1
|
S C Oliveira M, Castro TX, Baez CF, Ramos S, Azevedo GR, de Castro CM, de Paula ACS, Levy LM, do Nascimento EDS, Varella RB. Murine astrovirus (MuAstV) infection in mouse facilities in Brazil: First South American report. Lab Anim 2024:236772241257132. [PMID: 39257337 DOI: 10.1177/00236772241257132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
This study aimed to investigate the presence of murine astrovirus (MuAstV) in Brazil. Fecal samples from mice belonging to four Brazilian animal facilities were collected and tested for MuAstV using real-time polymerase chain reaction. Of the 162 samples tested, 38 (23.5%) were positive for MuAstV, 33 (91.7%) of which came from specific-pathogen free colonies. Although most of the samples were obtained from asymptomatic animals, three mice presented diarrheal symptoms, and MuAstV was the only agent detected by molecular assay. Phylogenetic analysis revealed similarities between the MuAstV strains from this study and prototypes from the USA. MuAstV's high prevalence, environmental stability, genetic diversity and potential for persistent infections must be considered when evaluating health monitoring programs for laboratory rodents.
Collapse
Affiliation(s)
- Marcia S C Oliveira
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | - Tatiana X Castro
- Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Camila F Baez
- Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Simone Ramos
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | - Gabriel R Azevedo
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | - Carolina M de Castro
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | - Ana Clara Ss de Paula
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | - Laura Mb Levy
- Animal Quality Control Service, Institute of Science and Technology in Biomodels, Fiocruz, Brazil
| | | | - Rafael B Varella
- Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Lanning S, Pedicino N, Haley DJ, Hernandez S, Cortez V, DuBois RM. Structure and immunogenicity of the murine astrovirus capsid spike. J Gen Virol 2023; 104:001913. [PMID: 37910165 PMCID: PMC10773150 DOI: 10.1099/jgv.0.001913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Human astroviruses (HAstVs) are small, non-enveloped icosahedral RNA viruses that are a significant cause of diarrhoea in young children. Despite their worldwide prevalence, HAstV pathogenesis studies and vaccine development remain challenging due to the lack of an animal model for HAstV infection. The recent development of a murine astrovirus (MuAstV) infection model in mice provides the opportunity to test proof-of-concept vaccines based on MuAstV antigens. To help establish a system in which an astrovirus capsid spike-based vaccine could be tested in vivo, we designed and produced a recombinant MuAstV capsid spike protein based on predicted secondary structure homology to HAstV spike proteins. The recombinant MuAstV spike can be expressed with high efficiency in Escherichia coli and retains antigenicity to polyclonal antibodies elicited by MuAstV infection. We determined the crystal structure of the MuAstV spike to 1.75 Å and assessed its structural conservation with HAstV capsid spike. Despite low sequence identity between the MuAstV and HAstV spikes and differences in their overall shapes, they share related structural folds. Additionally, we found that vaccination with MuAstV spike induced anti-MuAstV-spike antibodies, highlighting that the recombinant spike is immunogenic. These studies lay a foundation for future in vivo MuAstV challenge studies to test whether MuAstV spike can be the basis of an effective vaccine.
Collapse
Affiliation(s)
- Sarah Lanning
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Natalie Pedicino
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Danielle J. Haley
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Samuel Hernandez
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Valerie Cortez
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
4
|
Cortez V, Livingston B, Sharp B, Hargest V, Papizan JB, Pedicino N, Lanning S, Jordan SV, Gulman J, Vogel P, DuBois RM, Crawford JC, Boyd DF, Pruett-Miller SM, Thomas PG, Schultz-Cherry S. Indoleamine 2,3-dioxygenase 1 regulates cell permissivity to astrovirus infection. Mucosal Immunol 2023; 16:551-562. [PMID: 37290501 PMCID: PMC10528345 DOI: 10.1016/j.mucimm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA.
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Natalie Pedicino
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Sarah Lanning
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Summer Vaughn Jordan
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Jacob Gulman
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Boyd
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Ghosh S, Kumar M, Santiana M, Mishra A, Zhang M, Labayo H, Chibly AM, Nakamura H, Tanaka T, Henderson W, Lewis E, Voss O, Su Y, Belkaid Y, Chiorini JA, Hoffman MP, Altan-Bonnet N. Enteric viruses replicate in salivary glands and infect through saliva. Nature 2022; 607:345-350. [PMID: 35768512 PMCID: PMC9243862 DOI: 10.1038/s41586-022-04895-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Enteric viruses like norovirus, rotavirus and astrovirus have long been accepted as spreading in the population through fecal-oral transmission: viruses are shed into feces from one host and enter the oral cavity of another, bypassing salivary glands (SGs) and reaching the intestines to replicate, be shed in feces and repeat the transmission cycle1. Yet there are viruses (for example, rabies) that infect the SGs2,3, making the oral cavity one site of replication and saliva one conduit of transmission. Here we report that enteric viruses productively and persistently infect SGs, reaching titres comparable to those in the intestines. We demonstrate that enteric viruses get released into the saliva, identifying a second route of viral transmission. This is particularly significant for infected infants, whose saliva directly transmits enteric viruses to their mothers' mammary glands through backflow during suckling. This sidesteps the conventional gut-mammary axis route4 and leads to a rapid surge in maternal milk secretory IgA antibodies5,6. Lastly, we show that SG-derived spheroids7 and cell lines8 can replicate and propagate enteric viruses, generating a scalable and manageable system of production. Collectively, our research uncovers a new transmission route for enteric viruses with implications for therapeutics, diagnostics and importantly sanitation measures to prevent spread through saliva.
Collapse
Affiliation(s)
- S Ghosh
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Kumar
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Santiana
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Mishra
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Labayo
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - H Nakamura
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T Tanaka
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - W Henderson
- Faculty of Nursing, University of Connecticut, Storrs, CT, USA
| | - E Lewis
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - O Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Y Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Y Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Dynamics of the Enteric Virome in a Swine Herd Affected by Non-PCV2/PRRSV Postweaning Wasting Syndrome. Viruses 2021; 13:v13122538. [PMID: 34960807 PMCID: PMC8705478 DOI: 10.3390/v13122538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
A commercial pig farm with no history of porcine circovirus 2 (PCV2) or porcine reproductive and respiratory syndrome virus (PRRSV) repeatedly reported a significant reduction in body weight gain and wasting symptoms in approximately 20–30% of the pigs in the period between three and six weeks after weaning. As standard clinical interventions failed to tackle symptomatology, viral metagenomics were used to describe and monitor the enteric virome at birth, 3 weeks, 4 weeks, 6 weeks, and 9 weeks of age. The latter four sampling points were 7 days, 3 weeks, and 6 weeks post weaning, respectively. Fourteen distinct enteric viruses were identified within the herd, which all have previously been linked to enteric diseases. Here we show that wasting is associated with alterations in the enteric virome of the pigs, characterized by: (1) the presence of enterovirus G at 3 weeks of age, followed by a higher prevalence of the virus in wasting pigs at 6 weeks after weaning; (2) rotaviruses at 3 weeks of age; and (3) porcine sapovirus one week after weaning. However, the data do not provide a causal link between specific viral infections and the postweaning clinical problems on the farm. Together, our results offer evidence that disturbances in the enteric virome at the preweaning stage and early after weaning have a determining role in the development of intestinal barrier dysfunctions and nutrient uptake in the postweaning growth phase. Moreover, we show that the enteric viral load sharply increases in the week after weaning in both healthy and wasting pigs. This study is also the first to report the dynamics and co-infection of porcine rotavirus species and porcine astrovirus genetic lineages during the first 9 weeks of the life of domestic pigs.
Collapse
|
7
|
Morita H, Yasuda M, Yamamoto M, Tomiyama Y, Uchida R, Ka Y, Ogura T, Kawai K, Suemizu H, Hayashimoto N. Pathogenesis of murine astrovirus in experimentally infected mice. Exp Anim 2021; 70:355-363. [PMID: 33828018 PMCID: PMC8390316 DOI: 10.1538/expanim.20-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Astroviruses are often associated with gastrointestinal diseases in mammals and birds. Murine astrovirus (MuAstV) is frequently detected in laboratory mice. Previous studies on MuAstV in mice did not report any symptoms or lesions. However, little information is available regarding its pathogenicity in immunodeficient mice. Therefore, in this study, we experimentally infected germ-free NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic (NOG) mice, which are severely immunodeficient, with MuAstV. Germ-free mice were used for experimental infection to eliminate the effects of intestinal bacteria. Mice in each group were then necropsied and subjected to PCR for MuAstV detection, MuAstV RNA quantification in each organ, and histopathological examination at 4 and 28 days post inoculation (DPI). Tissue samples from the small intestine were examined by transmission electron microscopy. No symptoms or abnormalities were detected in any mice during necropsy. The MuAstV concentration was highest in the lower small intestine, where it increased approximately 8-fold from 4 to 28 DPI. Transmission electron microscopy revealed circular virus particles of approximately 25 nm in diameter in the cytoplasm of the villous epithelial cells of the lower small intestine. Histopathological examination did not reveal any abnormalities, such as atrophy, in the intestinal villi. Our results suggest that MuAstV proliferates in the villous epithelial cells of the lower small intestine and has weak pathogenicity.
Collapse
Affiliation(s)
- Hanako Morita
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masahiko Yasuda
- Pathology Analysis Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yurina Tomiyama
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ritsuki Uchida
- JAC Inc., No. 44 Kouwa building, 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-0043, Japan
| | - Yuyo Ka
- Animal Resource Technology Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Animal Resource Technology Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Pathology Analysis Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuhito Hayashimoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
8
|
Su CM, Cheng YC, Wang HY, Hsieh CH, Wan CH. The origin and past demography of murine astrovirus 1 in laboratory mice. J Gen Virol 2021; 102. [PMID: 33206033 DOI: 10.1099/jgv.0.001520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astroviruses are non-enveloped, positive-sense, ssRNA viruses and often associated with gastrointestinal diseases. Murine astrovirus (MuAstV) was first confirmed in a laboratory mouse colony in 2011. Although infected mice do not present significant clinical symptoms, the virus might interfere with research results. A recent surveillance has shown that MuAstV is highly prevalent in laboratory mice. The aims of the present study were to identify and characterize MuAstV strains as well as to investigate the prevalence rate of viral RNA in laboratory mice in Taiwan, and to estimate the origin and past population demography of MuAstVs. Based on molecular surveillance, MuAstV RNA was detected in 45.7 % of laboratory mice (48/105) from seven of nine colonies. Three fully sequenced MuAstV strains, MuAstV TW1, TW2 and TW3, exhibited 89.1-94.4 % and 89.1-90.0 % nucleotide identities with the reference strains MuAstV STL1 and STL2, respectively. Phylogenetic analyses of the partial regions of the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) genes of 18 Taiwan strains along with other astroviruses revealed that there are three distinct lineages of mouse astrovirus, MuAstV1, MuAstV2 and mouse astrovirus JF755422. The mutation rates of MuAstV1 were 2.6×10-4 and 6.2×10-4 substitutions/site/year for the RdRp and CP regions, respectively. Based on the above molecular clock, the colonization of MuAstV1 in laboratory mice was between 1897 and 1912, in good agreement with the establishment of 'modern' laboratory mouse facilities. Since its initial infection, the population size of MuAstV1 has increased 15-60-fold, probably consistent with the increased use of laboratory mice. In conclusion, MuAstV1 has been associated with modern laboratory mice since the beginning, and its influence on research results may require further investigation.
Collapse
Affiliation(s)
- Chia-Ming Su
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ying-Chien Cheng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hurng-Yi Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung San South Road, Taipei 10002, Taiwan, ROC
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, No. 55, Hwa Kang Road, Yang-Ming-Shan, Taipei, Taiwan, ROC
| | - Cho-Hua Wan
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| |
Collapse
|
9
|
Dallari S, Heaney T, Rosas-Villegas A, Neil JA, Wong SY, Brown JJ, Urbanek K, Herrmann C, Depledge DP, Dermody TS, Cadwell K. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 2021; 29:1014-1029.e8. [PMID: 33894129 PMCID: PMC8192460 DOI: 10.1016/j.chom.2021.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.
Collapse
Affiliation(s)
- Simone Dallari
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Heaney
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Rosas-Villegas
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jessica A Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Serre-Yu Wong
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biology, Trevecca Nazarene University, Nashville, TN, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel P Depledge
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Aggarwal S, Hassan E, Baldridge MT. Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses 2021; 13:975. [PMID: 34070283 PMCID: PMC8225081 DOI: 10.3390/v13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Every year, millions of children are infected with viruses that target the gastrointestinal tract, causing acute gastroenteritis and diarrheal illness. Indeed, approximately 700 million episodes of diarrhea occur in children under five annually, with RNA viruses norovirus, rotavirus, and astrovirus serving as major causative pathogens. Numerous methodological advancements in recent years, including the establishment of novel cultivation systems using enteroids as well as the development of murine and other animal models of infection, have helped provide insight into many features of viral pathogenesis. However, many aspects of enteric viral infections remain elusive, demanding further study. Here, we describe the different in vitro and in vivo tools available to explore different pathophysiological attributes of human enteric RNA viruses, highlighting their advantages and limitations depending upon the question being explored. In addition, we discuss key areas and opportunities that would benefit from further methodological progress.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Human Astrovirus 1-8 Seroprevalence Evaluation in a United States Adult Population. Viruses 2021; 13:v13060979. [PMID: 34070419 PMCID: PMC8229645 DOI: 10.3390/v13060979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1-8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. This work is the first seroprevalence study evaluating all eight classical human astrovirus serotypes.
Collapse
|
12
|
Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol 2021; 14:751-761. [PMID: 33674763 PMCID: PMC8085034 DOI: 10.1038/s41385-021-00387-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Although they globally cause viral gastroenteritis in children, astroviruses are understudied due to the lack of well-defined animal models. While murine astroviruses (muAstVs) chronically infect immunodeficient mice, a culture system and understanding of their pathogenesis is lacking. Here, we describe a platform to cultivate muAstV using air-liquid interface (ALI) cultures derived from mouse enteroids, which support apical infection and release. Chronic muAstV infection occurs predominantly in the small intestine and correlates with higher interferon-lambda (IFN-λ) expression. MuAstV stimulates IFN-λ production in ALI, recapitulating our in vivo findings. We demonstrate that goblet cells and enterocytes are targets for chronic muAstV infection in vivo, and that infection is enhanced by parasite co-infection or type 2 cytokine signaling. Depletion of goblet cells from ALI limits muAstV infection in vitro. During chronic infection, muAstV stimulates IFN-λ production in infected cells and induces ISGs throughout the intestinal epithelium in an IFN-λ-receptor-dependent manner. Collectively, our study provides insights into the cellular tropism and innate immune responses to muAstV and establishes an enteroid-based culture system to propagate muAstV in vitro.
Collapse
|
13
|
Beyond the Gastrointestinal Tract: The Emerging and Diverse Tissue Tropisms of Astroviruses. Viruses 2021; 13:v13050732. [PMID: 33922259 PMCID: PMC8145421 DOI: 10.3390/v13050732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Astroviruses are single stranded, positive-sense RNA viruses that have been historically associated with diseases of the gastrointestinal tract of vertebrates, including humans. However, there is now a multitude of evidence demonstrating the capacity of these viruses to cause extraintestinal diseases. The most striking causal relationship is neurological diseases in humans, cattle, pigs, and other mammals, caused by astrovirus infection. Astroviruses have also been associated with disseminated infections, localized disease of the liver or kidneys, and there is increasing evidence suggesting a potential tropism to the respiratory tract. This review will discuss the current understanding of the tissue tropisms for astroviruses and their emerging capacity to cause disease in multiple organ systems.
Collapse
|
14
|
Abstract
The lumen of the gastrointestinal tract harbors a diverse community of microbes, fungi, archaea, and viruses. In addition to occupying the same enteric niche, recent evidence suggests that microbes and viruses can act synergistically and, in some cases, promote disease. In this review, we focus on the disease-promoting interactions of the gut microbiota and rotavirus, norovirus, poliovirus, reovirus, and astrovirus. Microbes and microbial compounds can directly interact with viruses, promote viral fitness, alter the glycan structure of viral adhesion sites, and influence the immune system, among other mechanisms. These interactions can directly and indirectly affect viral infection. By focusing on microbe–virus interplay, we hope to identify potential strategies for targeting offending microbes and minimizing viral infection.
Collapse
|
15
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
16
|
Ricart Arbona RJ, Kelly S, Wang C, Dhawan RK, Henderson KS, Shek WR, Williams SH, Altan E, Delwart E, Wolf F, Lipman NS. Serendipitous Discovery of a Novel Murine Astrovirus Contaminating a Murine Helper T-cell Line and Incapable of Infecting Highly Immunodeficient Mice. Comp Med 2020; 70:359-369. [PMID: 32674749 PMCID: PMC7446642 DOI: 10.30802/aalas-cm-19-000106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 11/05/2022]
Abstract
The unexpected seroconversion of sentinel mice in our facility to murine T lymphotrophic virus (MTLV) positivity led to our identification of a novel murine astrovirus that we designated murine astrovirus 2 (MuAstV-2). During our investigation, MuAstV-2 was found to be a contaminant of the T helper cell line (D10. G4.1) that was used to generate the MTLV antigen that we included in the multiplex fluorometric immunoassay (MFIA) that we used for sentinel screening. We eventually determined that cross-reactivity with the astrovirus generated a positive result in the MTLV assay. A confirmatory immunofluorometric assay (IFA) using the same MTLV-infected cell line yielded a similar result. However, the use of antigen prepared from MTLV-infected neonatal mouse thymus did not reproduce a positive result, leading us to suspect that the seroreactivity we had observed was not due to infection with MTLV. A mouse antibody production test showed that mice inoculated with naïve D10. G4.1 cells and their contact sentinels tested positive for MTLV using cell-line generated antigen, but tested negative in assays using MTLV antigen produced in mice. Metagenomic analysis was subsequently used to identify MuAstV-2 in feces from 2 sentinel mice that had recently seroconverted to MTLV. Two closely related astrovirus sequences (99.6% capsid identity) were obtained and shared 95% capsid amino acid identity with the MuAstV-2 virus sequenced from the D10. G4.1 cell line. These viruses are highly divergent from previously identified murine astroviruses, displaying <30% capsid identity, yet were closely related to murine astrovirus 2 (85% capsid identity), which had recently been isolated from feral mice in New York City. A MuAstV-2 specific PCR assay was developed and used to eradicate MuAstV-2 from the infected colony using a test and cull strategy. The newly identified MuAstV2 readily transmits to immunocompetent mouse strains by fecal-oral exposure, but fails to infect NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl (NCG) mice, which have significantly impaired adaptive and innate immune systems. Neither immunocompetent nor immunodeficient mice showed any astrovirus-associated pathology. MuAstV-2 may provide a valuable model for the study of specific aspects of astrovirus pathogenesis and virus-host interactions.
Collapse
Key Words
- ifa, immunofluorescent assay
- lab 1, 2: laboratory 1, 2
- mfia, multiplexed fluorometric immunoassay
- mtlv, murine t lymphotrophic virus
- muastv, murine astrovirus
- muastv-2, murine astrovirus 2
- mulv, murine leukemia virus
- ncg, nod-prkdcem26cd52il2rgem26cd22/njucrl
- nsg, nod.cg-prkdcscid il2rgtm1wjl/szj
- v1, v2, v3: vivarium 1, 2, 3
Collapse
Affiliation(s)
- Rodolfo J Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York;,
| | - Sean Kelly
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Chuanwu Wang
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Rajeev K Dhawan
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Kenneth S Henderson
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - William R Shek
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Simon H Williams
- Center for Infection and Immunity, Columbia University, New York, New York
| | - Eda Altan
- Vitalant Research Institute, San Francisco, California; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, California; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Felix Wolf
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Neil S Lipman
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Cortez V, Boyd DF, Crawford JC, Sharp B, Livingston B, Rowe HM, Davis A, Alsallaq R, Robinson CG, Vogel P, Rosch JW, Margolis E, Thomas PG, Schultz-Cherry S. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat Commun 2020; 11:2097. [PMID: 32350281 PMCID: PMC7190700 DOI: 10.1038/s41467-020-15999-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization. These studies establish the main target cell type and region of the gut for productive murine astrovirus infection. They further define a mechanism by which an enteric virus can regulate the mucus barrier, induce functional changes to commensal microbial communities, and alter host susceptibility to pathogenic bacteria.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hannah M Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy Davis
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ramzi Alsallaq
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elisa Margolis
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Astrovirus and the microbiome. Curr Opin Virol 2019; 37:10-15. [PMID: 31163291 DOI: 10.1016/j.coviro.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Although astroviruses are most commonly associated with acute gastrointestinal illness in humans, their ability to infect a broad range of hosts and cause a spectrum of disease makes them widespread and complex pathogens. The precise mechanisms that dictate the course of astrovirus disease have not been studied extensively but are likely driven by multifactorial host-microbe interactions. Recent insights from studies of animal astrovirus infections have revealed both beneficial and detrimental effects for the host. However, further in-depth studies are needed to fully explore the consequences of astrovirus-induced changes in the gut microenvironment as well as the role of the microbiota in astrovirus infection.
Collapse
|