1
|
Jiang B, Cao M, Zhou L, Zhen H, Cheng J, Jinqiang C, Liu W, Li Y. Transcriptomic analysis reveals bovine herpesvirus 1 infection regulates innate immune response resulted in restricted viral replication in neuronal cells. Microb Pathog 2024; 195:106896. [PMID: 39208957 DOI: 10.1016/j.micpath.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bovine herpesvirus 1 (BoHV-1) is a major pathogen that affects the global bovine population, primarily inducing respiratory and reproductive disorders. Its ability to establish latent infections in neuronal cells and to reactivate under certain conditions poses a continual threat to uninfected hosts. In this study, we aimed to analyze the replication characteristics of BoHV-1 in neuronal cells, as well as the effects of viral replication on host cell immunity and physiology. METHODS Using the Neuro-2a neuronal-origin cell line as a model, we explored the dynamics of BoHV-1 replication and analyzed differential gene expression profiles post-BoHV-1 infection using high-throughput RNA sequencing. RESULTS BoHV-1 demonstrated restricted replication in Neuro-2a cells. BoHV-1 induced apoptotic pathways and enhanced the transcription of interferon-stimulated genes and interferon regulatory factors while suppressing the complement cascade in Neuro-2a cells. CONCLUSIONS Different from BoHV-1 infection in other non-highly differentiated somatic cells result in viral dominance, BoHV-1 regulated the innate immune response in neuronal cells formed a "virus-nerve cell" relative equilibrium state, which may account for the restricted replication of BoHV-1 in neuronal cells, leading to a latent infection. These findings provide a foundation for further research into the mechanism underlying BoHV-1-induced latent infection in nerve cells.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Hongyue Zhen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Northeast Forestry University, Heilongjiang, 150000, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Cui Jinqiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Araujo IL, Piraine REA, Fischer G, Leite FPL. Recombinant BoHV-5 glycoprotein (rgD5) elicits long-lasting protective immunity in cattle. Virology 2023; 584:44-52. [PMID: 37244054 DOI: 10.1016/j.virol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
BoHV-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant gD5, we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, induce long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the Bcl6 and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers. In addition, using an in-house indirect ELISA we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of IL2, IL4, IL10, IL15, and IFN-γ in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization protects against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of herpesviruses.
Collapse
Affiliation(s)
- Itauá L Araujo
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Renan E A Piraine
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio P L Leite
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|
4
|
Graul M, Kisielnicka E, Rychłowski M, Verweij MC, Tobler K, Ackermann M, Wiertz EJHJ, Bieńkowska-Szewczyk K, Lipińska AD. Transmembrane regions of bovine herpesvirus 1-encoded UL49.5 and glycoprotein M regulate complex maturation and ER-Golgi trafficking. J Gen Virol 2019; 100:497-510. [PMID: 30694168 DOI: 10.1099/jgv.0.001224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1)-encoded UL49.5 (a homologue of herpesvirus glycoprotein N) can combine different functions, regulated by complex formation with viral glycoprotein M (gM). We aimed to identify the mechanisms governing the immunomodulatory activity of BoHV-1 UL49.5. In this study, we addressed the impact of gM/UL49.5-specific regions on heterodimer formation, folding and trafficking from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) - events previously found to be responsible for abrogation of the UL49.5-mediated inhibition of the transporter associated with antigen processing (TAP). We first established, using viral mutants, that no other viral protein could efficiently compensate for the chaperone function of UL49.5 within the complex. The cytoplasmic tail of gM, containing putative trafficking signals, was dispensable either for ER retention of gM or for the release of the complex. We constructed cell lines with stable co-expression of BoHV-1 gM with chimeric UL49.5 variants, composed of the BoHV-1 N-terminal domain fused to the transmembrane region (TM) from UL49.5 of varicella-zoster virus or TM and the cytoplasmic tail of influenza virus haemagglutinin. Those membrane-anchored N-terminal domains of UL49.5 were sufficient to form a complex, yet gM/UL49.5 folding and ER-TGN trafficking could be affected by the UL49.5 TM sequence. Finally, we found that leucine substitutions in putative glycine zipper motifs within TM helices of gM resulted in strong reduction of complex formation and decreased ability of gM to interfere with UL49.5-mediated major histocompatibility class I downregulation. These findings highlight the importance of gM/UL49.5 transmembrane domains for the biology of this conserved herpesvirus protein complex.
Collapse
Affiliation(s)
- Małgorzata Graul
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Edyta Kisielnicka
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Rychłowski
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marieke C Verweij
- 2Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kurt Tobler
- 3Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Emmanuel J H J Wiertz
- 4Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Krystyna Bieńkowska-Szewczyk
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Araujo IL, Dummer LA, Rodrigues PRC, Dos Santos AG, Fischer G, Cunha RC, Leite FPL. Immune responses in bovines to recombinant glycoprotein D of bovine herpesvirus type 5 as vaccine antigen. Vaccine 2018; 36:7708-7714. [PMID: 30381153 DOI: 10.1016/j.vaccine.2018.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022]
Abstract
Bovine herpesvirus 5 (BoHV-5) is responsible for outbreaks of meningoencephalitis that cause important economic losses in young cattle. BoHV-5 glycoprotein D (gD5) is essential for attachment and penetration into permissive cells and targeting of host immune systems, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate the vaccinal immune response of vaccines formulated with the recombinant BoHV-5 gD (rgD5) in bovines. For the experiment, 72 heifers were randomly allotted into 6 different groups with 12 animals each. Group 1: vaccine formulated using inactivated BoHV-5 (iBoHV-5) adjuvanted with ISA50V2; Group 2: iBoHV-5 associated with 100 µg of rgD5 adjuvanted with ISA50V2; Group 3: 100 µg of rgD5 adjuvanted with ISA50V2; Group 4: 100 µg of rgD5 adjuvanted with Al(OH)3; Group 5: commercial vaccine; and Group 6: control group. Two doses were administered in a 26-day interval and the third after 357 days from primo vaccination. Cattle vaccinated with the vaccines formulated with iBoHV-5 plus rgD5 showed a significant (p < 0.01) five-fold increase in total immunoglobulin G (IgG) for BoHV-5, BoHV-1, and rgD5 as compared with the commercial and control groups. Also, a significant (p < 0.05) increase in IgG1 and IgG2a levels was induced in serum for rgD5. In addition, these same vaccines showed significant (p < 0.01) four-fold higher titers of BoHV-1 and -5 neutralizing antibodies. The results demonstrated that the rgD5 conserved important epitopes that were able to stimulate bovine humoral immunity response capable of viral neutralization of BoHV-1 and -5, suggesting it as a promising vaccine antigen to be used in vaccine for BoHV-1 and -5 endemic areas.
Collapse
Affiliation(s)
- Itauá Leston Araujo
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Paulo Ricardo Centeno Rodrigues
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Alceu Gonçalves Dos Santos
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Geferson Fischer
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Rodrigo Casquero Cunha
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| |
Collapse
|
6
|
Azab W, Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:1-27. [PMID: 28528437 DOI: 10.1007/978-3-319-53168-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry process of herpesviruses into host cells is complex and highly variable. It involves a sequence of well-orchestrated events that begin with virus attachment to glycan-containing proteinaceous structures on the cell surface. This initial contact tethers virus particles to the cell surface and results in a cascade of molecular interactions, including the tight interaction of viral envelope glycoproteins to specific cell receptors. These interactions trigger intracellular signaling and finally virus penetration after fusion of the viral envelope with cellular membranes. Based on the engaged cellular receptors and co-receptors, and the subsequent signaling cascades, the entry pathway will be decided on the spot. A number of viral glycoproteins and many cellular receptors and molecules have been identified as players in one or several of these events during virus entry. This chapter will review viral glycoproteins, cellular receptors and signaling cascades associated with the very first interactions of herpesviruses with their target cells.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
7
|
Dummer LA, Araujo IL, Campos FS, da Rosa MC, Finger PF, de Oliveira PD, Conceição FR, Fischer G, Roehe PM, Leite FPL. Development of an Indirect ELISA for Serological Diagnosis of Bovine herpesvirus 5. PLoS One 2016; 11:e0149134. [PMID: 26866923 PMCID: PMC4750905 DOI: 10.1371/journal.pone.0149134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
Bovine herpesviruses 1 and 5 (BoHV-1 and BoHV-5) are economically important pathogens, associated with a variety of clinical syndromes, including respiratory and genital disease, reproductive failure and meningoencephalitis. The standard serological assay to diagnose BoHV-1 and BoHV-5 infections is the virus neutralization test (VNT), a time consuming procedure that requires manipulation of infectious virus. In the present study a highly sensitive and specific single dilution indirect ELISA was developed using recombinant glycoprotein D from BoHV-5 as antigen (rgD5ELISA). Bovine serum samples (n = 450) were screened by VNT against BoHV-5a and by rgD5ELISA. Compared with the VNT, the rgD5ELISA demonstrated accuracy of 99.8%, with 100% sensitivity, 96.7% specificity and coefficient of agreement between the tests of 0.954. The rgD5ELISA described here shows excellent agreement with the VNT and is shown to be a simple, convenient, specific and highly sensitive virus-free assay for detection of serum antibodies to BoHV-5.
Collapse
Affiliation(s)
- Luana A. Dummer
- Laboratório de Bacteriologia, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Itauá L. Araujo
- Laboratório de Bacteriologia, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabrício S. Campos
- Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus C. da Rosa
- Laboratório de Bacteriologia, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Paula F. Finger
- Laboratório de Imunologia Aplicada, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Patricia D. de Oliveira
- Laboratório de Bacteriologia, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabricio R. Conceição
- Laboratório de Imunologia Aplicada, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Geferson Fischer
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Paulo M. Roehe
- Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Fundação Estadual de Pesquisa Agropecuária, Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Fábio P. L. Leite
- Laboratório de Bacteriologia, Centro de Desenvolvimento Tecnológico - Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- * E-mail:
| |
Collapse
|
8
|
Virus, strain, and epitope specificities of neutralizing bovine monoclonal antibodies to bovine herpesvirus 1 glycoproteins gB, gC, and gD, with sequence and molecular model analysis. Vet Immunol Immunopathol 2015; 164:179-93. [DOI: 10.1016/j.vetimm.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
|
9
|
Work TM, Dagenais J, Balazs GH, Schettle N, Ackermann M. Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis. Vet Pathol 2014; 52:1195-201. [PMID: 25445320 DOI: 10.1177/0300985814560236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.
Collapse
Affiliation(s)
- T M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - J Dagenais
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - G H Balazs
- NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, HI, USA
| | - N Schettle
- Institute of Virology, University of Zurich, Switzerland
| | - M Ackermann
- Institute of Virology, University of Zurich, Switzerland
| |
Collapse
|
10
|
Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014; 45:111. [PMID: 25359626 PMCID: PMC4252008 DOI: 10.1186/s13567-014-0111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Sylvia van Drunen Littel-van den Hurk
- Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| |
Collapse
|
11
|
Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 2014; 32:2413-9. [PMID: 24657716 DOI: 10.1016/j.vaccine.2014.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 11/23/2022]
Abstract
Glycoprotein D (gD) is essential for attachment and penetration of Bovine herpesvirus 5 (BoHV-5) into permissive cells, and is a major target of the host immune system, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate in mice the immunogenicity of recombinant BoHV-5 gD (rgD5) expressed in Pichia pastoris. Vaccines formulated with rgD5 alone or adjuvanted with Montanide 50 ISA V2; Emulsigen or Emulsigen-DDA was administered intramuscularly or subcutaneously. Almost all formulations stimulated a humoral immune response after the first inoculation. The only exception was observed when the rgD5 was administered subcutaneously without adjuvant, in this case, the antibodies were observed after three doses. Higher titers of neutralizing antibodies were obtained with the three oil-based adjuvant formulations when compared to non-adjuvanted vaccine formulations. The rgD5 vaccine stimulated high mRNA expression levels of Th1 (INF-γ) and pro-inflammatory cytokines (IL-17, GM-CSF). The results demonstrated that the recombinant gD from BoHV-5 conserved important epitopes for viral neutralization from native BoHV-5 gD and was able to elicit mixed Th1/Th2 immune response in mice.
Collapse
|
12
|
Traesel CK, Sá e Silva M, Weiss M, Spilki FR, Weiblen R, Flores EF. Genetic diversity of 3' region of glycoprotein D gene of bovine herpesvirus 1 and 5. Virus Genes 2014; 48:438-47. [PMID: 24482291 DOI: 10.1007/s11262-014-1040-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/12/2014] [Indexed: 11/28/2022]
Abstract
Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) are closely related alphaherpesviruses of cattle. While BoHV-1 is mainly associated with respiratory/genital disease and rarely associated with neurological disease, BoHV-5 is the primary agent of meningoencephalitis in cattle. The envelope glycoprotein D of alphaherpesviruses (BoHV-1/gD1 and BoHV-5/gD5) is involved in the early steps of virus infection and may influence virus tropism and neuropathogenesis. This study performed a sequence analysis of the 3' region of gD gene (gD3') of BoHV-1 isolates recovered from respiratory/genital disease (n = 6 and reference strain Cooper) or from neurological disease (n = 7); and from seven typical neurological BoHV-5 isolates. After PCR amplification, nucleotide (nt) sequencing, and aminoacid (aa) sequence prediction; gD3' sequences were compared, identity levels were calculated, and selective pressure was analyzed. The phylogenetic reconstruction based on nt and aa sequences allowed for a clear differentiation of BoHV-1 (n = 14) and BoHV-5 (n = 7) clusters. The seven BoHV-1 isolates from neurological disease are grouped within the BoHV-1 branch. A consistent alignment of 346 nt revealed a high similarity within each viral species (gD1 = 98.3 % nt and aa; gD5 = 97.8 % nt and 85.8 % aa) and an expected lower similarity between gD1 and gD5 (73.7 and 64.1 %, nt and aa, respectively). The analysis of molecular evolution revealed an average negative selection at gD3'. Thus, the phylogeny and similarity levels allowed for differentiation of BoHV-1 and BoHV-5 species, but not further division in subspecies. Sequence analysis did not allow for the identification of genetic differences in gD3' potentially associated with the respective clinical/pathological phenotypes, yet revealed a lower level of gD3' conservation than previously reported.
Collapse
Affiliation(s)
- Carolina Kist Traesel
- Laboratoire des Maladies Infectieuses Virales Vétérinaires (LMIVV), Département de Pathologie et Microbiologie, Faculté de Médicine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint Hyacinthe, QC, J2S 7C6, Canada,
| | | | | | | | | | | |
Collapse
|
13
|
Ackermann M, Koriabine M, Hartmann-Fritsch F, de Jong PJ, Lewis TD, Schetle N, Work TM, Dagenais J, Balazs GH, Leong JAC. The genome of Chelonid herpesvirus 5 harbors atypical genes. PLoS One 2012; 7:e46623. [PMID: 23056373 PMCID: PMC3462797 DOI: 10.1371/journal.pone.0046623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
The Chelonid fibropapilloma-associated herpesvirus (CFPHV; ChHV5) is believed to be the causative agent of fibropapillomatosis (FP), a neoplastic disease of marine turtles. While clinical signs and pathology of FP are well known, research on ChHV5 has been impeded because no cell culture system for its propagation exists. We have cloned a BAC containing ChHV5 in pTARBAC2.1 and determined its nucleotide sequence. Accordingly, ChHV5 has a type D genome and its predominant gene order is typical for the varicellovirus genus within the alphaherpesvirinae. However, at least four genes that are atypical for an alphaherpesvirus genome were also detected, i.e. two members of the C-type lectin-like domain superfamily (F-lec1, F-lec2), an orthologue to the mouse cytomegalovirus M04 (F-M04) and a viral sialyltransferase (F-sial). Four lines of evidence suggest that these atypical genes are truly part of the ChHV5 genome: (1) the pTARBAC insertion interrupted the UL52 ORF, leaving parts of the gene to either side of the insertion and suggesting that an intact molecule had been cloned. (2) Using FP-associated UL52 (F-UL52) as an anchor and the BAC-derived sequences as a means to generate primers, overlapping PCR was performed with tumor-derived DNA as template, which confirmed the presence of the same stretch of “atypical” DNA in independent FP cases. (3) Pyrosequencing of DNA from independent tumors did not reveal previously undetected viral sequences, suggesting that no apparent loss of viral sequence had happened due to the cloning strategy. (4) The simultaneous presence of previously known ChHV5 sequences and F-sial as well as F-M04 sequences was also confirmed in geographically distinct Australian cases of FP. Finally, transcripts of F-sial and F-M04 but not transcripts of lytic viral genes were detected in tumors from Hawaiian FP-cases. Therefore, we suggest that F-sial and F-M04 may play a role in FP pathogenesis.
Collapse
|
14
|
Campos FS, Dezen D, Antunes DA, Santos HF, Arantes TS, Cenci A, Gomes F, Lima FES, Brito WMED, Filho HCK, Batista HBCR, Spilki FR, Franco AC, Rijsewijk FAM, Roehe PM. Efficacy of an inactivated, recombinant bovine herpesvirus type 5 (BoHV-5) vaccine. Vet Microbiol 2010; 148:18-26. [PMID: 20828945 DOI: 10.1016/j.vetmic.2010.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/25/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022]
Abstract
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9(-)), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 10(7.69) TCID(50)/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 10(9.25) TCID(50) of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly lower in vaccinated calves than in the control group on days 2, 3, 4 and 6 post-challenge (pc). In addition, the duration of virus shedding was significantly shorter in the vaccinated (7 days) than in controls (12 days). Attempts to reactivate latent infection by administration of dexamethasone at 147 days pv led to recrudescence of mild signs of respiratory disease in both vaccinated and control groups. Infectious virus shedding in nasal secretions was detected at reactivation and was significantly lower in vaccinated cattle than in controls on days 11-13 post-reactivation (pr). It is concluded that the inactivated vaccine prepared with the BoHV-5 gI/gE/US9(-) recombinant was capable of conferring protection to encephalitis when vaccinated cattle were challenged with a large infectious dose of the parental wild type BoHV-5. However, it did not avoid the establishment of latency nor impeded dexamethasone-induced reactivation of the virus, despite a significant reduction in virus shedding after challenge and at reactivation on vaccinated calves.
Collapse
Affiliation(s)
- F S Campos
- Virology Laboratory, Microbiology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500, Porto Alegre, CEP 90050-170, Rio Grande do Sul (RS), Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|