in rAAV production in HEK293T cells and proposes promising avenues for further enhancing rAAV titer during production.
Collapse
Affiliation(s)
- Alok Tanala Patra
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Evan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
4
|
Girard J, Le Bihan O, Lai-Kee-Him J, Girleanu M, Bernard E, Castellarin C, Chee M, Neyret A, Spehner D, Holy X, Favier AL, Briant L, Bron P. In situ fate of Chikungunya virus replication organelles. J Virol 2024; 98:e0036824. [PMID: 38940586 PMCID: PMC11265437 DOI: 10.1128/jvi.00368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.
Collapse
Affiliation(s)
- Justine Girard
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Le Bihan
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Joséphine Lai-Kee-Him
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Maria Girleanu
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Eric Bernard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Cedric Castellarin
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Matthew Chee
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aymeric Neyret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Danièle Spehner
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Xavier Holy
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Bron
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
5
|
Yıldız A, Răileanu C, Beissert T. Trans-Amplifying RNA: A Journey from Alphavirus Research to Future Vaccines. Viruses 2024; 16:503. [PMID: 38675846 PMCID: PMC11055088 DOI: 10.3390/v16040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Replicating RNA, including self-amplifying RNA (saRNA) and trans-amplifying RNA (taRNA), holds great potential for advancing the next generation of RNA-based vaccines. Unlike in vitro transcribed mRNA found in most current RNA vaccines, saRNA or taRNA can be massively replicated within cells in the presence of RNA-amplifying enzymes known as replicases. We recently demonstrated that this property could enhance immune responses with minimal injected RNA amounts. In saRNA-based vaccines, replicase and antigens are encoded on the same mRNA molecule, resulting in very long RNA sequences, which poses significant challenges in production, delivery, and stability. In taRNA-based vaccines, these challenges can be overcome by splitting the replication system into two parts: one that encodes replicase and the other that encodes a short antigen-encoding RNA called transreplicon. Here, we review the identification and use of transreplicon RNA in alphavirus research, with a focus on the development of novel taRNA technology as a state-of-the art vaccine platform. Additionally, we discuss remaining challenges essential to the clinical application and highlight the potential benefits related to the unique properties of this future vaccine platform.
Collapse
Affiliation(s)
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (A.Y.); (C.R.)
| |
Collapse
|
6
|
Rainey SM, Lefteri DA, Darby C, Kohl A, Merits A, Sinkins SP. Evidence of Differences in Cellular Regulation of Wolbachia-Mediated Viral Inhibition between Alphaviruses and Flaviviruses. Viruses 2024; 16:115. [PMID: 38257815 PMCID: PMC10818798 DOI: 10.3390/v16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous studies have indicated that for some strains of Wolbachia, perturbations in lipid metabolism and cholesterol storage are vital in Wolbachia-mediated antiviral activity against the flaviviruses dengue and Zika; however, it has not yet been examined whether arboviruses in the alphavirus group are affected in the same way. Here, using the reporters for the alphavirus Semliki Forest virus (SFV) in Aedes albopictus cells, we found that Wolbachia strains wMel, wAu and wAlbB blocked viral replication/translation early in infection and that storage of cholesterol in lipid droplets is not key to this inhibition. Another alphavirus, o'nyong nyong virus (ONNV), was tested in both Aedes albopictus cells and in vivo in stable, transinfected Aedes aegypti mosquito lines. The strains wMel, wAu and wAlbB show strong antiviral activity against ONNV both in vitro and in vivo. Again, 2-hydroxypropyl-β-cyclodextrin (2HPCD) was not able to rescue ONNV replication in cell lines, suggesting that the release of stored cholesterol caused by wMel is not able to rescue blockage of ONNV. Taken together, this study shows that alphaviruses appear to be inhibited early in replication/translation and that there may be differences in how alphaviruses are inhibited by Wolbachia in comparison to flaviviruses.
Collapse
Affiliation(s)
- Stephanie M. Rainey
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Daniella A. Lefteri
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Christie Darby
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Alain Kohl
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
- Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Steven P. Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| |
Collapse
|
7
|
Zimmermann L, Erbar S. Trans-Amplifying RNA Vaccines Against Infectious Diseases: A Comparison with Non-Replicating and Self-Amplifying RNA. Methods Mol Biol 2024; 2786:135-144. [PMID: 38814392 DOI: 10.1007/978-1-0716-3770-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The recent COVID-19 pandemic as well as other past and recent outbreaks of newly or re-emerging viruses show the urgent need to develop potent new vaccine approaches, that enable a quick response to prevent global spread of infectious diseases. The breakthrough of first messenger RNA (mRNA)-based vaccines 2019 approved only months after identification of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opens a big new field for vaccine engineering. Currently, two major types of mRNA are being pursued as vaccines for the prevention of infectious diseases. One is non-replicating mRNA, including nucleoside-modified mRNA, used in the current COVID-19 vaccines of Moderna and BioNTech (Sahin et al., Nat Rev Drug Discov 13(10):759-780, 2014; Baden et al., N Engl J Med 384(5):403-416, 2021; Polack et al., N Engl J Med 383(27):2603-2615, 2020), the other is self-amplifying RNA (saRNA) derived from RNA viruses. Recently, trans-amplifying RNA, a split vector system, has been described as a third class of mRNA (Spuul et al., J Virol 85(10):4739-4751, 2011; Blakney et al., Front Mol Biosci 5:71, 2018; Beissert et al., Mol Ther 28(1):119-128, 2020). In this chapter we review the different types of mRNA currently used for vaccine development with focus on trans-amplifying RNA.
Collapse
|
8
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
11
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Activity, Template Preference, and Compatibility of Components of RNA Replicase of Eastern Equine Encephalitis Virus. J Virol 2023; 97:e0136822. [PMID: 36533950 PMCID: PMC9888243 DOI: 10.1128/jvi.01368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.
Collapse
|
13
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
14
|
A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses. Vaccines (Basel) 2022; 10:vaccines10091374. [PMID: 36146452 PMCID: PMC9503900 DOI: 10.3390/vaccines10091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application.
Collapse
|
15
|
Cherkashchenko L, Rausalu K, Basu S, Alphey L, Merits A. Expression of Alphavirus Nonstructural Protein 2 (nsP2) in Mosquito Cells Inhibits Viral RNA Replication in Both a Protease Activity-Dependent and -Independent Manner. Viruses 2022; 14:v14061327. [PMID: 35746799 PMCID: PMC9228716 DOI: 10.3390/v14061327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Sanjay Basu
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
- Correspondence:
| |
Collapse
|
16
|
Schmidt C, Haefner E, Gerbeth J, Beissert T, Sahin U, Perkovic M, Schnierle BS. A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:743-754. [PMID: 35664702 PMCID: PMC9126847 DOI: 10.1016/j.omtn.2022.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The arthritogenic alphavirus, chikungunya virus (CHIKV), is now present in almost 100 countries worldwide. Further spread is very likely, which raises public health concerns. CHIKV infections cause fever and arthralgia, which can be debilitating and last for years. Here, we describe a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). The vaccine candidate consists of two RNAs: a non-replicating mRNA encoding for the CHIKV nonstructural proteins, forming the replicase complex and a trans-replicon (TR) RNA encoding the CHIKV envelope proteins. The TR-RNA can be amplified by the replicase in trans, and small RNA amounts can induce a potent immune response. The TR-RNA was efficiently amplified by the CHIKV replicase in vitro, leading to high protein expression, comparable to that generated by a CHIKV infection. In addition, the taRNA system did not recombine to replication-competent CHIKV. Using a prime-boost schedule, the vaccine candidate induced potent CHIKV-specific humoral and cellular immune responses in vivo in a mouse model. Notably, mice were protected against a high-dose CHIKV challenge infection with two vaccine doses of only 1.5 μg RNA. Therefore, taRNAs are a promising safe and efficient vaccination strategy against CHIKV infections.
Collapse
Affiliation(s)
- Christin Schmidt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Erik Haefner
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany.,TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Julia Gerbeth
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Tim Beissert
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Ugur Sahin
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mario Perkovic
- TRON (Translational Oncology at the University Medical Center), Johannes Gutenberg University Mainz, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Barbara S Schnierle
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| |
Collapse
|
17
|
Nishikiori M, den Boon JA, Unchwaniwala N, Ahlquist P. Crowning Touches in Positive-Strand RNA Virus Genome Replication Complex Structure and Function. Annu Rev Virol 2022; 9:193-212. [PMID: 35610038 DOI: 10.1146/annurev-virology-092920-021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Masaki Nishikiori
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current affiliation: Assembly Biosciences, Inc., South San Francisco, California, USA
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022; 132:e156211. [PMID: 35289317 PMCID: PMC8920340 DOI: 10.1172/jci156211] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Tan YB, Lello LS, Liu X, Law YS, Kang C, Lescar J, Zheng J, Merits A, Luo D. Crystal structures of alphavirus nonstructural protein 4 (nsP4) reveal an intrinsically dynamic RNA-dependent RNA polymerase fold. Nucleic Acids Res 2022; 50:1000-1016. [PMID: 35037043 PMCID: PMC8789068 DOI: 10.1093/nar/gkab1302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
Alphaviruses such as Ross River virus (RRV), chikungunya virus (CHIKV), Sindbis virus (SINV), and Venezuelan equine encephalitis virus (VEEV) are mosquito-borne pathogens that can cause arthritis or encephalitis diseases. Nonstructural protein 4 (nsP4) of alphaviruses possesses RNA-dependent RNA polymerase (RdRp) activity essential for viral RNA replication. No 3D structure has been available for nsP4 of any alphaviruses despite its importance for understanding alphaviral RNA replication and for the design of antiviral drugs. Here, we report crystal structures of the RdRp domain of nsP4 from both RRV and SINV determined at resolutions of 2.6 Å and 1.9 Å. The structure of the alphavirus RdRp domain appears most closely related to RdRps from pestiviruses, noroviruses, and picornaviruses. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) methods showed that in solution, nsP4 is highly dynamic with an intrinsically disordered N-terminal domain. Both full-length nsP4 and the RdRp domain were capable to catalyze RNA polymerization. Structure-guided mutagenesis using a trans-replicase system identified nsP4 regions critical for viral RNA replication.
Collapse
Affiliation(s)
- Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Laura Sandra Lello
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Xin Liu
- Shanghai Institute of Materia Medica, China Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, China
| | - Yee-Song Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Rd, #05-01/06 Chromos, Singapore138670
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, China Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, China
| | - Andres Merits
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| |
Collapse
|
20
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
21
|
Macrodomain Binding Compound MRS 2578 Inhibits Alphavirus Replication. Antimicrob Agents Chemother 2021; 65:e0139821. [PMID: 34606339 DOI: 10.1128/aac.01398-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are positive-strand RNA viruses causing febrile disease. Macrodomain-containing proteins, involved in ADP-ribose-mediated signaling, are encoded by both host cells and several virus groups, including alphaviruses. In this study, compound MRS 2578 that targets the human ADP-ribose glycohydrolase MacroD1 inhibited Semliki Forest virus production as well as viral RNA replication and replicase protein expression. The inhibitor was similarly active in alphavirus trans-replication systems, indicating that it targets the viral RNA replication stage.
Collapse
|
22
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
23
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
24
|
Development of a Sensitive Detection Method for Alphaviruses and Its Use as a Virus Neutralization Assay. Viruses 2021; 13:v13071191. [PMID: 34206519 PMCID: PMC8310071 DOI: 10.3390/v13071191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Alphaviruses have a single-stranded, positive-sense RNA genome that contains two open reading frames encoding either the non-structural or the structural genes. Upon infection, the genomic RNA is translated into the non-structural proteins (nsPs). NsPs are required for viral RNA replication and transcription driven from the subgenomic promoter (sgP). Transfection of an RNA encoding the luciferase gene under the control of the sgP into cells enabled the detection of replication-competent chikungunya virus (CHIKV) or Mayaro virus (MAYV) with high sensitivity as a function of the induced luciferase activity. This assay principle was additionally used to analyze virus-neutralizing antibodies in sera and might be an alternative to standard virus neutralization assays based on virus titration or the use of genetically modified tagged viruses.
Collapse
|
25
|
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2020; 28:117-129. [PMID: 33093657 PMCID: PMC7580817 DOI: 10.1038/s41434-020-00204-y] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| | - Fiona van den Berg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| |
Collapse
|
26
|
Lello LS, Utt A, Bartholomeeusen K, Wang S, Rausalu K, Kendall C, Coppens S, Fragkoudis R, Tuplin A, Alphey L, Ariën KK, Merits A. Cross-utilisation of template RNAs by alphavirus replicases. PLoS Pathog 2020; 16:e1008825. [PMID: 32886709 PMCID: PMC7498090 DOI: 10.1371/journal.ppat.1008825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/17/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Most alphaviruses (family Togaviridae) including Sindbis virus (SINV) and other human pathogens, are transmitted by arthropods. The first open reading frame in their positive strand RNA genome encodes for the non-structural polyprotein, a precursor to four separate subunits of the replicase. The replicase interacts with cis-acting elements located near the intergenic region and at the ends of the viral RNA genome. A trans-replication assay was developed and used to analyse the template requirements for nine alphavirus replicases. Replicases of alphaviruses of the Semliki Forest virus complex were able to cross-utilize each other’s templates as well as those of outgroup alphaviruses. Templates of outgroup alphaviruses, including SINV and the mosquito-specific Eilat virus, were promiscuous; in contrast, their replicases displayed a limited capacity to use heterologous templates, especially in mosquito cells. The determinants important for efficient replication of template RNA were mapped to the 5' region of the genome. For SINV these include the extreme 5'- end of the genome and sequences corresponding to the first stem-loop structure in the 5' untranslated region. Mutations introduced in these elements drastically reduced infectivity of recombinant SINV genomes. The trans-replicase tools and approaches developed here can be instrumental in studying alphavirus recombination and evolution, but can also be applied to study other viruses such as picornaviruses, flaviviruses and coronaviruses. Alphaviruses are positive-strand RNA viruses, most of which use mosquitoes to spread between vertebrate hosts; many are human pathogens with potentially severe medical consequences. Some alphavirus species are believed to have resulted from the recombination between different members of the genus and there is evidence of movement of alphaviruses between continents. Here, a novel assay uncoupling viral replicase and template RNA production was developed and used to analyse cross-utilization of alphavirus template RNAs. We observed that replicases of closely related alphaviruses belonging to the Semliki Forest virus complex can generally use each other’s template RNAs as well as those of distantly related outgroup viruses. In contrast, replicases of outgroup viruses clearly preferred homologous template RNAs. These trends were observed in both mammalian and mosquito cells, with template preferences generally more pronounced in mosquito cells. Interestingly, the template RNA of the mosquito-specific Eilat virus was efficiently used by other alphavirus replicases while Eilat replicase could not use heterologous templates. Determinants for template selectivity were mapped to the beginning of the RNA genome and template recognition was more likely based on the recognition of RNA sequences than recognition of structural elements formed by the RNAs.
Collapse
Affiliation(s)
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Koen Bartholomeeusen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Catherine Kendall
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sandra Coppens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Rennos Fragkoudis
- University of Nottingham, School of Veterinary Medicine and Science, Loughborough, United Kingdom
| | - Andrew Tuplin
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Luke Alphey
- The Pirbright Institute, Woking, United Kingdom
| | - Kevin K. Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
27
|
Ahearn YP, Saredy JJ, Bowers DF. The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses 2020; 12:E848. [PMID: 32759668 PMCID: PMC7472040 DOI: 10.3390/v12080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Transit of the arthropod-borne-virus (arbovirus) Sindbis (SINV) throughout adult female mosquitoes initiates with its attachment to the gut lumen, entry and amplification in midgut cells, followed by dissemination into the hemolymph. Free-mated adult females, aged day 5-7, were proffered a viremic blood suspension via sausage casings containing SINV-TaV-Green Fluorescent Protein (GFP) at a final titer of 106 PFU/mL. Midguts (MGs) from fully engorged mosquitoes were resected on days 5 and 7 post-bloodmeal, and immunolabeled using FMRFamide antibody against enteroendocrine cells (ECs) with a TX-Red secondary antibody. Following immunolabeling, the organs were investigated via laser confocal microscopy to identify the distribution of GFP and TX-Red. Infection using this reporter virus was observed as multiple GFP expression foci along the posterior midgut (PMG) epithelium and ECs were observed as TX-Red labeled cells scattered along the entire length of the MG. Our results demonstrated that SINVGFP did infect ECs, as indicated by the overlapping GFP and TX-Red channels shown as yellow in merged images. We propose that ECs may be involved in the SINV infection pathway in the mosquito MG. Due to the unique role that ECs have in the exocytosis of secretory granules from the MG and the apical-basolateral position of ECs in the PMG monolayer, we speculate that these cells may assist as a mechanism for arboviruses to cross the gut barriers. These findings suggest that MG ECs are involved in arbovirus infection of the invertebrate host.
Collapse
Affiliation(s)
- Yani P. Ahearn
- Department of Health, TB Lab, 1217 N Pearl St., Jacksonville, FL 32202, USA;
| | - Jason J. Saredy
- Department of Biology, Temple University, 1900 N 12th St., Philadelphia, PA 19122-6078, USA;
| | - Doria F. Bowers
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
28
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
29
|
Wolff G, Melia CE, Snijder EJ, Bárcena M. Double-Membrane Vesicles as Platforms for Viral Replication. Trends Microbiol 2020; 28:1022-1033. [PMID: 32536523 PMCID: PMC7289118 DOI: 10.1016/j.tim.2020.05.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Viruses, as obligate intracellular parasites, exploit cellular pathways and resources in a variety of fascinating ways. A striking example of this is the remodelling of intracellular membranes into specialized structures that support the replication of positive-sense ssRNA (+RNA) viruses infecting eukaryotes. These distinct forms of virus-induced structures include double-membrane vesicles (DMVs), found during viral infections as diverse and notorious as those of coronaviruses, enteroviruses, noroviruses, or hepatitis C virus. Our understanding of these DMVs has evolved over the past 15 years thanks to advances in imaging techniques and modern molecular biology tools. In this article, we review contemporary understanding of the biogenesis, structure, and function of virus-induced DMVs as well as the open questions posed by these intriguing structures.
Collapse
Affiliation(s)
- Georg Wolff
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte E Melia
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication. J Virol 2020; 94:JVI.02183-19. [PMID: 32132240 DOI: 10.1128/jvi.02183-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.
Collapse
|
31
|
Fatty acid synthase and stearoyl-CoA desaturase-1 are conserved druggable cofactors of Old World Alphavirus genome replication. Antiviral Res 2019; 172:104642. [PMID: 31678479 DOI: 10.1016/j.antiviral.2019.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne RNA virus that causes epidemics of debilitating disease in tropical and sub-tropical regions with autochtonous transmission in regions with temperate climate. Currently, there is no licensed vaccine or specific antiviral drug available against CHIKV infection. In this study, we examine the role, in the CHIKV viral cycle, of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1), two key lipogenic enzymes required for fatty acid production and early desaturation. We show that both enzymes and their upstream regulator PI3K are required for optimal CHIKV infection. We demonstrate that pharmacologic manipulation of FASN or SCD1 enzymatic activity by non-toxic concentrations of cerulenin or CAY10566 decreases CHIKV genome replication. Interestingly, a similar inhibitory effect was also obtained with Orlistat, an FDA-approved anti-obesity drug that targets FASN activity. These drugs were also effective against Mayaro virus (MAYV), an under-studied arthritogenic Old world Alphavirus endemic in South American countries with potential risk of emergence, urbanization and dispersion to other regions. Altogether, our results identify FASN and SCD1 as conserved druggable cofactors of Alphavirus genome replication and support the broad-spectrum activity of drugs targeting the host fatty acids metabolism.
Collapse
|
32
|
A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Mol Ther 2019; 28:119-128. [PMID: 31624015 DOI: 10.1016/j.ymthe.2019.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- over saRNA-encoded replicase to drive expression of the transreplicon is most likely attributable to its higher translational efficiency and lack of interference with cellular translation. Testing the novel taRNA system in mice, we observed that doses of influenza hemagglutinin antigen-encoding RNA as low as 50 ng were sufficient to induce neutralizing antibodies and mount a protective immune response against live virus challenge. These findings, together with a favorable safety profile, a simpler production process, and the universal applicability associated with this bipartite vector system, warrant further exploration of taRNA.
Collapse
|
33
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Model System for the Formation of Tick-Borne Encephalitis Virus Replication Compartments without Viral RNA Replication. J Virol 2019; 93:JVI.00292-19. [PMID: 31243132 PMCID: PMC6714791 DOI: 10.1128/jvi.00292-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level. Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required. IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.
Collapse
|
35
|
Design and Use of Chikungunya Virus Replication Templates Utilizing Mammalian and Mosquito RNA Polymerase I-Mediated Transcription. J Virol 2019; 93:JVI.00794-19. [PMID: 31217251 DOI: 10.1128/jvi.00794-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive-sense RNA genome that also serves as the mRNA for four nonstructural proteins (nsPs) representing subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of viral RNA replication. We developed trans-replication systems, where production of replication-competent RNA and expression of viral replicase are uncoupled. Mammalian and mosquito RNA polymerase I promoters were used to produce noncapped RNA templates, which are poorly translated relative to CHIKV replicase-generated capped RNAs. It was found that, in human cells, constructs driven by RNA polymerase I promoters of human and Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito cells, novel trans-replicase assays had exceptional sensitivity, with up to 105-fold higher reporter expression in the presence of replicase relative to background. Using this highly sensitive assay to analyze CHIKV nsP1 functionality, several mutations that severely reduced, but did not completely block, CHIKV replicase activity were identified: (i) nsP1 tagged at its N terminus with enhanced green fluorescent protein; (ii) mutations D63A and Y248A, blocking the RNA capping; and (iii) mutation R252E, affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 palmitoylation site completely inactivated CHIKV replicase in both human and mosquito cells and was lethal for the virus. Our data confirm that this novel system provides a valuable tool to study CHIKV replicase, RNA replication, and virus-host interactions.IMPORTANCE Chikungunya virus (CHIKV) is a medically important pathogen responsible for recent large-scale epidemics. The development of efficient therapies against CHIKV has been hampered by gaps in our understanding of how nonstructural proteins (nsPs) function to form the viral replicase and replicate virus RNA. Here we describe an extremely sensitive assay to analyze the effects of mutations on the virus RNA synthesis machinery in cells of both mammalian (host) and mosquito (vector) origin. Using this system, several lethal mutations in CHIKV nsP1 were shown to reduce but not completely block the ability of its replicase to synthesize viral RNAs. However, in contrast to related alphaviruses, CHIKV replicase was completely inactivated by mutations preventing palmitoylation of nsP1. These data can be used to develop novel, virus-specific antiviral treatments.
Collapse
|
36
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
37
|
Mechanism of Tetherin Inhibition of Alphavirus Release. J Virol 2019; 93:JVI.02165-18. [PMID: 30674629 DOI: 10.1128/jvi.02165-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Tetherin is an interferon-inducible, antiviral host factor that broadly restricts enveloped virus release by tethering budded viral particles to the plasma membrane. In response, many viruses have evolved tetherin antagonists. The human tetherin gene can express two isoforms, long and short, due to alternative translation initiation sites in the N-terminal cytoplasmic tail. The long isoform (L-tetherin) contains 12 extra amino acids in its N terminus, including a dual tyrosine motif (YDYCRV) that is an internalization signal for clathrin-mediated endocytosis and a determinant of NF-κB activation. Tetherin restricts alphaviruses, which are highly organized enveloped RNA viruses that bud from the plasma membrane. L-tetherin is more efficient than S-tetherin in inhibiting alphavirus release in 293 cells. Here, we demonstrated that alphaviruses do not encode an antagonist for either of the tetherin isoforms. Instead, the isoform specificity reflected a requirement for tetherin endocytosis. The YXY motif in L-tetherin was necessary for alphavirus restriction in 293 cells but was not required for rhabdovirus restriction. L-tetherin's inhibition of alphavirus release correlated with its internalization but did not involve NF-κB activation. In contrast, in U-2 OS cells, the YXY motif and the L-tetherin N-terminal domain were not required for either robust tetherin internalization or alphavirus inhibition. Tetherin forms that were negative for restriction accumulated at the surface of infected cells, while the levels of tetherin forms that restrict were decreased. Together, our results suggest that tetherin-mediated virus internalization plays an important role in the restriction of alphavirus release and that cell-type-specific cofactors may promote tetherin endocytosis.IMPORTANCE The mechanisms of tetherin's antiviral activities and viral tetherin antagonism have been studied in detail for a number of different viruses. Although viral countermeasures against tetherin can differ significantly, overall, tetherin's antiviral activity correlates with physical tethering of virus particles to prevent their release. While tetherin can mediate virus endocytic uptake and clearance, this has not been observed to be required for restriction. Here we show that efficient tetherin inhibition of alphavirus release requires efficient tetherin endocytosis. Our data suggest that this endocytic uptake can be mediated by tetherin itself or by a tetherin cofactor that promotes uptake of an endocytosis-deficient variant of tetherin.
Collapse
|
38
|
ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proc Natl Acad Sci U S A 2018; 115:E10457-E10466. [PMID: 30322911 DOI: 10.1073/pnas.1812130115] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alphaviruses are plus-strand RNA viruses that cause encephalitis, rash, and arthritis. The nonstructural protein (nsP) precursor polyprotein is translated from genomic RNA and processed into four nsPs. nsP3 has a highly conserved macrodomain (MD) that binds ADP-ribose (ADPr), which can be conjugated to protein as a posttranslational modification involving transfer of ADPr from NAD+ by poly ADPr polymerases (PARPs). The nsP3MD also removes ADPr from mono ADP-ribosylated (MARylated) substrates. To determine which aspects of alphavirus replication require nsP3MD ADPr-binding and/or hydrolysis function, we studied NSC34 neuronal cells infected with chikungunya virus (CHIKV). Infection induced ADP-ribosylation of cellular proteins without increasing PARP expression, and inhibition of MARylation decreased virus replication. CHIKV with a G32S mutation that reduced ADPr-binding and hydrolase activities was less efficient than WT CHIKV in establishing infection and in producing nsPs, dsRNA, viral RNA, and infectious virus. CHIKV with a Y114A mutation that increased ADPr binding but reduced hydrolase activity, established infection like WT CHIKV, rapidly induced nsP translation, and shut off host protein synthesis with reduced amplification of dsRNA. To assess replicase function independent of virus infection, a transreplicase system was used. Mutant nsP3MDs D10A, G32E, and G112E with no binding or hydrolase activity had no replicase activity, G32S had little, and Y114A was intermediate to WT. Therefore, ADP ribosylation of proteins and nsP3MD ADPr binding are necessary for initiation of alphavirus replication, while hydrolase activity facilitates amplification of replication complexes. These observations are consistent with observed nsP3MD conservation and limited tolerance for mutation.
Collapse
|
39
|
The RNA Capping Enzyme Domain in Protein A is Essential for Flock House Virus Replication. Viruses 2018; 10:v10090483. [PMID: 30205593 PMCID: PMC6165433 DOI: 10.3390/v10090483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/18/2023] Open
Abstract
The nodavirus flock house virus (FHV) and the alphavirus Semliki Forest virus (SFV) show evolutionarily intriguing similarities in their replication complexes and RNA capping enzymes. In this study, we first established an efficient FHV trans-replication system in mammalian cells, which disjoins protein expression from viral RNA synthesis. Following transfection, FHV replicase protein A was associated with mitochondria, whose outer surface displayed pouch-like invaginations with a ‘neck’ structure opening towards the cytoplasm. In mitochondrial pellets from transfected cells, high-level synthesis of both genomic and subgenomic RNA was detected in vitro and the newly synthesized RNA was of positive polarity. Secondly, we initiated the study of the putative RNA capping enzyme domain in protein A by mutating the conserved amino acids H93, R100, D141, and W215. RNA replication was abolished for all mutants inside cells and in vitro except for W215A, which showed reduced replication. Transfection of capped RNA template did not rescue the replication activity of the mutants. Comparing the efficiency of SFV and FHV trans-replication systems, the FHV system appeared to produce more RNA. Using fluorescent marker proteins, we demonstrated that both systems could replicate in the same cell. This work may facilitate the comparative analysis of FHV and SFV replication.
Collapse
|
40
|
Santarella-Mellwig R, Haselmann U, Schieber NL, Walther P, Schwab Y, Antony C, Bartenschlager R, Romero-Brey I. Correlative Light Electron Microscopy (CLEM) for Tracking and Imaging Viral Protein Associated Structures in Cryo-immobilized Cells. J Vis Exp 2018. [PMID: 30247481 PMCID: PMC6235138 DOI: 10.3791/58154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its high resolution, electron microscopy (EM) is an indispensable tool for virologists. However, one of the main difficulties when analyzing virus-infected or transfected cells via EM are the low efficiencies of infection or transfection, hindering the examination of these cells. In order to overcome this difficulty, light microscopy (LM) can be performed first to allocate the subpopulation of infected or transfected cells. Thus, taking advantage of the use of fluorescent proteins (FPs) fused to viral proteins, LM is used here to record the positions of the "positive-transfected" cells, expressing a FP and growing on a support with an alphanumeric pattern. Subsequently, cells are further processed for EM via high pressure freezing (HPF), freeze substitution (FS) and resin embedding. The ultra-rapid freezing step ensures excellent membrane preservation of the selected cells that can then be analyzed at the ultrastructural level by transmission electron microscopy (TEM). Here, a step-by-step correlative light electron microscopy (CLEM) workflow is provided, describing sample preparation, imaging and correlation in detail. The experimental design can be also applied to address many cell biology questions.
Collapse
Affiliation(s)
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University
| | | | | | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University; Heidelberg Partner Site, German Center for Infection Research;
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University;
| |
Collapse
|
41
|
Blakney AK, McKay PF, Shattock RJ. Structural Components for Amplification of Positive and Negative Strand VEEV Splitzicons. Front Mol Biosci 2018; 5:71. [PMID: 30094239 PMCID: PMC6070733 DOI: 10.3389/fmolb.2018.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023] Open
Abstract
RNA is a promising nucleic acid technology for both vaccines and therapeutics, and replicon RNA has gained traction as a next-generation RNA modality. Replicon RNA self-amplifies using a replicase complex derived from alphaviral non-structural proteins and yields higher protein expression than a similar dose of messenger RNA. Here, we debut RNA splitzicons; a split replicon system wherein the non-structural proteins (NSPs) and the gene of interest are encoded on separate RNA molecules, but still exhibit the self-amplification properties of replicon RNA. We designed both positive and negative strand splitzicons encoding firefly luciferase as a reporter protein to determine which structural components, including the 5' untranslated region (UTR), a 51-nucleotide conserved sequence element (CSE) from the first nonstructural protein, the subgenomic promoter (SGP) and corresponding untranslated region, and an internal ribosomal entry site (IRES) affect amplification. When paired with a NSP construct derived from the whole, wild type replicon, both the positive and negative strand splitzicons were amplified. The combination of the 51nt CSE, subgenomic promoter and untranslated region were imperative for the positive strand splitzicon, while the negative strand was amplified simply with inclusion of the subgenomic promoter. The splitzicons were amplified by NSPs in multiple cell types and show increasing protein expression with increasing doses of NSP. Furthermore, both the positive and negative strand splitzicons continued to amplify over the course of 72 h, up to >100,000-fold. This work demonstrates a system for screening the components required for amplification from the positive and negative strand intermediates of RNA replicons and presents a new approach to RNA replicon technology.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul F McKay
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Lulla V, Karo-Astover L, Rausalu K, Saul S, Merits A, Lulla A. Timeliness of Proteolytic Events Is Prerequisite for Efficient Functioning of the Alphaviral Replicase. J Virol 2018; 92:e00151-18. [PMID: 29695431 PMCID: PMC6026757 DOI: 10.1128/jvi.00151-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
Polyprotein processing has an important regulatory role in the life cycle of positive-strand RNA viruses. In the case of alphaviruses, sequential cleavage of the nonstructural polyprotein (ns-polyprotein) at three sites eventually yields four mature nonstructural proteins (nsPs) that continue working in complex to replicate viral genomic RNA and transcribe subgenomic RNA. Recognition of cleavage sites by viral nsP2 protease is guided by short sequences upstream of the scissile bond and, more importantly, by the spatial organization of the replication complex. In this study, we analyzed the consequences of the artificially accelerated processing of the Semliki Forest virus ns-polyprotein. It was found that in mammalian cells, not only the order but also the correct timing of the cleavage events is essential for the success of viral replication. Analysis of the effects of compensatory mutations in rescued viruses as well as in vitro translation and trans-replicase assays corroborated our findings and revealed the importance of the V515 residue in nsP2 for recognizing the P4 position in the nsP1/nsP2 cleavage site. We also extended our conclusions to Sindbis virus by analyzing the properties of the hyperprocessive variant carrying the N614D mutation in nsP2. We conclude that the sequence of the nsP1/nsP2 site in alphaviruses is under selective pressure to avoid the presence of sequences that are recognized too efficiently and would otherwise lead to premature cleavage at this site before completion of essential tasks of RNA synthesis or virus-induced replication complex formation. Even subtle changes in the ns-polyprotein processing pattern appear to lead to virus attenuation.IMPORTANCE The polyprotein expression strategy is a cornerstone of alphavirus replication. Three sites within the ns-polyprotein are recognized by the viral nsP2 protease and cleaved in a defined order. Specific substrate targeting is achieved by the recognition of the short sequence upstream of the scissile bond and a correct macromolecular assembly of ns-polyprotein. Here, we highlighted the importance of the timeliness of proteolytic events, as an additional layer of regulation of efficient virus replication. We conclude that, somewhat counterintuitively, the cleavage site sequences at the nsP1/nsP2 and nsP2/nsP3 junctions are evolutionarily selected to be recognized by protease inefficiently, to avoid premature cleavages that would be detrimental for the assembly and functionality of the replication complex. Understanding the causes and consequences of viral polyprotein processing events is important for predicting the properties of mutant viruses and should be helpful for the development of better vaccine candidates and understanding potential mechanisms of resistance to protease inhibitors.
Collapse
Affiliation(s)
- Valeria Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sirle Saul
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Aleksei Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
43
|
Bartholomeeusen K, Utt A, Coppens S, Rausalu K, Vereecken K, Ariën KK, Merits A. A Chikungunya Virus trans-Replicase System Reveals the Importance of Delayed Nonstructural Polyprotein Processing for Efficient Replication Complex Formation in Mosquito Cells. J Virol 2018; 92:e00152-18. [PMID: 29695432 PMCID: PMC6026725 DOI: 10.1128/jvi.00152-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a medically important alphavirus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The viral replicase complex consists of four nonstructural proteins (nsPs) expressed as a polyprotein precursor and encompasses all enzymatic activities required for viral RNA replication. nsPs interact with host components of which most are still poorly understood, especially in mosquitos. A CHIKV trans-replicase system that allows the uncoupling of RNA replication and nsP expression was adapted to mosquito cells and subsequently used for analysis of universal and host-specific effects of 17 different nonstructural polyprotein (ns-polyprotein) mutations. It was found that mutations blocking nsP enzymatic activities as well as insertions of enhanced green fluorescent protein (EGFP) into different nsPs had similar effects on trans-replicase activity regardless of the host (i.e., mammalian or mosquito). Mutations that slow down or accelerate ns-polyprotein processing generally had no effect or reduced trans-replicase activity in mammalian cells, while in mosquito cells most of them increased trans-replicase activity prominently. Increased RNA replication in mosquito cells was counteracted by an antiviral RNA interference (RNAi) response. Substitution of the W258 residue in the membrane binding peptide of nsP1 resulted in a temperature-sensitive defect, in the context of both the trans-replicase and infectious CHIKV. The defect was compensated for by secondary mutations selected during passaging of mutant CHIKV. These findings demonstrate the value of alphavirus trans-replicase systems for studies of viral RNA replication and virus-host interactions.IMPORTANCE Chikungunya virus is an important mosquito-transmitted human pathogen. This virus actively replicates in mosquitoes, but the underlying molecular mechanisms and interactions of viral and host components are poorly understood. This is partly due to the lack of reliable systems for functional analysis of viral nonstructural polyproteins (ns-polyproteins) and nonstructural proteins (nsPs) in mosquito cells. Adaption of a CHIKV trans-replicase system allowed study of the effects of mutations in the ns-polyprotein on RNA replication in cells derived from mammalian and mosquito hosts. We found that a slowdown of ns-polyprotein processing facilitates replication complex formation and/or functioning in mosquito cells and that this process is antagonized by the natural RNAi defense system present in mosquito cells. The mosquito-adapted CHIKV trans-replicase system represents a valuable tool to study alphavirus-mosquito interactions at the molecular level and to develop advanced antiviral strategies.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sandra Coppens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Katleen Vereecken
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Purification of Highly Active Alphavirus Replication Complexes Demonstrates Altered Fractionation of Multiple Cellular Membranes. J Virol 2018; 92:JVI.01852-17. [PMID: 29367248 DOI: 10.1128/jvi.01852-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 01/26/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi membranes, and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER), and late endosome markers were retained in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins, and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication, as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the cofractionation of the RC-carrying plasma membrane and ER suggests that SFV recruits ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity, demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules, but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs.IMPORTANCE Similar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories, but little is known about the arrangement of viral replicase proteins and the presence of host proteins in these replication complexes. To improve our knowledge of alphavirus RNA-synthesizing complexes, we isolated and purified them from infected mammalian cells. Detection of viral RNA and in vitro replication assays revealed that these complexes are abundant and highly active when located on the plasma membrane. After multiple purification steps, they remain functional in synthesizing and releasing viral RNA. Besides the plasma membrane, markers for the endoplasmic reticulum and late endosomes were enriched with the replication complexes, demonstrating that alphavirus infection modified cellular membranes beyond inducing replication spherules on the plasma membrane. We have developed here a gentle purification method to obtain large quantities of highly active replication complexes, and similar methods can be applied to other positive-strand RNA viruses.
Collapse
|
45
|
Lark T, Keck F, Narayanan A. Interactions of Alphavirus nsP3 Protein with Host Proteins. Front Microbiol 2018; 8:2652. [PMID: 29375517 PMCID: PMC5767282 DOI: 10.3389/fmicb.2017.02652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Alphaviruses are members of the Togaviridae family and are grouped into two categories: arthritogenic and encephalitic. Arthritogenic alphavirus infections, as the name implies, are associated with arthritic outcomes while encephalitic alphavirus infections can lead to encephalitic outcomes in the infected host. Of the non-structural proteins (nsPs) that the viruses code for, nsP3 is the least understood in terms of function. Alphavirus nsP3s are characterized by regions with significantly conserved domain structure along with regions of high variability. Interactions of nsP3 with several host proteins have been documented including, stress granule-related proteins, dead box proteins, heat shock proteins, and kinases. In some cases, in addition to the interaction, requirement of the interaction to support infection has been demonstrated. An understanding of the proteomic network of nsP3 and the mechanisms by which these interactions support the establishment of a productive infection would make alphavirus nsP3 an interesting target for design of effective medical countermeasures.
Collapse
Affiliation(s)
- Tyler Lark
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Forrest Keck
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| |
Collapse
|
46
|
Lowen RG, Bocan TM, Kane CD, Cazares LH, Kota KP, Ladner JT, Nasar F, Pitt L, Smith DR, Soloveva V, Sun MG, Zeng X, Bavari S. Countering Zika Virus: The USAMRIID Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:303-318. [PMID: 29845541 DOI: 10.1007/978-981-10-8727-1_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.
Collapse
Affiliation(s)
- Robert G Lowen
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA.
| | - Thomas M Bocan
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Christopher D Kane
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Lisa H Cazares
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Krishna P Kota
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Farooq Nasar
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Louise Pitt
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Darci R Smith
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Veronica Soloveva
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Mei G Sun
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Xiankun Zeng
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Sina Bavari
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| |
Collapse
|
47
|
Pietilä MK, Albulescu IC, Hemert MJV, Ahola T. Polyprotein Processing as a Determinant for in Vitro Activity of Semliki Forest Virus Replicase. Viruses 2017; 9:v9100292. [PMID: 28991178 PMCID: PMC5691643 DOI: 10.3390/v9100292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Semliki Forest virus (SFV) is an arthropod-borne alphavirus that induces membrane invaginations (spherules) in host cells. These harbor the viral replication complexes (RC) that synthesize viral RNA. Alphaviruses have four replicase or nonstructural proteins (nsPs), nsP1-4, expressed as polyprotein P1234. An early RC, which synthesizes minus-strand RNA, is formed by the polyprotein P123 and the polymerase nsP4. Further proteolytic cleavage results in a late RC consisting of nsP1-4 and synthesizing plus strands. Here, we show that only the late RCs are highly active in RNA synthesis in vitro. Furthermore, we demonstrate that active RCs can be isolated from both virus-infected cells and cells transfected with the wild-type replicase in combination with a plasmid expressing a template RNA. When an uncleavable polyprotein P123 and polymerase nsP4 were expressed together with a template, high levels of minus-strand RNA were produced in cells, but RCs isolated from these cells were hardly active in vitro. Furthermore, we observed that the uncleavable polyprotein P123 and polymerase nsP4, which have previously been shown to form spherules even in the absence of the template, did not replicate an exogenous template. Consequently, we hypothesize that the replicase proteins were sequestered in spherules and were no longer able to recruit a template.
Collapse
Affiliation(s)
- Maija K Pietilä
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9 PO Box 56, 00014 Helsinki, Finland.
| | - Irina C Albulescu
- Department of Medical Microbiology, Leiden University Medical Center PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical Center PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9 PO Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
48
|
Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template. J Virol 2017; 91:JVI.00787-17. [PMID: 28701392 DOI: 10.1128/jvi.00787-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alphaviruses are positive-strand RNA viruses expressing their replicase as a polyprotein, P1234, which is cleaved to four final products, nonstructural proteins nsP1 to nsP4. The replicase proteins together with viral RNA and host factors form membrane invaginations termed spherules, which act as the replication complexes producing progeny RNAs. We have previously shown that the wild-type alphavirus replicase requires a functional RNA template and active polymerase to generate spherule structures. However, we now find that specific partially processed forms of the replicase proteins alone can give rise to membrane invaginations in the absence of RNA or replication. The minimal requirement for spherule formation was the expression of properly cleaved nsP4, together with either uncleaved P123 or with the combination of nsP1 and uncleaved P23. These inactive spherules were morphologically less regular than replication-induced spherules. In the presence of template, nsP1 plus uncleaved P23 plus nsP4 could efficiently assemble active replication spherules producing both negative-sense and positive-sense RNA strands. P23 alone did not have membrane affinity, but could be recruited to membrane sites in the presence of nsP1 and nsP4. These results define the set of viral components required for alphavirus replication complex assembly and suggest the possibility that it could be reconstituted from separately expressed nonstructural proteins.IMPORTANCE All positive-strand RNA viruses extensively modify host cell membranes to serve as efficient platforms for viral RNA replication. Alphaviruses and several other groups induce protective membrane invaginations (spherules) as their genome factories. Most positive-strand viruses produce their replicase as a polyprotein precursor, which is further processed through precise and regulated cleavages. We show here that specific cleavage intermediates of the alphavirus replicase can give rise to spherule structures in the absence of viral RNA. In the presence of template RNA, the same intermediates yield active replication complexes. Thus, partially cleaved replicase proteins play key roles that connect replication complex assembly, membrane deformation, and the different stages of RNA synthesis.
Collapse
|
49
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
50
|
Pando-Robles V, Batista CV. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings. Vector Borne Zoonotic Dis 2017; 17:361-375. [PMID: 28192064 DOI: 10.1089/vbz.2016.2040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.
Collapse
Affiliation(s)
- Victoria Pando-Robles
- 1 Laboratorio de Proteómica, Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Cesar V Batista
- 2 Laboratorio Universitario de Proteómica, Instituto de Biotecnología. Universidad Nacional Autónoma de México , Cuernavaca, México
| |
Collapse
|