1
|
Boccaccio GL, Thomas MG, García CC. Membraneless Organelles and Condensates Orchestrate Innate Immunity Against Viruses. J Mol Biol 2023; 435:167976. [PMID: 36702393 DOI: 10.1016/j.jmb.2023.167976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
The cellular defense against viruses involves the assembly of oligomers, granules and membraneless organelles (MLOs) that govern the activation of several arms of the innate immune response. Upon interaction with specific pathogen-derived ligands, a number of pattern recognition receptors (PRRs) undergo phase-separation thus triggering downstream signaling pathways. Among other relevant condensates, inflammasomes, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) specks, cyclic GMP-AMP synthase (cGAS) foci, protein kinase R (PKR) clusters, ribonuclease L-induced bodies (RLBs), stress granules (SGs), processing bodies (PBs) and promyelocytic leukemia protein nuclear bodies (PML NBs) play different roles in the immune response. In turn, viruses have evolved diverse strategies to evade the host defense. Viral DNA or RNA, as well as viral proteases or proteins carrying intrinsically disordered regions may interfere with condensate formation and function in multiple ways. In this review we discuss current and hypothetical mechanisms of viral escape that involve the disassembly, repurposing, or inactivation of membraneless condensates that govern innate immunity. We summarize emerging interconnections between these diverse condensates that ultimately determine the cellular outcome.
Collapse
Affiliation(s)
- Graciela Lidia Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María Gabriela Thomas
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. https://www.twitter.com/_gabithomas
| | - Cybele Carina García
- Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEN), and IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bentim Góes LG, Fischer C, Almeida Campos AC, de Carvalho C, Moreira-Soto A, Ambar G, Ruckert da Rosa A, de Oliveira DC, Jo WK, Cruz-Neto AP, Pedro WA, Queiroz LH, Minoprio P, Durigon EL, Drexler JF. Highly Diverse Arenaviruses in Neotropical Bats, Brazil. Emerg Infect Dis 2022; 28:2528-2533. [PMID: 36417964 PMCID: PMC9707603 DOI: 10.3201/eid2812.220980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.
Collapse
|
3
|
Małkowska P, Niedźwiedzka-Rystwej P. Factors affecting RIG-I-Like receptors activation - New research direction for viral hemorrhagic fevers. Front Immunol 2022; 13:1010635. [PMID: 36248895 PMCID: PMC9557057 DOI: 10.3389/fimmu.2022.1010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hemorrhagic fever (VHF) is a term referring to a group of life-threatening infections caused by several virus families (Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae). Depending on the virus, the infection can be mild and can be also characterized by an acute course with fever accompanied by hypervolemia and coagulopathy, resulting in bleeding and shock. It has been suggested that the course of the disease is strongly influenced by the activation of signaling pathways leading to RIG-I-like receptor-dependent interferon production. RIG-I-like receptors (RLRs) are one of two major receptor families that detect viral nucleic acid. RLR receptor activation is influenced by a number of factors that may have a key role in the differences that occur during the antiviral immune response in VHF. In the present study, we collected data on RLR receptors in viral hemorrhagic fevers and described factors that may influence the activation of the antiviral response. RLR receptors seem to be a good target for VHF research, which may contribute to better therapeutic and diagnostic strategies. However, due to the difficulty of conducting such studies in humans, we suggest using Lagovirus europaeus as an animal model for VHF.
Collapse
Affiliation(s)
- Paulina Małkowska
- Doctoral School, University of Szczecin, Szczecin, Poland
- Institute of Biology, University of Szczecin, Szczecin, Poland
- *Correspondence: Paulina Małkowska,
| | | |
Collapse
|
4
|
Holzerland J, Fénéant L, Groseth A. Regulation of Stress-Activated Kinases in Response to Tacaribe Virus Infection and Its Implications for Viral Replication. Viruses 2022; 14:v14092018. [PMID: 36146824 PMCID: PMC9505436 DOI: 10.3390/v14092018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Arenaviruses include important zoonotic pathogens that cause hemorrhagic fever (e.g., Junín virus; JUNV) as well as other viruses that are closely related but apathogenic (e.g., Tacaribe virus; TCRV). We have found that, while TCRV and JUNV differ in their ability to induce apoptosis in infected cells, due to active inhibition of caspase activation by the JUNV nucleoprotein, both viruses trigger similar upstream pro-apoptotic signaling events, including the activation/phosphorylation of p53. In the case of TCRV, the pro-apoptotic factor Bad is also phosphorylated (leading to its inactivation). These events clearly implicate upstream kinases in regulating the induction of apoptosis. Consistent with this, here we show activation in TCRV-infected cells of the stress-activated protein kinases p38 and JNK, which are known to regulate p53 activation, as well as the downstream kinase MK2 and transcription factor c-Jun. We also observed the early transient activation of Akt, but not Erk. Importantly, the chemical inhibition of Akt, p38, JNK and c-Jun all dramatically reduced viral growth, even though we have shown that inhibition of apoptosis itself does not. This indicates that kinase activation is crucial for viral infection, independent of its downstream role in apoptosis regulation, a finding that has the potential to shed further light on the determinants of arenavirus pathogenesis, as well as to inform future therapeutic approaches.
Collapse
|
5
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
6
|
Lee M, Koma T, Iwasaki M, Urata S. [South American Hemorrhagic Fever viruses and the cutting edge of the vaccine and antiviral development]. Uirusu 2022; 72:7-18. [PMID: 37899233 DOI: 10.2222/jsv.72.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
South American Hemorrhagic Fever is caused by the Arenavirus, which belong to the Family Arenaviridae, genus mammarenavirus, infection at South America. South American Hemorrhagic Fever includes 1. Argentinian Hemorrhagic fever caused by Junin virus, 2. Brazilian hemorrhagic fever caused by Sabia virus, 3. Venezuelan Hemorrhagic fever caused by Guanarito virus, 4. Bolivian Hemorrhagic fever caused by Machupo virus, and 5. Unassigned hemorrhagic fever caused by Chapare virus. These viruses are classified in New World (NW) Arenavirus, which is different from Old World Arenavirus (ex. Lassa virus), based on phylogeny, serology, and geographic differences. In this review, the current knowledge of the biology and the development of the vaccines and antivirals of NW Arenaviruses which cause South American Hemorrhagic Fever will be described.
Collapse
Affiliation(s)
- Meion Lee
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| |
Collapse
|
7
|
Nicolay W, Moeller R, Kahl S, Vondran FWR, Pietschmann T, Kunz S, Gerold G. Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells 2021; 10:3019. [PMID: 34831243 PMCID: PMC8616302 DOI: 10.3390/cells10113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
The liver is targeted by several human pathogenic RNA viruses for viral replication and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such as hepatitis C virus, cell culture models are needed to study immune sensing. However, several human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I (RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity to RNA viruses in hepatocytes.
Collapse
Affiliation(s)
- Wiebke Nicolay
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Rebecca Moeller
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
| | - Sina Kahl
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Centre for Infection Research (DZIF), 30100 Braunschweig, Germany
| | - Thomas Pietschmann
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland;
| | - Gisa Gerold
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
8
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
9
|
The Protein Kinase Receptor Modulates the Innate Immune Response against Tacaribe Virus. Viruses 2021; 13:v13071313. [PMID: 34372519 PMCID: PMC8310291 DOI: 10.3390/v13071313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their nonpathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to suppress the effect of activated PKR, resulting in the inhibition of a viral titer. Here, we provide original evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. The mechanisms for innate immune evasion are key for the emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses, such as JUNV or MACV, trigger a weaker IFN response than nonpathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. Our present findings further characterize the innate immune response in the absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection. Moreover, TCRV fails to suppress activated PKR, resulting in viral progeny production inhibition.
Collapse
|
10
|
Moreno H, Rastrojo A, Pryce R, Fedeli C, Zimmer G, Bowden TA, Gerold G, Kunz S. A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. PLoS Negl Trop Dis 2020; 14:e0009004. [PMID: 33370288 PMCID: PMC7794035 DOI: 10.1371/journal.pntd.0009004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/08/2021] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts. Mammarenaviruses include emergent pathogens responsible of severe disease in humans in zoonotic events. The ability to use the human Transferrin receptor 1 (hTfR1) strongly correlates with their pathogenicity in humans. We isolated a new infectious Tamiami virus strain (TAMV-FL) from host-seeking ticks, which, contrary to the previous rodent-derived reference strain, can use hTfR1 to enter human cells. Moreover, serial passaging of TAMV-FL in human immunocompetent cells selected for two substitutions in the viral envelope glycoprotein: N151K and D156N. These substitutions increase the ability to highjack hTfR1 and the binding capacity to heparan sulfate proteoglycans and cause delayed endosomal escape. Our findings provide insight into the acquisition of novel traits by currently circulating TAMV that increase its potential to trespass the inter-species barrier.
Collapse
Affiliation(s)
- Hector Moreno
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
- * E-mail:
| | - Alberto Rastrojo
- Department of Virology and Microbiology, Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Madrid, Spain
- Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Gisa Gerold
- TWINCORE -Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover Germany
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
| |
Collapse
|
11
|
Fernandes J, Miranda RL, de Lemos ERS, Guterres A. MicroRNAs and Mammarenaviruses: Modulating Cellular Metabolism. Cells 2020; 9:E2525. [PMID: 33238430 PMCID: PMC7709035 DOI: 10.3390/cells9112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mammarenaviruses are a diverse genus of emerging viruses that include several causative agents of severe viral hemorrhagic fevers with high mortality in humans. Although these viruses share many similarities, important differences with regard to pathogenicity, type of immune response, and molecular mechanisms during virus infection are different between and within New World and Old World viral infections. Viruses rely exclusively on the host cellular machinery to translate their genome, and therefore to replicate and propagate. miRNAs are the crucial factor in diverse biological processes such as antiviral defense, oncogenesis, and cell development. The viral infection can exert a profound impact on the cellular miRNA expression profile, and numerous RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Our present study indicates that mammarenavirus infection induces metabolic reprogramming of host cells, probably manipulating cellular microRNAs. A number of metabolic pathways, including valine, leucine, and isoleucine biosynthesis, d-Glutamine and d-glutamate metabolism, thiamine metabolism, and pools of several amino acids were impacted by the predicted miRNAs that would no longer regulate these pathways. A deeper understanding of mechanisms by which mammarenaviruses handle these signaling pathways is critical for understanding the virus/host interactions and potential diagnostic and therapeutic targets, through the inhibition of specific pathologic metabolic pathways.
Collapse
Affiliation(s)
- Jorlan Fernandes
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Renan Lyra Miranda
- Neurochemistry Interactions Laboratory, Universidade Federal Fluminense, Niterói 24020-150, Brazil;
| | - Elba Regina Sampaio de Lemos
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Alexandro Guterres
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
12
|
Holzerland J, Fénéant L, Banadyga L, Hölper JE, Knittler MR, Groseth A. BH3-only sensors Bad, Noxa and Puma are Key Regulators of Tacaribe virus-induced Apoptosis. PLoS Pathog 2020; 16:e1008948. [PMID: 33045019 PMCID: PMC7598930 DOI: 10.1371/journal.ppat.1008948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogenicity often differs dramatically among even closely related arenavirus species. For instance, Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever (AHF), is closely related to Tacaribe virus (TCRV), which is normally avirulent in humans. While little is known about how host cell pathways are regulated in response to arenavirus infection, or how this contributes to virulence, these two viruses have been found to differ markedly in their ability to induce apoptosis. However, details of the mechanism(s) governing the apoptotic response to arenavirus infections are unknown. Here we confirm that TCRV-induced apoptosis is mitochondria-regulated, with associated canonical hallmarks of the intrinsic apoptotic pathway, and go on to identify the pro- and anti-apoptotic Bcl-2 factors responsible for regulating this process. In particular, levels of the pro-apoptotic BH3-only proteins Noxa and Puma, as well as their canonical transcription factor p53, were strongly increased. Interestingly, TCRV infection also led to the accumulation of the inactive phosphorylated form of another pro-apoptotic BH3-only protein, Bad (i.e. as phospho-Bad). Knockout of Noxa or Puma suppressed apoptosis in response to TCRV infection, whereas silencing of Bad increased apoptosis, confirming that these factors are key regulators of apoptosis induction in response to TCRV infection. Further, we found that while the highly pathogenic JUNV does not induce caspase activation, it still activated upstream pro-apoptotic factors, consistent with current models suggesting that JUNV evades apoptosis by interfering with caspase activation through a nucleoprotein-mediated decoy function. This new mechanistic insight into the role that individual BH3-only proteins and their regulation play in controlling apoptotic fate in arenavirus-infected cells provides an important experimental framework for future studies aimed at dissecting differences in the apoptotic responses between arenaviruses, their connection to other cell signaling events and ultimately the relationship of these processes to pathogenesis. Arenaviruses are important zoonotic pathogens that present a serious threat to human health. While some virus species cause severe disease, resulting in hemorrhagic fever and/or neurological symptoms, other closely related species exhibit little or no pathogenicity. The basis for these dramatically different outcomes is insufficiently understood, but investigations of host cell responses have suggested that apoptosis, i.e. non-inflammatory programmed cell death, is regulated differently between pathogenic and apathogenic arenaviruses. However, many questions remain regarding how these viruses interact with cell death pathways upon infection. Here we demonstrate that apoptosis induced by the avirulent Tacaribe virus (TCRV), proceeds via the mitochondria (i.e. the intrinsic apoptotic signaling pathway), and is regulated by a combination of factors that appear to balance activation (i.e. Noxa and Puma) and inactivation (i.e. Bad-P) of this cascade. During TCRV infection, the balance of these pro- and anti-apoptotic signals shifts the equilibrium late in the infection towards cell death. Importantly, we also found that the highly pathogenic Junín virus (JUNV), which does not trigger caspase activation or apoptotic cell death, nonetheless induces pro-apoptotic factors, thus supporting the existence of a specific mechanism by which this virus is able to evade apoptosis at late stages in this process.
Collapse
Affiliation(s)
- Julia Holzerland
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Lucie Fénéant
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
- * E-mail:
| |
Collapse
|
13
|
The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Viruses 2020; 12:v12080857. [PMID: 32781509 PMCID: PMC7472032 DOI: 10.3390/v12080857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
The zoonotic Old World mammarenavirus Lassa (LASV) causes severe hemorrhagic fever with high mortality and morbidity in humans in endemic regions. The development of effective strategies to combat LASV infections is of high priority, given the lack of a licensed vaccine and restriction on available treatment to off-label use of ribavirin. A better understanding of the fundamental aspects of the virus's life cycle would help to improve the development of novel therapeutic approaches. Host cell entry and restriction factors represent major barriers for emerging viruses and are promising targets for therapeutic intervention. In addition to the LASV main receptor, the extracellular matrix molecule dystroglycan (DG), the phosphatidylserine-binding receptors of the Tyro3/Axl/Mer (TAM), and T cell immunoglobulin and mucin receptor (TIM) families are potential alternative receptors of LASV infection. Therefore, the relative contributions of candidate receptors to LASV entry into a particular human cell type are a complex function of receptor expression and functional DG availability. Here, we describe the role of two receptor tyrosine kinases (RTKs), Axl and hepatocyte growth factor receptor (HGFR), in the presence and absence of glycosylated DG for LASV entry. We found that both RTKs participated in the macropinocytosis-related LASV entry and, regardless of the presence or absence of functional DG, their inhibition resulted in a significant antiviral effect.
Collapse
|
14
|
Distinct Molecular Mechanisms of Host Immune Response Modulation by Arenavirus NP and Z Proteins. Viruses 2020; 12:v12070784. [PMID: 32708250 PMCID: PMC7412275 DOI: 10.3390/v12070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endemic to West Africa and South America, mammalian arenaviruses can cross the species barrier from their natural rodent hosts to humans, resulting in illnesses ranging from mild flu-like syndromes to severe and fatal haemorrhagic zoonoses. The increased frequency of outbreaks and associated high fatality rates of the most prevalent arenavirus, Lassa, in West African countries, highlights the significant risk to public health and to the socio-economic development of affected countries. The devastating impact of these viruses is further exacerbated by the lack of approved vaccines and effective treatments. Differential immune responses to arenavirus infections that can lead to either clearance or rapid, widespread and uncontrolled viral dissemination are modulated by the arenavirus multifunctional proteins, NP and Z. These two proteins control the antiviral response to infection by targeting multiple cellular pathways; and thus, represent attractive targets for antiviral development to counteract infection. The interplay between the host immune responses and viral replication is a key determinant of virus pathogenicity and disease outcome. In this review, we examine the current understanding of host immune defenses against arenavirus infections and summarise the host protein interactions of NP and Z and the mechanisms that govern immune evasion strategies.
Collapse
|
15
|
Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa Virus, but Not Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-Stranded RNA Accumulation during Infection. J Virol 2020; 94:e02006-19. [PMID: 32051278 PMCID: PMC7163147 DOI: 10.1128/jvi.02006-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022] Open
Abstract
The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.
Collapse
Affiliation(s)
- Elizabeth J Mateer
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Junki Maruyama
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Galen E Card
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Clarke EC, Bradfute SB. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 1: Potential effects on adaptive immunity and response to vaccination. Antiviral Res 2020; 174:104703. [DOI: 10.1016/j.antiviral.2019.104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
|
17
|
Guinea Pig Transferrin Receptor 1 Mediates Cellular Entry of Junín Virus and Other Pathogenic New World Arenaviruses. J Virol 2020; 94:JVI.01278-19. [PMID: 31748396 DOI: 10.1128/jvi.01278-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Several clade B New World arenaviruses (NWAs) can cause severe and often fatal hemorrhagic fever, for which preventive and therapeutic measures are severely limited. These NWAs use human transferrin receptor 1 (hTfR1) as a host cell receptor for virus entry. The most prevalent of the pathogenic NWAs is Junín virus (JUNV), the etiological agent of Argentine hemorrhagic fever. Small animal models of JUNV infection are limited because most laboratory rodent species are refractory to disease. Only guinea pigs are known to develop disease following JUNV infection, but the underlying mechanisms are not well characterized. In the present study, we demonstrate marked susceptibility of Hartley guinea pigs to uniformly lethal disease when challenged with as few as 4 PFU of the Romero strain of JUNV. In vitro, we show that infection of primary guinea pig macrophages results in greater JUNV replication compared to infection of hamster or mouse macrophages. We provide evidence that the guinea pig TfR1 (gpTfR1) is the principal receptor for JUNV, while hamster and mouse orthologs fail to support viral entry/infection of pseudotyped murine leukemia viruses expressing pathogenic NWA glycoproteins or JUNV. Together, our results indicate that gpTfR1 serves as the primary receptor for pathogenic NWAs, enhancing viral infection in guinea pigs.IMPORTANCE JUNV is one of five known NWAs that cause viral hemorrhagic fever in humans. Countermeasures against JUNV infection are limited to immunization with the Candid#1 vaccine and immune plasma, which are available only in Argentina. The gold standard small animal model for JUNV infection is the guinea pig. Here, we demonstrate high sensitivity of this species to severe JUNV infection and identify gpTfR1 as the primary receptor. Use of hTfR1 for host cell entry is a feature shared by pathogenic NWAs. Our results show that expression of gpTfR1 or hTfR1 comparably enhances JUNV virus entry/infectivity. Our findings shed light on JUNV infection in guinea pigs as a model for human disease and suggest that similar pathophysiological mechanisms related to iron sequestration during infection and regulation of TfR1 expression may be shared between humans and guinea pigs. A better understanding of the underlying disease process will guide development of new therapeutic interventions.
Collapse
|
18
|
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses. Vaccines (Basel) 2019; 7:vaccines7040138. [PMID: 31581720 PMCID: PMC6963578 DOI: 10.3390/vaccines7040138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.
Collapse
|