1
|
El-Mayet F, Jones C. Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency. Viruses 2024; 16:1675. [PMID: 39599791 PMCID: PMC11599084 DOI: 10.3390/v16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are importantsites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral heterochromatin, remodel chromatin, and activate gene expression. Thus, wepredict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency.
Collapse
Affiliation(s)
- Fouad El-Mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Benha 74078, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Dang Y, Li J, Li Y, Wang Y, Zhao Y, Zhao N, Li W, Zhang H, Ye C, Ma H, Zhang L, Liu H, Dong Y, Yao M, Lei Y, Xu Z, Zhang F, Ye W. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol 2024; 98:e0135023. [PMID: 38169284 PMCID: PMC10805074 DOI: 10.1128/jvi.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Wang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yajing Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Ningbo Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Toomer G, Workman A, Harrison KS, Stayton E, Hoyt PR, Jones C. Stress Triggers Expression of Bovine Herpesvirus 1 Infected Cell Protein 4 (bICP4) RNA during Early Stages of Reactivation from Latency in Pharyngeal Tonsil. J Virol 2022; 96:e0101022. [PMID: 36416585 PMCID: PMC9749472 DOI: 10.1128/jvi.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.
Collapse
Affiliation(s)
- Gabriela Toomer
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Erin Stayton
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Peter R. Hoyt
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Kava R, Peripolli E, Berton MP, Lemos M, Lobo RB, Stafuzza NB, Pereira AS, Baldi F. Genome-wide structural variations in Brazilian Senepol cattle, a tropically adapted taurine breed. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Inhibition of Stress-Induced Viral Promoters by a Bovine Herpesvirus 1 Non-Coding RNA and the Cellular Transcription Factor, β-Catenin. Int J Mol Sci 2021; 22:ijms22020519. [PMID: 33430186 PMCID: PMC7825607 DOI: 10.3390/ijms22020519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to establish, maintain, and reactivate from latency in sensory neurons within trigeminal ganglia (TG) is crucial for bovine herpesvirus 1 (BoHV-1) transmission. In contrast to lytic infection, the only viral gene abundantly expressed during latency is the latency-related (LR) gene. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency, in part because the glucocorticoid receptor (GR) transactivates viral promoters that drive expression of key viral transcriptional regulator proteins (bICP0 and bICP4). Within hours after dexamethasone treatment of latently infected calves, LR gene products and β-catenin are not readily detected in TG neurons. Hence, we hypothesized that LR gene products and/or β-catenin restrict GR-mediated transcriptional activation. A plasmid expressing LR RNA sequences that span open reading frame 2 (ORF2-Stop) inhibited GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) and mouse mammary tumor virus (MMTV) promoter activity in mouse neuroblastoma cells (Neuro-2A). ORF2-Stop also reduced productive infection and GR steady-state protein levels in transfected Neuro-2A cells. Additional studies revealed that the constitutively active β-catenin mutant reduced the transactivation of the IEtu1 promoter by GR and dexamethasone. Collectively, these studies suggest ORF2 RNA sequences and Wnt/β-catenin signaling pathway actively promote maintenance of latency, in part, by impairing GR-mediated gene expression.
Collapse
|
6
|
Camero M, Lanave G, Lucente MS, Losurdo M, Di Paola G, Lorusso E, Martella V, Buonavoglia C, Tempesta M. Bubaline alphaherpesvirus 1 induces a latent/reactivable infection in goats. Comp Immunol Microbiol Infect Dis 2018; 62:54-57. [PMID: 30711046 DOI: 10.1016/j.cimid.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 11/28/2022]
Abstract
Latent infection is a common mechanism used by several alphaherpesviruses to persist in their host but it is not clear whether this mechanism is also triggered in heterologous infections. Cross-species infections have been documented repeatedly for alphaherpesviruses of ruminants, a group of closely related viruses. Herewith we report latent infection with bubaline alphaherpesvirus 1 (BuHV-1) in experimentally infected goats and subsequent virus reactivation after treatment with dexamethasone (DMS) at 10 months after infection. After DMS treatment, the virus was isolated in one such animal in the nasal swabs from day 3 to 9 post treatment and in the ocular swabs at day 6. The goat was euthanized 48 days after DMS treatment and viral DNA was detected by PCR in the trigeminal ganglia and in two cervical ganglia. Additionally, BuHV-1 DNA was detected by PCR in the trigeminal ganglia of the other 3 goats.
Collapse
Affiliation(s)
- M Camero
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - G Lanave
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - M S Lucente
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - M Losurdo
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - G Di Paola
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - E Lorusso
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - V Martella
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - C Buonavoglia
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy
| | - M Tempesta
- Department of Veterinary Medicine, University of Bari, Sp. Casamassima km 3, Valenzano 70010, Italy.
| |
Collapse
|
7
|
Workman A, Zhu L, Keel BN, Smith TPL, Jones C. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency. J Virol 2018; 92:e01937-17. [PMID: 29321317 PMCID: PMC5972910 DOI: 10.1128/jvi.01937-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency.IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. RNA sequencing studies revealed 102 genes associated with the Wnt/β-catenin signaling pathway are differentially regulated during the latency-reactivation cycle. Two protein kinases associated with the Wnt pathway, Akt3 and BMPR2, were expressed at higher levels during latency but were repressed during reactivation. Furthermore, five genes encoding soluble Wnt antagonists and β-catenin-dependent transcription inhibitors were induced during reactivation from latency. These findings are important because Wnt, BMPR2, and Akt3 promote neurogenesis and cell survival, processes crucial for lifelong viral latency. In transfected neuroblastoma cells, a viral protein expressed during latency (ORF2) interacts with and enhances Akt3 protein kinase activity. These findings provide insight into how cellular factors associated with the Wnt signaling pathway cooperate with LR gene products to regulate the BoHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Brittney N Keel
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Potential Role for a β-Catenin Coactivator (High-Mobility Group AT-Hook 1 Protein) during the Latency-Reactivation Cycle of Bovine Herpesvirus 1. J Virol 2017; 91:JVI.02132-16. [PMID: 28003484 DOI: 10.1128/jvi.02132-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to mediate important steps during the latency-reactivation cycle because a mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency in calves. We recently found that the Wnt/β-catenin signaling pathway is regulated during the BoHV-1 latency-reactivation cycle (Y. Liu, M. Hancock, A. Workman, A. Doster, and C. Jones, J Virol 90:3148-3159, 2016). In the present study, a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was detected in significantly more neurons in the trigeminal ganglia of latently infected calves than in those of uninfected calves. Consequently, we hypothesized that HMGA1 cooperates with ORF2 and β-catenin to maintain latency. In support of this hypothesis, coimmunoprecipitation studies demonstrated that ORF2 stably interacts with a complex containing β-catenin and/or HMGA1 in transfected mouse neuroblastoma (Neuro-2A) cells. Confocal microscopy provided evidence that ORF2 was relocalized by HMGA1 and β-catenin in Neuro-2A cells. ORF2 consistently enhanced the ability of HMGA1 to stimulate β-catenin-dependent transcription, suggesting that interactions between ORF2 and a complex containing β-catenin and HMGA1 have functional significance. An ORF2 stop codon mutant, an ORF2 nuclear localization mutant, or a mutant lacking the 5 protein kinase A or C phosphorylation sites interfered with its ability to stimulate β-catenin-dependent transcription. Since the canonical Wnt/β-catenin signaling pathway promotes neurogenesis (synapse formation and remodeling) and inhibits neurodegeneration, interactions between ORF2, HMGA1, and β-catenin may be important for certain aspects of the latency-reactivation cycle.IMPORTANCE The lifelong latency of bovine herpesvirus 1 (BoHV-1) requires that significant numbers of infected sensory neurons survive infection and maintain normal functions. Consequently, we hypothesize that viral products expressed during latency cooperate with neuronal factors to maintain latency. Our studies revealed that a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was readily detected in a subset of trigeminal ganglion neurons in latently infected calves but not in uninfected calves. A viral protein (ORF2) expressed in latently infected neurons interacted with β-catenin and HMGA1 in transfected cells, which resulted in the nuclear localization of β-catenin. This interaction correlated with the ability of ORF2 to stimulate the coactivator functions of HMGA1. These findings are significant because the canonical Wnt/β-catenin signaling pathway promotes neurogenesis and inhibits neurodegeneration.
Collapse
|
9
|
The latency related gene of bovine herpesvirus types 1 and 5 and its modulation of cellular processes. Arch Virol 2016; 161:3299-3308. [DOI: 10.1007/s00705-016-3067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
10
|
Analysis of a bovine herpesvirus 1 protein encoded by an alternatively spliced latency related (LR) RNA that is abundantly expressed in latently infected neurons. Virology 2014; 464-465:244-252. [PMID: 25104616 DOI: 10.1016/j.virol.2014.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 11/21/2022]
Abstract
The bovine herpes virus 1 (BoHV-1) encoded latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. A LR mutant virus with three stop codons at the amino-terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues. ORF2 inhibits apoptosis, interacts with Notch1 or Notch3, and interferes with Notch mediated signaling. Alternative splicing of LR-RNA in trigeminal ganglia yields transcripts that have the potential to encode a protein containing most of ORF2 sequences and parts of other coding sequences located within the LR gene. In this study, we determined that an ORF2 protein fused with reading frame B (15d ORF) was more stable in transfected cells. ORF2 and the 15d ORF stimulated neurite formation in mouse neuroblastoma cells, interfered with Notch3 mediated trans-activation, and had similar DNA binding properties. Increased stability of the 15d ORF is predicted to enhance the establishment of latency.
Collapse
|