1
|
Li H, Lee CY, Delecluse HJ. Epstein-Barr virus lytic replication and cancer. Curr Opin Virol 2024; 70:101438. [PMID: 39700641 DOI: 10.1016/j.coviro.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Epidemiological studies have provided strong evidence that Epstein-Barr virus (EBV) lytic replication is linked to cancer development. Evidence of abortive lytic replication in some tumors and infections with recombinant viruses incapable of lytic replication in animal models have reinforced this view. Furthermore, multiple lytic proteins have been shown to induce genetic instability, a well-characterized precancerous state. In particular, lytic proteins dysregulated the DNA damage response, interfered with cell cycle progression, and induced the development of structural genetic abnormalities. However, there is so far no direct evidence from in vivo or in vitro studies that lytic replication alone can induce cancer. Here, we critically review the currently available evidence that EBV lytic replication contributes to cancer development and suggest future research directions.
Collapse
Affiliation(s)
- Hao Li
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany
| | - Chih-Ying Lee
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany.
| |
Collapse
|
2
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
3
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
4
|
Collin V, Biquand É, Tremblay V, Lavoie ÉG, Blondeau A, Gravel A, Galloy M, Lashgari A, Dessapt J, Côté J, Flamand L, Fradet-Turcotte A. The immediate-early protein 1 of human herpesvirus 6B interacts with NBS1 and inhibits ATM signaling. EMBO Rep 2024; 25:725-744. [PMID: 38177923 PMCID: PMC10897193 DOI: 10.1038/s44319-023-00035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Élise Biquand
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
- INSERM, Centre d'Étude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Tours, France
| | - Vincent Tremblay
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Élise G Lavoie
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Andréanne Blondeau
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Maxime Galloy
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Anahita Lashgari
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Julien Dessapt
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Jacques Côté
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Louis Flamand
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Amélie Fradet-Turcotte
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada.
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada.
| |
Collapse
|
5
|
Studstill CJ, Mac M, Moody CA. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. Tumour Virus Res 2023; 16:200272. [PMID: 37918513 PMCID: PMC10685005 DOI: 10.1016/j.tvr.2023.200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.
Collapse
Affiliation(s)
- Caleb J Studstill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Cary A Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
6
|
Liao LJ, Hsu WL, Chen CJ, Chiu YL. Feature Reviews of the Molecular Mechanisms of Nasopharyngeal Carcinoma. Biomedicines 2023; 11:1528. [PMID: 37371623 DOI: 10.3390/biomedicines11061528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is rare in most parts of the world but endemic in southern Asia. Here, we describe the molecular abnormalities in NPC and point out potential molecular mechanisms for future therapy. This article provides a brief up-to-date review focusing on the molecular pathways of NPC, which may improve our knowledge of this disease, and we also highlight some issues for further research. In brief, some heritable genes are related to NPC; therefore, people with a family history of NPC have an increased risk of this disease. Carcinogenic substances and Epstein-Barr virus (EBV) exposure both contribute to tumorigenesis through the accumulation of multiple genomic changes. In recent years, salted fish intake has decreased the impact on NPC, which implies that changing exposure to carcinogens can modify the risk of NPC. Eradication of cancer-associated viruses potentially eradicates cancer, and EBV vaccines might also prevent this disease in the future. Screening patients by using an EBV antibody is feasible in the high-risk group; plasma EBV DNA measurement could also be conducted for screening, prognosis, and monitoring of this disease. Understanding the molecular mechanisms of NPC can further provide novel information for health promotion, disease screening, and precision cancer treatment.
Collapse
Affiliation(s)
- Li-Jen Liao
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data Analysis in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
7
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
8
|
Dorothea M, Xie J, Yiu SPT, Chiang AKS. Contribution of Epstein–Barr Virus Lytic Proteins to Cancer Hallmarks and Implications from Other Oncoviruses. Cancers (Basel) 2023; 15:cancers15072120. [PMID: 37046781 PMCID: PMC10093119 DOI: 10.3390/cancers15072120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is a prevalent human gamma-herpesvirus that infects the majority of the adult population worldwide and is associated with several lymphoid and epithelial malignancies. EBV displays a biphasic life cycle, namely, latent and lytic replication cycles, expressing a diversity of viral proteins. Among the EBV proteins being expressed during both latent and lytic cycles, the oncogenic roles of EBV lytic proteins are largely uncharacterized. In this review, the established contributions of EBV lytic proteins in tumorigenesis are summarized according to the cancer hallmarks displayed. We further postulate the oncogenic properties of several EBV lytic proteins by comparing the evolutionary conserved oncogenic mechanisms in other herpesviruses and oncoviruses.
Collapse
Affiliation(s)
- Mike Dorothea
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia Xie
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
G 1/S Cell Cycle Induction by Epstein-Barr Virus BORF2 Is Mediated by P53 and APOBEC3B. J Virol 2022; 96:e0066022. [PMID: 36069545 PMCID: PMC9517719 DOI: 10.1128/jvi.00660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesvirus lytic infection causes cells to arrest at the G1/S phase of the cell cycle by poorly defined mechanisms. In a prior study using fluorescent ubiquitination-based cell cycle indicator (FUCCI) cells that express fluorescently tagged proteins marking different stages of the cell cycle, we showed that the Epstein-Barr virus (EBV) protein BORF2 induces the accumulation of G1/S cells, and that BORF2 affects p53 levels without affecting the p53 target protein p21. We also found that BORF2 specifically interacted with APOBEC3B (A3B) and forms perinuclear bodies with A3B that prevent A3B from mutating replicating EBV genomes. We now show that BORF2 also interacts with p53 and that A3B interferes with the BORF2-p53 interaction, although A3B and p53 engage distinct surfaces on BORF2. Cell cycle analysis showed that G1/S induction by BORF2 is abrogated when either p53 or A3B is silenced or when an A3B-binding mutant of BORF2 is used. Furthermore, silencing A3B in EBV lytic infection increased cell proliferation, supporting a role for A3B in G1/S arrest. These data suggest that the p53 induced by BORF2 is inactive when it binds BORF2, but is released and induces G1/S arrest when A3B is present and sequesters BORF2 in perinuclear bodies. Interestingly, this mechanism is conserved in the BORF2 homologue in HSV-1, which also re-localizes A3B, induces and binds p53, and induces G1/S dependent on A3B and p53. In summary, we have identified a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection. IMPORTANCE In lytic infection, herpesviruses cause cells to arrest at the G1/S phase of the cell cycle in order to provide an optimal environment for viral replication; however, the mechanisms involved are not well understood. We have shown that the Epstein-Barr virus BORF2 protein and its homologue in herpes simplex virus 1 both induce G1/S, and do this by similar mechanisms which involve binding p53 and APOBEC3B and induction of p53. Our study identifies a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection and a new role of APOBEC3B in herpesvirus lytic infection.
Collapse
|
11
|
MC180295 Inhibited Epstein–Barr Virus-Associated Gastric Carcinoma Cell Growth by Suppressing DNA Repair and the Cell Cycle. Int J Mol Sci 2022; 23:ijms231810597. [PMID: 36142506 PMCID: PMC9500863 DOI: 10.3390/ijms231810597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
DNA methylation of both viral and host DNA is one of the major mechanisms involved in the development of Epstein–Barr virus-associated gastric carcinoma (EBVaGC); thus, epigenetic treatment using demethylating agents would seem to be promising. We have verified the effect of MC180295, which was discovered by screening for demethylating agents. MC180295 inhibited cell growth of the EBVaGC cell lines YCCEL1 and SNU719 in a dose-dependent manner. In a cell cycle analysis, growth arrest and apoptosis were observed in both YCCEL1 and SNU719 cells treated with MC180295. MKN28 cells infected with EBV were sensitive to MC180295 and showed more significant inhibition of cell growth compared to controls without EBV infection. Serial analysis of gene expression analysis showed the expression of genes belonging to the role of BRCA1 in DNA damage response and cell cycle control chromosomal replication to be significantly reduced after MC180295 treatment. We confirmed with quantitative PCR that the expression levels of BRCA2, FANCM, RAD51, TOP2A, and CDC45 were significantly decreased by MC180295. LMP1 and BZLF1 are EBV genes with expression that is epigenetically regulated, and MC180295 could up-regulate their expression. In conclusion, MC180295 inhibited the growth of EBVaGC cells by suppressing DNA repair and the cell cycle.
Collapse
|
12
|
Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses. Proc Natl Acad Sci U S A 2022; 119:e2203782119. [PMID: 36067323 PMCID: PMC9477414 DOI: 10.1073/pnas.2203782119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibition of host DNA damage response (DDR) is a common mechanism used by viruses to manipulate host cellular machinery and orchestrate viral life cycles. Epstein-Barr virus tegument protein BKRF4 associates with cellular chromatin to suppress host DDR signaling, but the underlying mechanism remains elusive. Here, we identify a BKRF4 histone binding domain (residues 15-102, termed BKRF4-HBD) that can accumulate at the DNA damage sites to disrupt 53BP1 foci formation. The high-resolution structure of the BKRF4-HBD in complex with a human H2A-H2B dimer shows that BKRF4-HBD interacts with the H2A-H2B dimer via the N-terminal region (NTR), the DWP motif (residues 80-86 containing D81, W84, P86), and the C-terminal region (CTR). The "triple-anchor" binding mode confers BKRF4-HBD the ability to associate with the partially unfolded nucleosomes, promoting the nucleosome disassembly. Importantly, disrupting the BKRF4-H2A-H2B interaction impairs the binding between BKRF4-HBD and nucleosome in vitro and inhibits the recruitment of BKRF4-HBD to DNA breaks in vivo. Together, our study reveals the structural basis of BKRF4 bindings to the partially unfolded nucleosome and elucidates an unconventional mechanism of host DDR signal attenuation.
Collapse
|
13
|
The ORF45 Protein of Kaposi's Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle. Viruses 2022; 14:v14092010. [PMID: 36146816 PMCID: PMC9506158 DOI: 10.3390/v14092010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections.
Collapse
|
14
|
Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein-Protein Interactions Hint Central Role of BLRF2 in the Tegument Network. J Virol 2022; 96:e0051822. [PMID: 35862711 PMCID: PMC9327732 DOI: 10.1128/jvi.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.
Collapse
|
15
|
Liu Y, Li Y, Bao H, Liu Y, Chen L, Huang H. Epstein-Barr Virus Tegument Protein BKRF4 is a Histone Chaperone. J Mol Biol 2022; 434:167756. [PMID: 35870648 DOI: 10.1016/j.jmb.2022.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Histone chaperones, which constitute an interaction and functional network involved in all aspects of histone metabolism, have to date been identified only in eukaryotes. The Epstein-Barr virus tegument protein BKRF4 is a histone-binding protein that engages histones H2A-H2B and H3-H4, and cellular chromatin, inhibiting the host DNA damage response. Here, we identified BKRF4 as a bona fide viral histone chaperone whose histone-binding domain (HBD) forms a co-chaperone complex with the human histone chaperone ASF1 in vitro. We determined the crystal structures of the quaternary complex of the BKRF4 HBD with human H3-H4 dimer and the histone chaperone ASF1b and the ternary complex of the BKRF4 HBD with human H2A-H2B dimer. Through structural and biochemical studies, we elucidated the molecular basis for H3-H4 and H2A-H2B recognition by BKRF4. We also revealed two conserved motifs, D/EL and DEF/Y/W, within the BKRF4 HBD, which may represent common motifs through which histone chaperones target H3-H4 and H2A-H2B, respectively. In conclusion, our results identify BKRF4 as a histone chaperone encoded by the Epstein-Barr virus, representing a typical histone chaperone found in a non-eukaryote. We envision that more histone chaperones await identification and characterization in DNA viruses and even archaea.
Collapse
Affiliation(s)
- Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yue Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyu Bao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
17
|
Epstein-Barr Virus BGLF2 commandeers RISC to interfere with cellular miRNA function. PLoS Pathog 2022; 18:e1010235. [PMID: 35007297 PMCID: PMC8782528 DOI: 10.1371/journal.ppat.1010235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
The Epstein-Barr virus (EBV) BGLF2 protein is a tegument protein with multiple effects on the cellular environment, including induction of SUMOylation of cellular proteins. Using affinity-purification coupled to mass-spectrometry, we identified the miRNA-Induced Silencing Complex (RISC), essential for miRNA function, as a top interactor of BGLF2. We confirmed BGLF2 interaction with the Ago2 and TNRC6 components of RISC in multiple cell lines and their co-localization in cytoplasmic bodies that also contain the stress granule marker G3BP1. In addition, BGLF2 expression led to the loss of processing bodies in multiple cell types, suggesting disruption of RISC function in mRNA regulation. Consistent with this observation, BGLF2 disrupted Ago2 association with multiple miRNAs. Using let-7 miRNAs as a model, we tested the hypothesis that BGLF2 interfered with the function of RISC in miRNA-mediated mRNA silencing. Using multiple reporter constructs with 3’UTRs containing let-7a regulated sites, we showed that BGLF2 inhibited let-7a miRNA activity dependent on these 3’UTRs, including those from SUMO transcripts which are known to be regulated by let-7 miRNAs. In keeping with these results, we showed that BGLF2 increased the cellular level of unconjugated SUMO proteins without affecting the level of SUMO transcripts. Such an increase in free SUMO is known to drive SUMOylation and would account for the effect of BGLF2 in inducing SUMOylation. We further showed that BGLF2 expression inhibited the loading of let-7 miRNAs into Ago2 proteins, and conversely, that lytic infection with EBV lacking BGLF2 resulted in increased interaction of let-7a and SUMO transcripts with Ago2, relative to WT EBV infection. Therefore, we have identified a novel role for BGLF2 as a miRNA regulator and shown that one outcome of this activity is the dysregulation of SUMO transcripts that leads to increased levels of free SUMO proteins and SUMOylation. Epstein-Barr virus (EBV) infects most people worldwide, persists for life and is associated with several kinds of cancer. In order to undergo efficient lytic infection, EBV must manipulate multiple cellular pathways. BGLF2 is an EBV lytic protein known to modulate several cellular processes including increasing the modification of cellular proteins with the Small Ubiquitin-Like Modifier (SUMO), a process referred to as SUMOylation. Here we show for the first time that BGLF2 interacts with a cellular complex (RISC) required for miRNA function and interferes with the function of some cellular miRNAs by sequestering this complex. One of the consequences of this effect is the increased expression of SUMO proteins, due to inhibition of the miRNAs that normally downregulate their expression. The resulting increase in SUMO proteins drives SUMOylation, providing a mechanism for the previously reported BGLF2-induced SUMOylation of cellular proteins. In addition, the discovery of BGLF2 as a miRNA regulator suggests that this EBV protein can control many cellular pathways by interfering with cellular miRNAs that normally regulate them.
Collapse
|
18
|
Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol 2021; 95:e0102721. [PMID: 34319780 DOI: 10.1128/jvi.01027-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.
Collapse
|
19
|
Shire K, Marcon E, Greenblatt J, Frappier L. Characterization of a cancer-associated Epstein-Barr virus EBNA1 variant reveals a novel interaction with PLOD1 and PLOD3. Virology 2021; 562:103-109. [PMID: 34304093 DOI: 10.1016/j.virol.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequence analysis of Epstein-Barr virus genomes from tumours and healthy individuals identified three amino acid changes in EBNA1 that are strongly associated with gastric carcinoma and nasopharyngeal carcinoma. Here we show that, while these mutations do not impact EBNA1 plasmid maintenance function, one of them (Thr85Ala) decreases transcriptional activation and results in a gain of function interaction with PLOD1 and PLOD3. PLOD family proteins are strongly linked to multiple cancers, and PLOD1 is recognized as a prognostic marker of gastric carcinoma. We identified the PLOD1 binding site in EBNA1as the N-terminal transactivation domain and show that lysine 83 is critical for this interaction. The results provide a novel link between EBV infection and the cancer-associated PLOD proteins.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada; Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
20
|
Wang H, Liu J, Zhang Y, Sun L, Zhao M, Luo B. Eukaryotic initiating factor eIF4E is targeted by EBV-encoded miR-BART11-3p and regulates cell cycle and apoptosis in EBV-associated gastric carcinoma. Virus Genes 2021; 57:358-368. [PMID: 34146250 DOI: 10.1007/s11262-021-01854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) is a component of the eukaryotic translation initiation factor 4F, a significant complex in the protein translation process. It has been found to be closely related to many human tumors, such as gastric carcinoma. It is known that the Epstein-Barr virus (EBV) upregulates eIF4E in various ways in nasopharyngeal carcinoma. However, there are very few studies on eIF4E in EBV-associated gastric carcinoma. We found that the expression level of eIF4E in EBV-associated gastric carcinoma was lower than other types of gastric carcinoma, and the downregulation of eIF4E could lead to increased apoptosis of gastric carcinoma cells, retardation at S phase, and decreased cell migration. The dual luciferase reporter experiment showed that EBV-miR-BART11-3p could directly target the 3'-UTR region of eIF4E, and BART11-3p is the key factor leading to the downregulation of eIF4E. It could provide a new evidence for EBV-regulating host gene to affect the development of gastric carcinoma.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Juanjuan Liu
- School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Sandong, PR China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University Medical College, 308 NingXia Road, Qingdao, 266021, PR China
| | - Menghe Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China.
| |
Collapse
|
21
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
22
|
Piette BL, Alerasool N, Lin ZY, Lacoste J, Lam MHY, Qian WW, Tran S, Larsen B, Campos E, Peng J, Gingras AC, Taipale M. Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains. Mol Cell 2021; 81:2549-2565.e8. [PMID: 33957083 DOI: 10.1016/j.molcel.2021.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.
Collapse
Affiliation(s)
- Benjamin L Piette
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mandy Hiu Yi Lam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Eric Campos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
23
|
Ghasemi F, Tessier TM, Gameiro SF, Maciver AH, Cecchini MJ, Mymryk JS. High MHC-II expression in Epstein-Barr virus-associated gastric cancers suggests that tumor cells serve an important role in antigen presentation. Sci Rep 2020; 10:14786. [PMID: 32901107 PMCID: PMC7479113 DOI: 10.1038/s41598-020-71775-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
EBV-associated gastric adenocarcinomas (EBVaGCs) often exhibit better clinical outcomes than EBV negative gastric cancers (GCs), which could be related to their consistent expression of foreign viral antigens. Antigen-presenting cells (APCs) present peptide antigens in the context of the class-II major histocompatibility complex (MHC-II). During inflammatory conditions, epithelial cells express MHC-II and function as accessory APCs. Utilizing RNA-seq data from nearly 400 GC patients, we determined the impact of EBV-status on expression of MHC-II components, genes involved in their regulation, and T-cell co-stimulation. Virtually all MHC-II genes were significantly upregulated in EBVaGCs compared to normal tissues, or other GC subtypes. Genes involved in antigen presentation were also significantly upregulated in EBVaGCs, as were the key MHC-II transcriptional regulators CIITA and RFX5. This was unexpected as the EBV encoded BZLF1 protein can repress CIITA transcription and is expressed in many EBVaGCs. Furthermore, MHC-II upregulation was strongly correlated with elevated intratumoral levels of interferon-gamma. In addition, expression of co-stimulatory molecules involved in T-cell activation and survival was also significantly increased in EBVaGCs. Thus, gastric adenocarcinoma cells may functionally contribute to the highly immunogenic tumor microenvironment observed in EBVaGCs via a previously unappreciated role in interferon-induced antigen presentation.
Collapse
Affiliation(s)
- Farhad Ghasemi
- Department of Surgery, Western University, London, ON, N6A 4V2, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Steven F Gameiro
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Allison H Maciver
- Department of Surgery, Western University, London, ON, N6A 4V2, Canada.,Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University and London Health Sciences Centre, London, ON, N6A 5C1, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada. .,Department of Oncology, Western University, London, ON, N6A 3K7, Canada. .,Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON, N6A 5W9, Canada. .,London Regional Cancer Program, Lawson Health Research Institute, London, ON, N6C 2R5, Canada. .,London Regional Cancer Program, Room A4-837, 790 Commissioners Rd. East, London, ON, N6A 4L6, Canada.
| |
Collapse
|
24
|
Bojagora A, Saridakis V. USP7 manipulation by viral proteins. Virus Res 2020; 286:198076. [DOI: 10.1016/j.virusres.2020.198076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/14/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
|
25
|
Jones-Brando L, Dickerson F, Ford G, Stallings C, Origoni A, Katsafanas E, Sweeney K, Squire A, Khushalani S, Yolken R. Atypical immune response to Epstein-Barr virus in major depressive disorder. J Affect Disord 2020; 264:221-226. [PMID: 32056754 PMCID: PMC7025817 DOI: 10.1016/j.jad.2019.11.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND An atypical immune response to Epstein-Barr virus (EBV) infection has been associated with several complex diseases including schizophrenia. The etiology of MDD is unclear; host immune response to EBV infection could play a role. METHODS We utilized solid phase immunoassays and western blots to measure antibodies to EBV virions, specific viral proteins, and 5 other herpesviruses in 87 individuals with MDD and 312 control individuals. RESULTS Individuals with MDD had significantly reduced levels of reactivity to EBV Nuclear Antigen-1. Quantitative levels of antibodies to EBV virions and Viral Capsid Antigen did not differ between groups. Individuals with decreased levels of anti-Nuclear Antigen-1, or elevated levels of anti-virion had increased odds of being in the MDD group. The odds of MDD were elevated in individuals who had the combination of high levels of anti-virion and low levels of anti-Nuclear Antigen-1 (OR =13.6). Western blot analysis corroborated decreased reactivity to Nuclear Antigen-1 in the MDD group and revealed altered levels of antibodies to other EBV proteins. There was a trend towards decreased levels of antibodies to varicella virus in the group of individuals with MDD. LIMITATIONS The MDD sample size was relatively small. There could be unmeasured factors that account for the association between MDD and the immune response to EBV. CONCLUSIONS Individuals with MDD have altered levels and patterns of antibodies to EBV antigens. This atypical response could contribute to the immunopathology of MDD. Therapeutic interventions available for treatment of EBV infection could potentially be of benefit in MDD.
Collapse
Affiliation(s)
- Lorraine Jones-Brando
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, United States.
| | - Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD.,Joint first-authors
| | | | | | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Kevin Sweeney
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | - Amalia Squire
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Salamun SG, Sitz J, De La Cruz-Herrera CF, Yockteng-Melgar J, Marcon E, Greenblatt J, Fradet-Turcotte A, Frappier L. The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. J Virol 2019; 93:e01070-19. [PMID: 31462557 PMCID: PMC6819917 DOI: 10.1128/jvi.01070-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.
Collapse
Affiliation(s)
- Samuel G Salamun
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Justine Sitz
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | | | - Jaime Yockteng-Melgar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Facultad de ciencias de la vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Amelie Fradet-Turcotte
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation. J Virol 2019; 93:JVI.00989-19. [PMID: 31341047 DOI: 10.1128/jvi.00989-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication. Lytic reactivation starts with derepression of the Zp promoter controlling BZLF1 gene expression, which binds and is activated by the c-Jun transcriptional activator. Here, we identified the cellular Arkadia-like 1 (ARKL1) protein as a negative regulator of Zp and EBV reactivation. Silencing of ARKL1 in the context of EBV-positive gastric carcinoma (AGS) cells, nasopharyngeal carcinoma (NPC43) cells, and B (M81) cells led to increased lytic protein expression, whereas overexpression inhibited BZLF1 expression. Similar effects of ARKL1 modulation were seen on BZLF1 transcripts as well as on Zp activity in Zp reporter assays, showing that ARKL1 repressed Zp. Proteomic profiling of ARKL1-host interactions identified c-Jun as an ARKL1 interactor, and reporter assays for Jun transcriptional activity showed that ARKL1 inhibited Jun activity. The ARKL1-Jun interaction required ARKL1 sequences that we previously showed mediated binding to the CK2 kinase regulatory subunit CK2β, suggesting that CK2β might mediate the ARKL1-Jun interaction. This model was supported by the findings that silencing of CK2β, but not the CK2α catalytic subunit, abrogated the ARKL1-Jun interaction and phenocopied ARKL1 silencing in promoting EBV reactivation. Additionally, ARKL1 was associated with Zp in reporter assays and this was increased by additional CK2β. Together, the data indicate that ARKL1 is a negative regulator of Zp and EBV reactivation that acts by inhibiting Jun activity through a CK2β-mediated interaction.IMPORTANCE Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication and is associated with several types of cancer. We have identified a cellular protein (ARKL1) that acts to repress the reactivation of EBV from the latent to the lytic cycle. We show that ARKL1 acts to repress transcription of the EBV lytic switch protein by inhibiting the activity of the cellular transcription factor c-Jun. This not only provides a new mechanism of regulating EBV reactivation but also identifies a novel cellular function of ARKL1 as an inhibitor of Jun-mediated transcription.
Collapse
|
28
|
Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc Natl Acad Sci U S A 2019; 116:19552-19562. [PMID: 31501315 DOI: 10.1073/pnas.1906102116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.
Collapse
|
29
|
Abstract
Infections by DNA viruses including, Epstein–Barr virus (EBV), typically induce cellular DNA damage responses (DDR), in particular double-stranded break signaling. To avoid apoptosis associated with constitutive DDR signaling, downstream steps of this pathway must be inactivated. EBV has developed multiple ways of disabling the DDR using several different viral proteins expressed at various stages of EBV infection. Here the interplay between EBV and host DDRs is discussed at each stage of EBV infection, along with the EBV proteins and miRNAs that are known to interfere with DDR signaling. The newly discovered APOBEC editing of EBV DNA and protection from this mutation is also discussed.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
De La Cruz-Herrera CF, Shire K, Siddiqi UZ, Frappier L. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses. PLoS Pathog 2018; 14:e1007176. [PMID: 29979787 PMCID: PMC6051671 DOI: 10.1371/journal.ppat.1007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/18/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.
Collapse
Affiliation(s)
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Umama Z. Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|