1
|
Sherman M, Cox F, Smith H, Habib MH, Karst S, Wobus CE, Smith TJ. The reversible activation of norovirus by metal ions. J Virol 2024; 98:e0173523. [PMID: 38236007 PMCID: PMC10878237 DOI: 10.1128/jvi.01735-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
Murine norovirus (MNV) undergoes extremely large conformational changes in response to the environment. The T = 3 icosahedral capsid is composed of 180 copies of ~58-kDa VP1 comprised of N-terminus (N), shell (S), and C-terminal protruding (P) domains. At neutral pH, the P domains are loosely tethered to the shell and float ~15 Å above the surface. At low pH or in the presence of bile salts, the P domain drops onto the shell and this movement is accompanied by conformational changes within the P domain that enhance receptor interactions while blocking antibody binding. While previous crystallographic studies identified metal binding sites in the isolated P domain, the ~2.7-Å cryo-electron microscopy structures of MNV in the presence of Mg2+ or Ca2+ presented here show that metal ions can recapitulate the contraction observed at low pH or in the presence of bile. Further, we show that these conformational changes are reversed by dialysis against EDTA. As observed in the P domain crystal structures, metal ions bind to and contract the G'H' loop. This movement is correlated with the lifting of the C'D' loop and rotation of the P domain dimers about each other, exposing the bile salt binding pocket. Isothermal titration calorimetry experiments presented here demonstrate that the activation signals (bile salts, low pH, and metal ions) act in a synergistic manner that, individually, all result in the same activated structure. We present a model whereby these reversible conformational changes represent a uniquely dynamic and tissue-specific structural adaptation to the in vivo environment.IMPORTANCEThe highly mobile protruding domains on the calicivirus capsids are recognized by cell receptor(s) and antibodies. At neutral pH, they float ~15 Å above the shell but at low pH or in the presence of bile salts, they contract onto the surface. Concomitantly, changes within the P domain block antibody binding while enhancing receptor binding. While we previously demonstrated that metals also block antibody binding, it was unknown whether they might also cause similar conformational changes in the virion. Here, we present the near atomic cryo-electron microscopy structures of infectious murine norovirus (MNV) in the presence of calcium or magnesium ions. The metal ions reversibly induce the same P domain contraction as low pH and bile salts and act in a synergistic manner with the other stimuli. We propose that, unlike most other viruses, MNV facilely changes conformations as a unique means to escape immune surveillance as it moves through various tissues.
Collapse
Affiliation(s)
- Michael Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Faith Cox
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Hong Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mohamed H. Habib
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Internal Medicine, John Sealy School of Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Cairo, Egypt
| | - Stephanie Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas J. Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
2
|
Hou YN, Jin YQ, Zhang XF, Tang F, Hou JW, Liu ZM, Han ZB, Zhang H, Du LF, Shao S, Su JG, Liang Y, Zhang J, Li QM. Chimeric virus-like particles of human norovirus constructed by structure-guided epitope grafting elicit cross-reactive immunity against both GI.1 and GII.4 genotypes. J Virol 2023; 97:e0093823. [PMID: 37792003 PMCID: PMC10617407 DOI: 10.1128/jvi.00938-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.
Collapse
Affiliation(s)
- Ya Nan Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Yu Qin Jin
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Xue Feng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Fang Tang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jun Wei Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhao Ming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zi Bo Han
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Li Fang Du
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Shuai Shao
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ji Guo Su
- National Engineering Center for New Vaccine Research, Beijing, China
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Qi Ming Li
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| |
Collapse
|
3
|
Panasiuk M, Chraniuk M, Zimmer K, Hovhannisyan L, Krapchev V, Peszyńska-Sularz G, Narajczyk M, Węsławski J, Konopacka A, Gromadzka B. Characterization of surface-exposed structural loops as insertion sites for foreign antigen delivery in calicivirus-derived VLP platform. Front Microbiol 2023; 14:1111947. [PMID: 36922971 PMCID: PMC10010390 DOI: 10.3389/fmicb.2023.1111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 03/02/2023] Open
Abstract
Chimeric virus-like particles (cVLPs) show great potential in improving public health as they are safe and effective vaccine candidates. The capsid protein of caliciviruses has been described previously as a self-assembling, highly immunogenic delivery platform. The ability to significantly induce cellular and humoral immunity can be used to boost the immune response to low immunogenic foreign antigens displayed on the surface of VLPs. Capsid proteins of caliciviruses despite sequence differences share similar architecture with structural loops that can be genetically modified to present foreign epitopes on the surface of cVLPs. Here, based on the VP1 protein of norovirus (NoV), we investigated the impact of the localization of the epitope in different structural loops of the P domain on the immunogenicity of the presented epitope. In this study, three distinct loops of NoV VP1 protein were genetically modified to present a multivalent influenza virus epitope consisting of a tandem repeat of M2/NP epitopes. cVLPs presenting influenza virus-conserved epitopes in different localizations were produced in the insect cells and used to immunize BALB/c mice. Specific reaction to influenza epitopes was compared in sera from vaccinated mice to determine whether the localization of the foreign epitope has an impact on the immunogenicity.
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.,Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Lilit Hovhannisyan
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Vasil Krapchev
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jan Węsławski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Helm EW, Peiper AM, Phillips M, Williams CG, Sherman MB, Kelley T, Smith HQ, Jacobs SO, Shah D, Tatum SM, Iyer N, Grodzki M, Morales Aparicio JC, Kennedy EA, Manzi MS, Baldridge MT, Smith TJ, Karst SM. Environmentally-triggered contraction of the norovirus virion determines diarrheagenic potential. Front Immunol 2022; 13:1043746. [PMID: 36389732 PMCID: PMC9664153 DOI: 10.3389/fimmu.2022.1043746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections in people, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. We recently demonstrated that wild-type neonatal mice are susceptible to murine norovirus (MNV)-induced acute self-resolving diarrhea in a time course mirroring human norovirus disease. Using this robust pathogenesis model system, we demonstrate that virulence is regulated by the responsiveness of the viral capsid to environmental cues that trigger contraction of the VP1 protruding (P) domain onto the particle shell, thus enhancing receptor binding and infectivity. The capacity of a given MNV strain to undergo this contraction positively correlates with infection of cells expressing low abundance of the virus receptor CD300lf, supporting a model whereby virion contraction triggers infection of CD300lflo cell types that are responsible for diarrhea induction. These findings directly link environmentally-influenced biophysical features with norovirus disease severity.
Collapse
Affiliation(s)
- Emily W. Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amy M. Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Caroline G. Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Theresa Kelley
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Hong Q. Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sorin O. Jacobs
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Dhairya Shah
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sarah M. Tatum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marco Grodzki
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joyce C. Morales Aparicio
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mikayla S. Manzi
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Thomas J. Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephanie M. Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
6
|
Creutznacher R, Maass T, Dülfer J, Feldmann C, Hartmann V, Lane MS, Knickmann J, Westermann LT, Thiede L, Smith TJ, Uetrecht C, Mallagaray A, Waudby CA, Taube S, Peters T. Distinct dissociation rates of murine and human norovirus P-domain dimers suggest a role of dimer stability in virus-host interactions. Commun Biol 2022; 5:563. [PMID: 35680964 PMCID: PMC9184547 DOI: 10.1038/s42003-022-03497-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s−1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10−6 s−1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection. NMR and native mass spectrometry reveal that the major capsid VP1 protein from murine and human norovirus exhibit distinct behaviors and are differentially regulated by the binding of glycochenodeoxycholic acid.
Collapse
|
7
|
Maass T, Westermann LT, Creutznacher R, Mallagaray A, Dülfer J, Uetrecht C, Peters T. Assignment of Ala, Ile, Leu proS, Met, and Val proS methyl groups of the protruding domain of murine norovirus capsid protein VP1 using methyl-methyl NOEs, site directed mutagenesis, and pseudocontact shifts. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:97-107. [PMID: 35050443 PMCID: PMC9068638 DOI: 10.1007/s12104-022-10066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.
Collapse
Affiliation(s)
- Thorben Maass
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Leon Torben Westermann
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Jasmin Dülfer
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen & Centre for Structural Systems Biology (CSSB), & Deutsches Elektronensynchrotron (DESY), 22607 Hamburg & European XFEL GmbH, 22869, Schenefeld, Germany
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
8
|
Wang J, Li L, Xu Y, Mao T, Ma Y, Sun X, Liu X, Wang Y, Duan Z. Identification of a novel norovirus species in fox. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105214. [PMID: 35051652 DOI: 10.1016/j.meegid.2022.105214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A novel Norovirus (NoV) was identified by viral metagenomic analysis in fox fecal samples from the Xinjiang Uygur Autonomous Region of China. The virus exhibited typical genomic characteristics of NoVs. It was closely related to the canine NoV GVII strains with 86.0-86.2% and 91.9% amino acid identities in the capsid protein VP1 and RNA-dependent RNA polymerase (RdRp), respectively. The fox NoV clustered phylogenetically with the two canine NoV GVII strains, and it was distant from other NoVs. According to the new classification criteria of NoVs, the new fox NoV belongs to the same genotype as GVII, similar to canine GVII NoVs. Moreover, key amino acid residues in the Histo-blood group antigen (HBGA) binding sites and the HBGA binding pattern of the fox NoV differed significantly from those of human and canine GVII NoVs. This study identified a new GVII norovirus from wild foxes in China. These findings enrich our understanding of the diversity of NoVs and provide further evidence regarding the genetic heterogeneity of NoVs in carnivores.
Collapse
Affiliation(s)
- Jindong Wang
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalong Xu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, China
| | - Tongyao Mao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Ma
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiafei Liu
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
9
|
Schmitz BW, Wang H, Schwab K, Jacangelo J. Selected Mechanistic Aspects of Viral Inactivation by Peracetic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16120-16129. [PMID: 34791872 DOI: 10.1021/acs.est.1c04302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Peracetic acid (PAA) is an alternative to traditional wastewater disinfection as it has a high oxidation potential without producing chlorinated disinfection byproducts. Reports have shown the effectiveness of PAA to reduce waterborne viruses, but the mechanism of inactivation is understudied. This study evaluated PAA consumption by amino acids and nucleotides that are the building blocks of both viral capsids and genomes. Cysteine (>1.7 min-1) and methionine (>1.2 min-1) rapidly consumed PAA, while cystine (1.9 × 10-2 min-1) and tryptophan (1.4 × 10-4 min-1) reactions occurred at a slower rate. All other amino acids and nucleotides did not react significantly (p < 0.05) with PAA during experiments. Also, PAA treatment did not result in significant (p < 0.05) reductions of purified RNA from MS2 bacteriophage and murine norovirus. Data in this study suggest that PAA effectively inactivates viruses by targeting susceptible amino acids on capsid proteins and does not readily damage viral genomes. Knowledge of virus capsid structures and protein compositions can be used to qualitatively predict the relative resistance or susceptibility of virus types to PAA. Capsid structures containing a higher total number of target amino acids may be more susceptible to PAA reactions that damage structural integrity resulting in inactivation.
Collapse
Affiliation(s)
- Bradley W Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Hanwei Wang
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Kellogg Schwab
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Joseph Jacangelo
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Stantec, Washington, DC, 91101, United States
| |
Collapse
|
10
|
Multiple Signals in the Gut Contract the Mouse Norovirus Capsid To Block Antibody Binding While Enhancing Receptor Affinity. J Virol 2021; 95:e0147121. [PMID: 34468172 DOI: 10.1128/jvi.01471-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human norovirus is the leading cause of gastroenteritis worldwide, with no approved vaccine or antiviral treatment to mitigate infection. These plus-strand RNA viruses have T = 3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers, to which antibodies and cellular receptors bind. We previously demonstrated that bile binding to the capsid of mouse norovirus (MNV) causes several major conformational changes; the entire P domain rotates by ∼90° and contracts onto the shell, the P domain dimers rotate about each other, and the structural equilibrium of the epitopes at the top of the P domain shifts toward the closed conformation, which favors receptor binding while blocking antibody binding. Here, we demonstrate that MNV undergoes reversible conformational changes at pH 5.0 that are nearly identical to those observed when bile binds. Notably, at low pH or when metals bind, a cluster of acidic resides in the G'-H' loop interact and distort the G'-H' loop, and this may drive C'-D' loop movement toward the closed conformation. Enzyme-linked immunosorbent assays with infectious virus particles at low pH or in the presence of metals demonstrated that all tested antibodies do not bind to this contracted form, akin to what was observed with the MNV-bile complex. Therefore, low pH, cationic metals, and bile salts are physiological triggers in the gut for P domain contraction and structural rearrangement, which synergistically prime the virus for receptor binding while blocking antibody binding. IMPORTANCE The protruding domains on the calicivirus capsids are recognized by cell receptors and antibodies. We demonstrated that MNV P domains are highly mobile, and bile causes contraction onto the shell surface while allosterically blocking antibody binding. We present the near-atomic cryo-electron microscopy structures of infectious MNV at pH 5.0 and pH 7.5. Surprisingly, low pH is sufficient to cause the same conformational changes as when bile binds. A cluster of acidic residues on the G'-H' loop were most likely involved in the pH effects. These residues also bound divalent cations and had the same conformation as observed here at pH 5. Binding assays demonstrated that low pH and metals block antibody binding, and thus the G'-H' loop might be driving the conformational changes. Therefore, low pH, cationic metals, and bile salts in the gut synergistically prime the virus for receptor binding while blocking antibody binding.
Collapse
|
11
|
Structural Studies on the Shapeshifting Murine Norovirus. Viruses 2021; 13:v13112162. [PMID: 34834968 PMCID: PMC8621758 DOI: 10.3390/v13112162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Noroviruses are responsible for almost a fifth of all cases of gastroenteritis worldwide. The calicivirus capsid is composed of 180 copies of VP1 with a molecular weight of ~58 kDa. This coat protein is divided into the N-terminus (N), the shell (S) and C-terminal protruding (P) domains. The S domain forms a shell around the viral RNA genome, while the P domains dimerize to form protrusions on the capsid surface. The P domain is subdivided into P1 and P2 subdomains, with the latter containing the binding sites for cellular receptors and neutralizing antibodies. Reviewed here are studies on murine norovirus (MNV) showing that the capsid responds to several physiologically relevant cues; bile, pH, Mg2+, and Ca2+. In the initial site of infection, the intestinal tract, high bile and metal concentrations and low pH cause two significant conformational changes: (1) the P domain contracts onto the shell domain and (2) several conformational changes within the P domain lead to enhanced receptor binding while blocking antibody neutralization. In contrast, the pH is neutral, and the concentrations of bile and metals are low in the serum. Under these conditions, the loops at the tip of the P domain are in the open conformation with the P domain floating on a linker or tether above the shell. This conformational state favors antibody binding but reduces interactions with the receptor. In this way, MNV uses metabolites and environmental cues in the intestine to optimize cellular attachment and escape antibody binding but presents a wholly different structure to the immune system in the serum. To our knowledge, this is the first example of a virus shapeshifting in this manner to escape the immune response.
Collapse
|
12
|
A Norovirus Uses Bile Salts To Escape Antibody Recognition While Enhancing Receptor Binding. J Virol 2021; 95:e0017621. [PMID: 33827952 DOI: 10.1128/jvi.00176-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Noroviruses, members of the Caliciviridae family, are the major cause of epidemic gastroenteritis in humans, causing ∼20 million cases annually. These plus-strand RNA viruses have T=3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers to which antibodies and cellular receptors bind. In the case of mouse norovirus (MNV), bile salts have been shown to enhance receptor (CD300lf) binding to the P domain. We demonstrated previously that the P domains of several genotypes are markedly flexible and "float" over the shell, but the role of this flexibility was unclear. Recently, we demonstrated that bile causes a 90° rotation and collapse of the P domain onto the shell surface. Since bile binds distally to the P-shell interface, it was not at all clear how it could cause such dramatic changes. Here, we present the near-atomic resolution cryo-electron microscopy (cryo-EM) structure of the MNV protruding domain complexed with a neutralizing Fab. On the basis of previous results, we show here that bile salts cause allosteric conformational changes in the P domain that block antibody recognition of the top of the P domain. In addition, bile causes a major rearrangement of the P domain dimers that is likely responsible for the bile-induced collapse of the P domain onto the shell. In the contracted shell conformation, antibodies to the P1 and shell domains are not expected to bind. Therefore, at the site of infection in the gut, the host's own bile allows the virus to escape antibody-mediated neutralization while enhancing cell attachment. IMPORTANCE The major feature of calicivirus capsids is the 90 protruding domains (P domains) that are the site of cell receptor attachment and antibody epitopes. We demonstrated previously that these P domains are highly mobile and that bile causes these "floating" P domains in mouse norovirus (MNV) to contract onto the shell surface. Here, we present the near-atomic cryo-EM structure of the isolated MNV P domain complexed with a neutralizing Fab fragment. Our data show that bile causes two sets of changes. First, bile causes allosteric conformational changes in the epitopes at the top of the P domain that block antibody binding. Second, bile causes the P domain dimer subunits to rotate relative to each other, causing a contraction of the P domain that buries epitopes at the base of the P and shell domains. Taken together, the results show that MNV uses the host's own metabolites to enhance cell receptor binding while simultaneously blocking antibody recognition.
Collapse
|
13
|
NMR Experiments Shed New Light on Glycan Recognition by Human and Murine Norovirus Capsid Proteins. Viruses 2021; 13:v13030416. [PMID: 33807801 PMCID: PMC8001558 DOI: 10.3390/v13030416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Glycan–protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.
Collapse
|
14
|
Takahashi M, Takahashi H, Okakura Y, Ichikawa M, Kuda T, Kimura B. Impact of pH and protein hydrophobicity on norovirus inactivation by heat-denatured lysozyme. PLoS One 2020; 15:e0237888. [PMID: 32813716 PMCID: PMC7437907 DOI: 10.1371/journal.pone.0237888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022] Open
Abstract
Norovirus, the leading cause of non-bacterial food poisoning, is responsible for several outbreaks associated with bivalves and ready-to-eat food products worldwide. As norovirus is resistant to alcohol, which is commonly used in food manufacturing processes, sodium hypochlorite is used for its inactivation. However, sodium hypochlorite has two disadvantages: it cannot be added to foods, and its effect is significantly reduced in the presence of organic compounds. Thus, a novel disinfectant against norovirus is urgently required for food hygiene. Thermally denatured egg white lysozyme inactivates norovirus; however, the optimal inactivating conditions and the underlying mechanism are unclear. In the present study, the inactivating mechanism of heat-denatured lysozyme against norovirus was analyzed using murine norovirus strain 1 (MNV-1). We found that the inactivating effect was enhanced by adjusting the pH of the lysozyme solution before thermal denaturation to 6.5 or higher. The reaction of heat-denatured lysozyme and MNV-1 was irreversible, and norovirus was completely inactivated after exposure to heat-denatured lysozyme. Furthermore, it was found that lysozyme residues 5–39 contributed to the norovirus-inactivating effect. Notably, the hydrophobicity and positive charges in this region contributed to the norovirus-inactivating effect, as evidenced by the norovirus inactivation test using mutated residues 5–39. These findings are novel and highlight the possible application of heat-denatured lysozyme as a disinfectant against norovirus in a wide range of food processes.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- * E-mail:
| | - Yumiko Okakura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Song C, Takai-Todaka R, Miki M, Haga K, Fujimoto A, Ishiyama R, Oikawa K, Yokoyama M, Miyazaki N, Iwasaki K, Murakami K, Katayama K, Murata K. Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS Pathog 2020; 16:e1008619. [PMID: 32614892 PMCID: PMC7331980 DOI: 10.1371/journal.ppat.1008619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuki Oikawa
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KM)
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail: (KK); (KM)
| |
Collapse
|
16
|
Nanobody-Mediated Neutralization Reveals an Achilles Heel for Norovirus. J Virol 2020; 94:JVI.00660-20. [PMID: 32321816 DOI: 10.1128/jvi.00660-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.
Collapse
|
17
|
The Dynamic Life of Virus Capsids. Viruses 2020; 12:v12060618. [PMID: 32516952 PMCID: PMC7354500 DOI: 10.3390/v12060618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Protein-shelled viruses have been thought as "tin cans" that merely carry the genomic cargo from cell to cell. However, through the years, it has become clear that viruses such as rhinoviruses and caliciviruses are active and dynamic structures waiting for the right environmental cues to deliver their genomic payload to the host cell. In the case of human rhinoviruses, the capsid has empty cavities that decrease the energy required to cause conformational changes, resulting in the capsids "breathing", waiting for the moment when the receptor binds for it to release its genome. Most strikingly, the buried N-termini of VP1 and VP4 are transiently exposed during this process. A more recent example of a "living" protein capsid is mouse norovirus (MNV). This family of viruses have a large protruding (P) domain that is loosely attached to the shell via a single-polypeptide tether. Small molecules found in the gut, such as bile salts, cause the P domains to rotate and collapse onto the shell surface. Concomitantly, bile alters the conformation of the P domain itself from one that binds antibodies to one that recognizes receptors. In this way, MNV appears to use capsid flexibility to present one face to the immune system and a completely different one to attack the host tissue. Therefore, it appears that even protein-shelled viruses have developed an impressive array of tricks to dodge our immune system and efficiently attack the host.
Collapse
|
18
|
Bile Salts Alter the Mouse Norovirus Capsid Conformation: Possible Implications for Cell Attachment and Immune Evasion. J Virol 2019; 93:JVI.00970-19. [PMID: 31341042 DOI: 10.1128/jvi.00970-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Caliciviruses are single-stranded RNA viruses with 180 copies of capsid protein comprising the T=3 icosahedral capsids. The main capsid feature is a pronounced protruding (P) domain dimer formed by adjacent subunits on the icosahedral surface while the shell domain forms a tight icosahedral sphere around the genome. While the P domain in the crystal structure of human Norwalk virus (genotype I.1) was tightly associated with the shell surface, the cryo-electron microscopy (cryo-EM) structures of several members of the Caliciviridae family (mouse norovirus [MNV], rabbit hemorrhagic disease virus, and human norovirus genotype II.10) revealed a "floating" P domain that hovers above the shell by nearly 10 to 15 Å in physiological buffers. Since this unusual feature is shared among, and unique to, the Caliciviridae, it suggests an important biological role. Recently, we demonstrated that bile salts enhance cell attachment to the target cell and increase the intrinsic affinity between the P domain and receptor. Presented here are the cryo-EM structures of MNV-1 in the presence of bile salts (∼3 Å) and the receptor CD300lf (∼8 Å). Surprisingly, bile salts cause the rotation and contraction of the P domain onto the shell surface. This both stabilizes the P domain and appears to allow for a higher degree of saturation of receptor onto the virus. Together, these results suggest that, as the virus moves into the gut and the associated high concentrations of bile, the entire capsid face undergoes a conformational change to optimize receptor avidity while the P domain itself undergoes smaller conformational changes to improve receptor affinity.IMPORTANCE Mouse norovirus and several other members of the Caliciviridae have been shown to have a highly unusual structure with the receptor binding protruding (P) domain only loosely tethered to the main capsid shell. Recent studies demonstrated that bile salts enhance the intrinsic P domain/receptor affinity and is necessary for cell attachment. Presented here are the high-resolution cryo-EM structures of apo MNV, MNV/bile salt, and MNV/bile salt/receptor. Bile salts cause a 90° rotation and collapse of the P domain onto the shell surface that may increase the number of available receptor binding sites. Therefore, bile salts appear to be having several effects on MNV. Bile salts shift the structural equilibrium of the P domain toward a form that binds the receptor and away from one that binds antibody. They may also cause the entire P domain to optimize receptor binding while burying a number of potential epitopes.
Collapse
|
19
|
Rotem A, Serohijos AWR, Chang CB, Wolfe JT, Fischer AE, Mehoke TS, Zhang H, Tao Y, Lloyd Ung W, Choi JM, Rodrigues JV, Kolawole AO, Koehler SA, Wu S, Thielen PM, Cui N, Demirev PA, Giacobbi NS, Julian TR, Schwab K, Lin JS, Smith TJ, Pipas JM, Wobus CE, Feldman AB, Weitz DA, Shakhnovich EI. Evolution on the Biophysical Fitness Landscape of an RNA Virus. Mol Biol Evol 2019; 35:2390-2400. [PMID: 29955873 PMCID: PMC6188569 DOI: 10.1093/molbev/msy131] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.
Collapse
Affiliation(s)
- Assaf Rotem
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Adrian W R Serohijos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.,Département de Biochimie et Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
| | - Connie B Chang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT
| | - Joshua T Wolfe
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Audrey E Fischer
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas S Mehoke
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Huidan Zhang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ye Tao
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - W Lloyd Ung
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephan A Koehler
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Susan Wu
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Peter M Thielen
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Naiwen Cui
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | | | - Timothy R Julian
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Kellogg Schwab
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey S Lin
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew B Feldman
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, MD
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | |
Collapse
|
20
|
Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses 2019; 11:E495. [PMID: 31151248 PMCID: PMC6630345 DOI: 10.3390/v11060495] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Human norovirus is a major human pathogen causing the majority of cases of viral gastroenteritis globally. Viral entry is the first step of the viral life cycle and is a significant determinant of cell tropism, host range, immune interactions, and pathogenesis. Bile salts and histo-blood group antigens are key mediators of norovirus entry; however, the molecular mechanisms by which these molecules promote infection and the identity of a potential human norovirus receptor remain unknown. Recently, there have been several important advances in norovirus entry biology including the identification of CD300lf as the receptor for murine norovirus and of the role of the minor capsid protein VP2 in viral genome release. Here, we will review the current understanding about norovirus attachment and entry and highlight important future directions.
Collapse
Affiliation(s)
- Vincent R Graziano
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jin Wei
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
22
|
Smith HQ, Smith TJ. The Dynamic Capsid Structures of the Noroviruses. Viruses 2019; 11:v11030235. [PMID: 30857192 PMCID: PMC6466125 DOI: 10.3390/v11030235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022] Open
Abstract
Noroviruses are responsible for almost a fifth of all cases of gastroenteritis worldwide. New strains evolve every 2–4 years by escaping herd immunity and cause worldwide epidemics. In the US alone, noroviruses are responsible for ~20 million cases and more than 70,000 hospitalizations of infected children, annually. Efforts towards a vaccine have been hindered by a lack of detailed structural information about antibody binding and the mechanisms of antibody escape. Caliciviruses have 180 copies of the major capsid protein (VP1; ~58 kDa), that is divided into the N-terminus (N), the shell (S) and C-terminal protruding (P) domains. The S domain forms a shell around the viral RNA genome, while the P domains dimerize to form protrusions on the capsid surface. The P domain is subdivided into P1 and P2 subdomains, with the latter containing the binding sites for cellular receptors and neutralizing antibodies. There is increasing evidence that these viruses are extremely dynamic and this flexibility is critical for viral replication. There are at least two modes of flexibility; the entire P domain relative to the shell and within the P domain itself. Here, the details and possible roles for this remarkable flexibility will be reviewed.
Collapse
Affiliation(s)
- Hong Q Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-0645, USA.
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-0645, USA.
| |
Collapse
|
23
|
Majiya H, Adeyemi OO, Herod M, Stonehouse NJ, Millner P. Photodynamic inactivation of non-enveloped RNA viruses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:87-94. [DOI: 10.1016/j.jphotobiol.2018.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
24
|
Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol 2018; 92:JVI.00826-18. [PMID: 30232191 DOI: 10.1128/jvi.00826-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.
Collapse
|
25
|
Nelson CA, Wilen CB, Dai YN, Orchard RC, Kim AS, Stegeman RA, Hsieh LL, Smith TJ, Virgin HW, Fremont DH. Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proc Natl Acad Sci U S A 2018; 115:E9201-E9210. [PMID: 30194229 PMCID: PMC6166816 DOI: 10.1073/pnas.1805797115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
Collapse
Affiliation(s)
- Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur S Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Roderick A Stegeman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Leon L Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Atomic Structure of the Murine Norovirus Protruding Domain and Soluble CD300lf Receptor Complex. J Virol 2018; 92:JVI.00413-18. [PMID: 29563286 DOI: 10.1128/jvi.00413-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
Human noroviruses are the leading cause of acute gastroenteritis in humans. Noroviruses also infect animals, such as cows, mice, cats, and dogs. How noroviruses bind and enter host cells is still incompletely understood. Recently, the type I transmembrane protein CD300lf was identified as the murine norovirus receptor, yet it is unclear how the virus capsid and receptor interact at the molecular level. In this study, we determined the X-ray crystal structure of the soluble CD300lf (sCD300lf) and the murine norovirus capsid protruding domain complex at a 2.05-Å resolution. We found that the sCD300lf-binding site is located on the topside of the protruding domain and involves a network of hydrophilic and hydrophobic interactions. sCD300lf locked nicely into a complementary cavity on the protruding domain that is additionally coordinated with a positive surface charge on sCD300lf and a negative surface charge on the protruding domain. Five of six protruding domain residues interacting with sCD300lf were maintained between different murine norovirus strains, suggesting that sCD300lf was capable of binding to a highly conserved pocket. Moreover, a sequence alignment with other CD300 paralogs showed that the sCD300lf-interacting residues were partially conserved in CD300ld but variable in other CD300 family members, consistent with previously reported infection selectivity. Overall, these data provide insights into how a norovirus engages a protein receptor and will be important for a better understanding of selective recognition and norovirus attachment and entry mechanisms.IMPORTANCE Noroviruses exhibit exquisite host range specificity due to species-specific interactions between the norovirus capsid protein and host molecules. Given this strict host range restriction, it has been unclear how the viruses are maintained within a species between relatively sporadic epidemics. While much data demonstrate that noroviruses can interact with carbohydrates, recent work has shown that expression of the protein CD300lf is both necessary and sufficient for murine norovirus infection of mice and binding of the virus to permissive cells. Importantly, the expression of this murine protein by human cells renders them fully permissive for murine norovirus infection, indicating that at least in this case, host range restriction is determined by molecular events that control receptor binding and entry. Defining the atomic-resolution interactions between the norovirus capsid protein and its cognate receptor is essential for a molecular understanding of host-range restriction and norovirus tropism.
Collapse
|
27
|
The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018; 23:molecules23051151. [PMID: 29751628 PMCID: PMC6100456 DOI: 10.3390/molecules23051151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.
Collapse
|
28
|
Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, Rimkunas R, Fong RH, Lin H, Poddar S, Crowe JE, Doranz BJ, Fremont DH, Diamond MS. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 2018; 557:570-574. [PMID: 29769725 PMCID: PMC5970976 DOI: 10.1038/s41586-018-0121-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022]
Abstract
Arthritogenic alphaviruses comprise a group of enveloped RNA viruses that are transmitted to humans by mosquitoes and cause debilitating acute and chronic musculoskeletal disease 1 . The host factors required for alphavirus entry remain poorly characterized 2 . Here we use a genome-wide CRISPR-Cas9-based screen to identify the cell adhesion molecule Mxra8 as an entry mediator for multiple emerging arthritogenic alphaviruses, including chikungunya, Ross River, Mayaro and O'nyong nyong viruses. Gene editing of mouse Mxra8 or human MXRA8 resulted in reduced levels of viral infection of cells and, reciprocally, ectopic expression of these genes resulted in increased infection. Mxra8 bound directly to chikungunya virus particles and enhanced virus attachment and internalization into cells. Consistent with these findings, Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies blocked chikungunya virus infection in multiple cell types, including primary human synovial fibroblasts, osteoblasts, chondrocytes and skeletal muscle cells. Mutagenesis experiments suggest that Mxra8 binds to a surface-exposed region across the A and B domains of chikungunya virus E2 protein, which are a speculated site of attachment. Finally, administration of the Mxra8-Fc protein or anti-Mxra8 blocking antibodies to mice reduced chikungunya and O'nyong nyong virus infection as well as associated foot swelling. Pharmacological targeting of Mxra8 could form a strategy for mitigating infection and disease by multiple arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sharmila Nair
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hueylie Lin
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Subhajit Poddar
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
29
|
Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms. mSphere 2017; 2:mSphere00334-17. [PMID: 29062895 PMCID: PMC5646240 DOI: 10.1128/msphere.00334-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/27/2017] [Indexed: 01/03/2023] Open
Abstract
The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region—one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from—is therefore ideal for vaccine development. Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies. IMPORTANCE The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region—one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from—is therefore ideal for vaccine development.
Collapse
|
30
|
Hall RN, Capucci L, Matthaei M, Esposito S, Kerr PJ, Frese M, Strive T. An in vivo system for directed experimental evolution of rabbit haemorrhagic disease virus. PLoS One 2017; 12:e0173727. [PMID: 28288206 PMCID: PMC5348035 DOI: 10.1371/journal.pone.0173727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
The calicivirus Rabbit haemorrhagic disease virus (RHDV) is widely used in Australia as a biocontrol agent to manage wild European rabbit (Oryctolagus cuniculus) populations. However, widespread herd immunity limits the effectiveness of the currently used strain, CAPM V-351. To overcome this, we developed an experimental platform for the selection and characterisation of novel RHDV strains. As RHDV does not replicate in cell culture, variant viruses were selected by serially passaging a highly virulent RHDV field isolate in immunologically naïve laboratory rabbits that were passively immunised 18–24 hours post-challenge with a neutralising monoclonal antibody. After seven passages, two amino acid substitutions in the P2 domain of the capsid protein became fixed within the virus population. Furthermore, a synonymous substitution within the coding sequence of the viral polymerase appeared and was also maintained in all subsequent passages. These findings demonstrate proof-of-concept that RHDV evolution can be experimentally manipulated to select for virus variants with altered phenotypes, in this case partial immune escape.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Lorenzo Capucci
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Markus Matthaei
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Simona Esposito
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Peter J. Kerr
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Frese
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
31
|
Aybeke EN, Belliot G, Lemaire-Ewing S, Estienney M, Lacroute Y, Pothier P, Bourillot E, Lesniewska E. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600918. [PMID: 28044439 DOI: 10.1002/smll.201600918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Studies on human norovirus are severely hampered by the absence of a cell culture system until the discovery of murine norovirus (MNV). The cell membrane domains called lipid rafts have been defined as a port of entry for viruses. This study is conducted to investigate murine norovirus binding on the mouse leukemic monocyte macrophage cell line. Lipid raft related structures are extracted from cells by detergent treatment resulting detergent-resistant membrane (DRMs) domains. The real-time polymerase chain reaction technique is performed to detect the viral genome, thereby the MNV binding on the DRMs. The interactions between MNV and DRMs are investigated by high-speed atomic force microscopy (HS-AFM) combined with surface-enhanced Raman spectroscopy (SERS). The inoculation of the virus onto cells results in the aggregations of detergent-resistant membrane domains significantly. The characteristic Raman band of MNV is found in inoculated samples. To be sure that these results are originated from specific interactions between DRM and MNV, methyl-β-cyclo-dextrin (MβCD) is applied to disrupt lipid rafts. The MNV binding on DRMs is precluded by the MβCD treatment. The cholesterols chains are defined as a key factor in the interactions between norovirus and DRMs. The authors conclude that the MNV binding involves the presence of DRMs and cholesterol dependent.
Collapse
Affiliation(s)
- Ece N Aybeke
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Gaël Belliot
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | | | - Marie Estienney
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Yvon Lacroute
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Pierre Pothier
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| |
Collapse
|
32
|
Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb Technol 2017; 96:47-59. [DOI: 10.1016/j.enzmictec.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
|
33
|
Somrit M, Watthammawut A, Chotwiwatthanakun C, Ounjai P, Suntimanawong W, Weerachatyanukul W. C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization. Virus Res 2017; 227:41-48. [DOI: 10.1016/j.virusres.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
34
|
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody. Proc Natl Acad Sci U S A 2016; 113:E5830-E5837. [PMID: 27647885 DOI: 10.1073/pnas.1609990113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
Collapse
|
35
|
Virion Structure of Iflavirus Slow Bee Paralysis Virus at 2.6-Angstrom Resolution. J Virol 2016; 90:7444-7455. [PMID: 27279610 PMCID: PMC4984619 DOI: 10.1128/jvi.00680-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022] Open
Abstract
The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 Å and 2.6 Å. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form “crowns” on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 Å toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.
IMPORTANCE Pollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honeybee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding “crowns” on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.
Collapse
|
36
|
Agnihothram SS, Vermudez SA, Mullis L, Townsend TA, Manjanatha MG, Azevedo MP. Silicon Dioxide Impedes Antiviral Response and Causes Genotoxic Insult During Calicivirus Replication. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2016; 16:7720-7730. [PMID: 27547159 PMCID: PMC4986603 DOI: 10.1166/jnn.2016.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Noroviruses (NoV) are the leading cause of nonbacterial gastroenteritis in humans, and replicate extensively in the human gastrointestinal (GI) tract. Silica (also known as silicon dioxide, SiO2) nanoparticles (NPs) used in processed foods, dairy products, and beverages also accumulate in the GI tract. We investigated the effect of silica NPs on NoV replication and host cell response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.7 murine macrophages. Pretreatment with 10 μg/ml silica significantly reduced the viability of macrophages, but no cumulative effects on viability of macrophages were observed with MNV-1 infection. No difference was observed between exposure to control or silica NPs on either the quantity of viral genome copies or the production of infectious virus in macrophages infected with MNV-1. Silica NPs reduced the ability of macrophages to upregulate genes encoding bone morphogenic proteins (BMPs), chemokine ligands and cytokines for which expression levels were otherwise found to be upregulated in response to MNV-1 infection. Furthermore, silica NPs reduced the levels of proinflammatory cytokines secreted by macrophages in response to MNV infection. Finally, silica NPs with MNV-1 infection produced a genotoxic insult to macrophages. Strikingly, this genotoxic insult was also found to occur as a synergistic effect of silica NPs and feline calicivirus infection in feline kidney epithelial cells. Taken together, our study suggests important safety considerations related to reducing exposure to silica NPs affecting the GI tract in individuals infected with NoVs and possibly other foodborne viruses.
Collapse
Affiliation(s)
- Sudhakar S Agnihothram
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Microbiology, Honolulu, Hawaii, 96816, USA
| | - Sheryl Anne Vermudez
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Microbiology, Honolulu, Hawaii, 96816, USA; Chaminade University of Honolulu, Honolulu, Hawaii, 96816, USA
| | - Lisa Mullis
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Microbiology, Honolulu, Hawaii, 96816, USA
| | - Todd A Townsend
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Genetic and Molecular Toxicology, Honolulu, Hawaii, 96816, USA
| | - Mugimane G Manjanatha
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Genetic and Molecular Toxicology, Honolulu, Hawaii, 96816, USA
| | - Marli P Azevedo
- United States Food and Drug Administration, National Center for Toxicological Research (NCTR), Division of Microbiology, Honolulu, Hawaii, 96816, USA
| |
Collapse
|
37
|
Bragazzi Cunha J, Wobus CE. Select membrane proteins modulate MNV-1 infection of macrophages and dendritic cells in a cell type-specific manner. Virus Res 2016; 222:64-70. [PMID: 27264433 DOI: 10.1016/j.virusres.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Noroviruses cause gastroenteritis in humans and other animals, are shed in the feces, and spread through the fecal-oral route. Host cellular expression of attachment and entry receptors for noroviruses is thought to be a key determinant of cell tropism and the strict species-specificity. However, to date, only carbohydrates have been identified as attachment receptors for noroviruses. Thus, we investigated whether host cellular proteins play a role during the early steps of norovirus infection. We used murine norovirus (MNV) as a representative norovirus, since MNV grows well in tissue culture and is a frequently used model to study basic aspects of norovirus biology. Virus overlay protein binding assay followed by tandem mass spectrometry analysis was performed in two permissive cell lines, RAW264.7 (murine macrophages) and SRDC (murine dendritic cells) to identify four cellular membrane proteins as candidates. Loss-of-function studies revealed that CD36 and CD44 promoted MNV-1 binding to primary dendritic cells, while CD98 heavy chain (CD98) and transferrin receptor 1 (TfRc) facilitated MNV-1 binding to RAW 264.7 cells. Furthermore, the VP1 protruding domain of MNV-1 interacted directly with the extracellular domains of recombinant murine CD36, CD98 and TfRc by ELISA. Additionally, MNV-1 infection of RAW 264.7 cells was enhanced by soluble rCD98 extracellular domain. These studies demonstrate that multiple membrane proteins can promote efficient MNV-1 infection in a cell type-specific manner. Future studies are needed to determine the molecular mechanisms by which each of these proteins affect the MNV-1 infectious cycle.
Collapse
Affiliation(s)
- Juliana Bragazzi Cunha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
38
|
Structural Biology of Noroviruses. VIRAL GASTROENTERITIS 2016. [PMCID: PMC7149786 DOI: 10.1016/b978-0-12-802241-2.00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Noroviruses constitute a major genus in the family Caliciviridae, which contains icosahedral viruses with positive-sense single-stranded RNA genome. In humans, these constantly evolving viruses are the cause of sporadic and epidemic gastroenteritis. Despite a lack of a reproducible cell culture system or a small animal model, remarkable progress has been made in our understanding of the molecular biology, immunology, structural biology, and evolution of human noroviruses. This understanding is further enhanced by studies of nonhuman noroviruses and animal caliciviruses that are cultivatable. The main focus of this chapter is to review our current understanding of the structural biology of noroviruses in particular and of caliciviruses in general, with an emphasis on the unique modular organization of the capsid that allows for strain-dependent variations in glycan recognition and antigenicity to facilitate sustained virus evolution. Finally, structures of the proteins are reviewed that are critical for virus replication and that can be targeted in the design of small molecule drugs for use as effective antivirals.
Collapse
|
39
|
Abstract
Noroviruses (NoVs) are highly prevalent, positive-sense RNA viruses that infect a range of mammals, including humans and mice. Murine noroviruses (MuNoVs) are the most prevalent pathogens in biomedical research colonies, and they have been used extensively as a model system for human noroviruses (HuNoVs). Despite recent successes in culturing HuNoVs in the laboratory and a small animal host, studies of human viruses have inherent limitations. Thus, owing to its versatility, the MuNoV system-with its native host, reverse genetics, and cell culture systems-will continue to provide important insights into NoV and enteric virus biology. In the current review, we summarize recent findings from MuNoVs that increase our understanding of enteric virus pathogenesis and highlight similarities between human and murine NoVs that underscore the value of MuNoVs to inform studies of HuNoV biology. We also discuss the potential of endemic MuNoV infections to impact other disease models.
Collapse
Affiliation(s)
- Stephanie M Karst
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610;
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
40
|
Tao Y, Rotem A, Zhang H, Chang CB, Basu A, Kolawole AO, Koehler SA, Ren Y, Lin JS, Pipas JM, Feldman AB, Wobus CE, Weitz DA. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. LAB ON A CHIP 2015; 15:3934-40. [PMID: 26304791 DOI: 10.1039/c5lc00556f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.
Collapse
Affiliation(s)
- Ye Tao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grove SF, Suriyanarayanan A, Puli B, Zhao H, Li M, Li D, Schaffner DW, Lee A. Norovirus cross-contamination during preparation of fresh produce. Int J Food Microbiol 2015; 198:43-9. [PMID: 25590260 DOI: 10.1016/j.ijfoodmicro.2014.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/04/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Infection with human norovirus (HuNoV) is considered a common cause of foodborne illness worldwide. Foodborne HuNoV outbreaks may result from consumption of food contaminated by an infected food handler in the foodservice environment, in which bare-hand contact, lack of hand washing, and inadequate cleaning and disinfection are common contributing factors. The goal of this study was to examine cross-contamination of a HuNoV surrogate, murine norovirus (MNV-1), during common procedures used in preparing fresh produce in a food service setting, including turning water spigots, handling and chopping Romaine lettuce, and washing hands. MNV-1 transfer % was log-transformed to achieve a normal distribution of the data and enable appropriate statistical analyses to be performed. MNV-1 transfer coefficients varied by surface type, and a greater affinity for human hands and chopped lettuce was observed. For example, greater transfer was observed from a contaminated stainless steel spigot to a clean hand (24% or 1.4-log transfer %) compared to transfer from hand to spigot (0.6% or -0.2-log transfer %). During the chopping of Romaine lettuce, MNV-1 was transferred from either a contaminated cutting board (25% or 1.4-log transfer %) or knife (~100% or 2.0-log transfer %) to lettuce at a significantly greater rate (p>0.05) than from contaminated lettuce to the board (2.1% or 0.3-log transfer %) and knife (1.2% or 0.06-log transfer %). No significant difference (p>0.05) in MNV-1 transfer coefficients was observed between bare hands and Romaine lettuce during handling. For handwashing trials, only one hand was inoculated with MNV-1 prior to washing. The handwashing methods included rubbing hands under tap water for at least 5s (average 2.8-log reduction) or washing hands for at least 20s with liquid soap (average 2.9-log reduction) or foaming soap (average 3.0-log reduction), but no statistical difference between these reductions was achieved (p>0.05). Despite the reductions of MNV-1 observed, residual virions were detected on both hands after washing in every replicate trial. This observation reveals that virions are transferred from one hand to the other during washing with and without soap. Each transfer scenario was repeated at least 9 times, and the data gathered indicate that MNV-1 transfers readily between common surfaces during food preparation. These data are important for the development of quantitative risk analyses, and will assist in the development of appropriate intervention strategies for enteric viruses in food preparation.
Collapse
Affiliation(s)
- Stephen F Grove
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA.
| | - Annamalai Suriyanarayanan
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA
| | - Balasubramanyam Puli
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA
| | - Heng Zhao
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA
| | - Mingming Li
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA
| | - Di Li
- Department of Food Science, 65 Dudley Road, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Donald W Schaffner
- Department of Food Science, 65 Dudley Road, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Alvin Lee
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501-1957, USA
| |
Collapse
|
42
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
43
|
Fischer AE, Wu SK, Proescher JBG, Rotem A, Chang CB, Zhang H, Tao Y, Mehoke TS, Thielen PM, Kolawole AO, Smith TJ, Wobus CE, Weitz DA, Lin JS, Feldman AB, Wolfe JT. A high-throughput drop microfluidic system for virus culture and analysis. J Virol Methods 2014; 213:111-7. [PMID: 25522923 DOI: 10.1016/j.jviromet.2014.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023]
Abstract
High mutation rates and short replication times lead to rapid evolution in RNA viruses. New tools for high-throughput culture and analysis of viral phenotypes will enable more effective studies of viral evolutionary processes. A water-in-oil drop microfluidic system to study virus-cell interactions at the single event level on a massively parallel scale is described here. Murine norovirus (MNV-1) particles were co-encapsulated with individual RAW 264.7 cells in 65 pL aqueous drops formed by flow focusing in 50 μm microchannels. At low multiplicity of infection (MOI), viral titers increased greatly, reaching a maximum 18 h post-encapsulation. This system was employed to evaluate MNV-1 escape from a neutralizing monoclonal antibody (clone A6.2). Further, the system was validated as a means for testing escape from antibody neutralization using a series of viral point mutants. Finally, the replicative capacity of single viral particles in drops under antibody stress was tested. Under standard conditions, many RNA virus stocks harbor minority populations of genotypic and phenotypic variants, resulting in quasispecies. These data show that when single cells are encapsulated with single viral particles under antibody stress without competition from other virions, the number of resulting infectious particles is nearly equivalent to the number of viral genomes present. These findings suggest that lower fitness virions can infect cells successfully and replicate, indicating that the microfluidics system may serve as an effective tool for isolating mutants that escape evolutionary stressors.
Collapse
Affiliation(s)
- Audrey E Fischer
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Susan K Wu
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Jody B G Proescher
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Assaf Rotem
- Harvard School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Connie B Chang
- Harvard School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Huidan Zhang
- Harvard School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Ye Tao
- Harvard School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Thomas S Mehoke
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Peter M Thielen
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - David A Weitz
- Harvard School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Jeffrey S Lin
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Andrew B Feldman
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Joshua T Wolfe
- The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA.
| |
Collapse
|
44
|
Kolawole AO, Xia C, Li M, Gamez M, Yu C, Rippinger CM, Yucha RE, Smith TJ, Wobus CE. Newly isolated mAbs broaden the neutralizing epitope in murine norovirus. J Gen Virol 2014; 95:1958-1968. [PMID: 24899153 DOI: 10.1099/vir.0.066753-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the isolation and functional characterization of mAbs against two murine norovirus (MNV) strains, MNV-1 and WU20, which were isolated following oral infection of mice. The mAbs were screened for reactivity against the respective homologous and heterologous MNV strain by ELISA. Selected mAbs were of IgA, IgG1, IgG2a or IgG2b isotype and showed a range of Western blot reactivities from non-binding to strong binding, suggesting recognition of conformational and linear epitopes. Some of the anti-MNV-1 antibodies neutralized both MNV-1 and WU20 infections in culture and in mice, but none of the anti-WU20 mAbs neutralized either virus. The non-neutralizing anti-MNV-1 IgG2b antibody 5C4.10 was mapped to the S domain of the MNV-1 capsid, whilst the epitopes of the neutralizing anti-MNV-1 IgA antibodies 2D3.7 and 4F9.4 were mapped to the P domain. Generation of neutralization escape viruses showed that two mutations (V339I and D348E) in the C'D' loop of the MNV-1 P domain mediated escape from mAb 2D3.7 and 4F9.4 neutralization. These findings broaden the known neutralizing epitopes of MNV to the main surface-exposed loops of the P domain. In addition, the current panel of antibodies provides valuable reagents for studying norovirus biology and development of diagnostic tools.
Collapse
Affiliation(s)
- Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunsheng Xia
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Ming Li
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Monica Gamez
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chenchen Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christine M Rippinger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan E Yucha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Xiang Z, Tian S, Tong W, Chang H, Su J, Zhang L, Liu X, Li Y, Wei Q, Liu Y. MNV primarily surveillance by a recombination VP1-derived ELISA in Beijing area in China. J Immunol Methods 2014; 408:70-7. [PMID: 24857757 DOI: 10.1016/j.jim.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 05/07/2014] [Indexed: 11/28/2022]
Abstract
Murine norovirus (MNV) was first found as a surrogate for human norovirus study. However, MNV infection was mostly prevalent in laboratory mice, and its immunomodulatory properties may affect the outcome of animal experiments. MNV surveillance had been performed in Europe, North America and some other countries, but not in China. Nowadays, the complete MNV virions had been used as antigen in MNV serological detection. However, the complexity in the preparation of virions might affect the antigen stability, and the virulence recovery of virion antigen had also been detected. In this study, the caspid VP1 protein was proved to be the mostly predominant antigen in MNV virions. An ELISA method using the recombination VP1 as antigen was developed (rVP1 ELISA). The rVP1 ELISA is more sensitive and less specific than the MNV virion-derived IFA method. To address the prevalence of MNV in China, a totally 600 mouse serum samples from Beijing area were tested by rVP1 ELISA and confirmed by IFA and WB. The MNV infection rate was 11.67%, but most of the MNV-positive samples were from experimental facilities (MNV rate=30.94%), not from commercial vendors (MNV rate=0.27%). Collectively, a sensitive rVP1 ELISA was developed in the current study, and the MNV investigation by rVP1 ELISA showed that MNV infection was mostly prevalent in the laboratory mice, especially the mice from experimental facilities in Beijing area in China.
Collapse
Affiliation(s)
- Zhiguang Xiang
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Shengnan Tian
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Wei Tong
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Hui Chang
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Jingfen Su
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Lifang Zhang
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Xianju Liu
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Yuhan Li
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China.
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China.
| |
Collapse
|
46
|
Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. J Virol 2014; 88:6168-80. [PMID: 24648450 DOI: 10.1128/jvi.00201-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Susceptibility to the majority of NoV infections is determined by genetically controlled secretor-dependent expression of histo-blood group antigens (HBGAs), which are also critical for NoV attachment to host cells. Human NoVs are classified into two major genogroups (genogroup I [GI] and GII), with each genogroup further divided into several genotypes. GII NoVs are more prevalent and exhibit periodic emergence of new variants, suggested to be driven by altered HBGA binding specificities and antigenic drift. Recent epidemiological studies show increased activity among GI NoVs, with some members showing the ability to bind nonsecretor HBGAs. NoVs bind HBGAs through the protruding (P) domain of the major capsid protein VP1. GI NoVs, similar to GII, exhibit significant sequence variations in the P domain; it is unclear how these variations affect HBGA binding specificities. To understand the determinants of possible strain-specific HBGA binding among GI NoVs, we determined the structure of the P domain of a GI.7 clinical isolate and compared it to the previously determined P domain structures of GI.1 and GI.2 strains. Our crystallographic studies revealed significant structural differences, particularly in the loop regions of the GI.7 P domain, altering its surface topography and electrostatic landscape and potentially indicating antigenic variation. The GI.7 strain bound to H- and A-type, Lewis secretor, and Lewis nonsecretor families of HBGAs, allowing us to further elucidate the structural determinants of nonsecretor HBGA binding among GI NoVs and to infer several contrasting and generalizable features of HBGA binding in the GI NoVs. IMPORTANCE Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Recent epidemiological studies have shown increased prevalence of genogroup I (GI) NoVs. Although secretor-positive status is strongly correlated with NoV infection, cases of NoV infection associated with secretor-negative individuals are reported. Biochemical studies have shown that GI NoVs exhibit genotype-dependent binding to nonsecretor histo-blood group antigens (HBGAs). From our crystallographic studies of a GI.7 NoV, in comparison with previous studies on GI.1 and GI.2 NoVs, we show that genotypic differences translate to extensive structural changes in the loop regions that significantly alter the surface topography and electrostatic landscape of the P domain; these features may be indicative of antigenic variations contributing to serotypic differentiation in GI NoVs and also differential modulation of the HBGA binding characteristics. A significant finding is that the threshold length and the structure of one of the loops are critical determinants in the binding of GI NoVs to nonsecretor HBGAs.
Collapse
|
47
|
Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization. J Virol 2014; 88:4543-57. [PMID: 24501415 DOI: 10.1128/jvi.03685-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A'B' and E'F' loops. Six mutations in the E'F' loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of the antibody structure into the virion/antibody complex identifies two conformations of the antibody binding domain of the viral capsid: one with a superior fit and the other with an inferior fit to the antibody. These data suggest a unique mode of antibody neutralization. In contrast to other viruses that largely escape antibody neutralization through direct disruption of the antibody-virus interface, we identify mutations that acted indirectly by limiting the conformation of the antibody binding loop in the viral capsid and drive the antibody binding domain into the conformation unable to be bound by the antibody.
Collapse
|
48
|
Shortland A, Chettle J, Archer J, Wood K, Bailey D, Goodfellow I, Blacklaws BA, Heeney JL. Pathology caused by persistent murine norovirus infection. J Gen Virol 2013; 95:413-422. [PMID: 24225497 PMCID: PMC4310207 DOI: 10.1099/vir.0.059188-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Subclinical infection of murine norovirus (MNV) was detected in a mixed breeding group of WT and Stat1(-/-) mice with no outward evidence of morbidity or mortality. Investigations revealed the presence of an attenuated MNV variant that did not cause cytopathic effects in RAW264.7 cells or death in Stat1(-/-) mice. Histopathological analysis of tissues from WT, heterozygous and Stat1(-/-) mice revealed a surprising spectrum of lesions. An infectious molecular clone was derived directly from faeces (MNV-O7) and the sequence analysis confirmed it was a member of norovirus genogroup V. Experimental infection with MNV-O7 induced a subclinical infection with no weight loss in Stat1(-/-) or WT mice, and recapitulated the clinical and pathological picture of the naturally infected colony. Unexpectedly, by day 54 post-infection, 50 % of Stat1(-/-) mice had cleared MNV-O7. In contrast, all WT mice remained infected persistently. Most significantly, this was associated with liver lesions in all the subclinically infected WT mice. These data confirmed that long-term persistence in WT mice is established with specific variants of MNV and that despite a subclinical presentation, active foci of acute inflammation persist within the liver. The data also showed that STAT1-dependent responses are not required to protect mice from lethal infection with all strains of MNV.
Collapse
Affiliation(s)
- Amita Shortland
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - James Chettle
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Joy Archer
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Dalan Bailey
- Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 2QQ, UK
| | - Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| |
Collapse
|
49
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
50
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|