1
|
Hýsková V, Bělonožníková K, Chmelík J, Hoffmeisterová H, Čeřovská N, Moravec T, Ryšlavá H. Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:1236. [PMID: 38732454 PMCID: PMC11085613 DOI: 10.3390/plants13091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses.
Collapse
Affiliation(s)
- Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic; (V.H.); (K.B.); or (J.C.)
| | - Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic; (V.H.); (K.B.); or (J.C.)
| | - Josef Chmelík
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic; (V.H.); (K.B.); or (J.C.)
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Hoffmeisterová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (H.H.); (N.Č.); (T.M.)
| | - Noemi Čeřovská
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (H.H.); (N.Č.); (T.M.)
| | - Tomáš Moravec
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (H.H.); (N.Č.); (T.M.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic; (V.H.); (K.B.); or (J.C.)
| |
Collapse
|
2
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Martino SD, Petri GL, De Rosa M. Hepatitis C: The Story of a Long Journey through First, Second, and Third Generation NS3/4A Peptidomimetic Inhibitors. What Did We Learn? J Med Chem 2024; 67:885-921. [PMID: 38179950 DOI: 10.1021/acs.jmedchem.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.
Collapse
Affiliation(s)
- Simona Di Martino
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Giovanna Li Petri
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
5
|
Flynn JM, Huang QYJ, Zvornicanin SN, Schneider-Nachum G, Shaqra AM, Yilmaz NK, Moquin SA, Dovala D, Schiffer CA, Bolon DN. Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease. ACS Infect Dis 2023; 9:1372-1386. [PMID: 37390404 PMCID: PMC11161032 DOI: 10.1021/acsinfecdis.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Drugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qiu Yu J. Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah N. Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gila Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ala M. Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Dustin Dovala
- Novartis Institute for Biomedical Research, Emeryville, CA 94608, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Shaqra AM, Zvornicanin SN, Huang QYJ, Lockbaum GJ, Knapp M, Tandeske L, Bakan DT, Flynn J, Bolon DNA, Moquin S, Dovala D, Kurt Yilmaz N, Schiffer CA. Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance. Nat Commun 2022; 13:3556. [PMID: 35729165 PMCID: PMC9211792 DOI: 10.1038/s41467-022-31210-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Coronaviruses can evolve and spread rapidly to cause severe disease morbidity and mortality, as exemplified by SARS-CoV-2 variants of the COVID-19 pandemic. Although currently available vaccines remain mostly effective against SARS-CoV-2 variants, additional treatment strategies are needed. Inhibitors that target essential viral enzymes, such as proteases and polymerases, represent key classes of antivirals. However, clinical use of antiviral therapies inevitably leads to emergence of drug resistance. In this study we implemented a strategy to pre-emptively address drug resistance to protease inhibitors targeting the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation. We solved nine high-resolution cocrystal structures of SARS-CoV-2 Mpro bound to substrate peptides and six structures with cleavage products. These structures enabled us to define the substrate envelope of Mpro, map the critical recognition elements, and identify evolutionarily vulnerable sites that may be susceptible to resistance mutations that would compromise binding of the newly developed Mpro inhibitors. Our results suggest strategies for developing robust inhibitors against SARS-CoV-2 that will retain longer-lasting efficacy against this evolving viral pathogen.
Collapse
Affiliation(s)
- Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Sarah N Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Qiu Yu J Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Mark Knapp
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Laura Tandeske
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - David T Bakan
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Julia Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Stephanie Moquin
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Dustin Dovala
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US.
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US.
| |
Collapse
|
7
|
Patil VS, Harish DR, Vetrivel U, Roy S, Deshpande SH, Hegde HV. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules 2022; 27:molecules27031076. [PMID: 35164341 PMCID: PMC8839135 DOI: 10.3390/molecules27031076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of −8.6 kcal/mol and −7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of −7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.
Collapse
Affiliation(s)
- Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| | - Darasaguppe R. Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Sanjay H. Deshpande
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, India
| | - Harsha V. Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| |
Collapse
|
8
|
Sofia MJ. Curing Hepatitis C with Direct‐Acting Antiviral Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2022:13-57. [DOI: 10.1002/9783527810697.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Zheng C, Schneider M, Marion A, Antes I. The Q41R mutation in the HCV-protease enhances the reactivity towards MAVS by suppressing non-reactive pathways. Phys Chem Chem Phys 2022; 24:2126-2138. [PMID: 35029245 DOI: 10.1039/d1cp05002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental findings pointed out a new mutation in the HCV protease, Q41R, responsible for a significant enhancement of the enzyme's reactivity towards the mitochondrial antiviral-signaling protein (MAVS). The Q41R mutation is located rather far from the active site, and its involvement in the overall reaction mechanism is thus unclear. We used classical molecular dynamics and QM/MM to study the acylation reaction of HCV NS3/4A protease variants bound to MAVS and the NS4A/4B substrate and uncovered the indirect mechanism by which the Q41R mutation plays a critical role in the efficient cleavage of the substrate. Our simulations reveal that there are two major conformations of the MAVS H1'(p) residue for the wild type protease and only one conformation for the Q41R mutant. The conformational space of H1'(p) is restricted by the Q41R mutation due to a π-π stacking between H1'(p) and R41 as well as a strong hydrogen bond between the backbone of H57 and the side chain of R41. Further QM/MM calculations indicate that the complex with the conformation ruled out by the Q41R substitution is a non-reactive species due to its higher free energy barrier for the acylation reaction. Based on our calculations, we propose a kinetic mechanism that explains experimental data showing an increase of apparent rate constants for MAVS cleavage in Q41R mutants. Our model predicts that the non-reactive conformation of the enzyme-substrate complex modulates reaction kinetics like an uncompetitive inhibitor.
Collapse
Affiliation(s)
- Chen Zheng
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Markus Schneider
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Antoine Marion
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Middle East Technical University, Department of Chemistry, Ankara 06800, Turkey.
| | - Iris Antes
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| |
Collapse
|
10
|
Tarannum H, Chauhan B, Samadder A, Roy H, Nandi S. To Explore the Potential Targets and Current Structure-based Design Strategies Utilizing Co-crystallized Ligand to Combat HCV. Curr Drug Targets 2021; 22:590-604. [PMID: 32720601 DOI: 10.2174/1389450121999200727215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis C Virus (HCV) belongs to the Hepacivirus family. HCV has been designated as a very dreadful virus as it can attack the liver, causing inflammation and even may lead to cancer in chronic conditions. It was estimated that 71 million people around the world have chronic HCV infection. World Health Organization (WHO) reported that about 399000 people died because of chronic cirrhosis and liver cancer globally. In spite of the abundance of availability of drugs for the treatment of HCV, however, the issue of drug resistance surpasses all the possibilities of therapeutic management of HCV. Therefore, to address this issue of 'drug-resistance', various HCV targets were explored to quest the evaluation of the mechanism of the disease progression. METHODS An attempt has been made in the present study to explore the various targets of HCV involved in the mechanism(s) of the disease initiation and progression and to focus on the mode of binding of ligands, which are co-crystallized at the active cavity of different HCV targets. CONCLUSION The present study could predict some crucial features of these ligands, which possibly interacted with various amino acid residues responsible for their biological activity and molecular signaling pathway(s). Such binding mode may be considered as a template for the high throughput screening and designing of active congeneric ligands to combat HCV.
Collapse
Affiliation(s)
- Heena Tarannum
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Bhumika Chauhan
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
11
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
12
|
Dultz G, Shimakami T, Schneider M, Murai K, Yamane D, Marion A, Zeitler TM, Stross C, Grimm C, Richter RM, Bäumer K, Yi M, Biondi RM, Zeuzem S, Tampé R, Antes I, Lange CM, Welsch C. Extended interaction networks with HCV protease NS3-4A substrates explain the lack of adaptive capability against protease inhibitors. J Biol Chem 2020; 295:13862-13874. [PMID: 32747444 PMCID: PMC7535904 DOI: 10.1074/jbc.ra120.013898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168 To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.
Collapse
Affiliation(s)
- Georg Dultz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Markus Schneider
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Daisuke Yamane
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Antoine Marion
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Tobias M Zeitler
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Claudia Stross
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Grimm
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Rebecca M Richter
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Katrin Bäumer
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ricardo M Biondi
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; Biomedicine Research Institute of Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; University Center for Infectious Diseases, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter and Cluster of Excellence-Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Christian M Lange
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; University Center for Infectious Diseases, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
13
|
Liu Z, Mao X, Yu K, Suo C, Jin L, Zhang T, Chen X. Prevalence of HCV resistance-associated substitutions among treatment-failure patients receiving direct-acting antiviral agents. J Viral Hepat 2020; 27:585-592. [PMID: 32049405 DOI: 10.1111/jvh.13270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
Direct-acting antiviral (DAA) failure, which is mainly associated with the selection of resistance-associated substitutions (RASs), is not rare in HCV treatment. RAS data collected from published literature and RAS prevalence were integrated using meta-analysis. DAA-failure-associated RASs were identified by comparing their prevalence between DAA-failure and DAA-naïve patients. Prevalences of emerging RASs that occurred during treatment were also estimated. A total of 2932 DAA-naïve patients and 1466 DAA-failure patients were included. Significant differences in the prevalence of RASs were found in 76 scenarios that involved 34 RASs (11 in NS3, 18 in NS5A and 5 in NS5B), 4 genotypes (GTs) (GT1a, GT1b and GT3-4) and 14 DAAs (6 NS3 protease inhibitors [PIs], 6 NS5A inhibitors and 2 NS5B inhibitors). For NS3, the DAA-failure-associated RASs included V36L, Y56H, Q80K/R, R155K, A156T and D168A/E/L/T/V/Y. Substitutions at R155 and D168 were dominant for most NS3 PIs. For NS5A, DAA-failure-associated RASs included K24R, Q30R, L31M, and P32L in GT1a; R30Q/H, L31F/I/M/V, P58S, and Y93H in GT1b; A30K, L31M and Y93H in GT3; and M31V and Y93H in GT4. Y93H was the most prevalent RAS for NS5A inhibitors. DAA-failure-associated RASs were found at only five positions in NS5B. The majority of DAA-failure patients relapsed. A significant difference was detected for only four RAS sites between relapse patients and nonresponse/breakthrough patients. The RAS prevalence in DAA-failure patients varied among the HCV GTs and DAA regimens. The identified treatment-selected resistance patterns for broadly used DAA regimens will enable the selection of optimized retreatment options.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xianhua Mao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Public Health Safety (Fudan University), Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Public Health Safety (Fudan University), Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| |
Collapse
|
14
|
Matthew AN, Zephyr J, Nageswara Rao D, Henes M, Kamran W, Kosovrasti K, Hedger AK, Lockbaum GJ, Timm J, Ali A, Kurt Yilmaz N, Schiffer CA. Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors. mBio 2020; 11:e00172-20. [PMID: 32234812 PMCID: PMC7157764 DOI: 10.1128/mbio.00172-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.
Collapse
Affiliation(s)
- Ashley N Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wasih Kamran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Adam K Hedger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
15
|
Zhou J, Fang L, Yang Z, Xu S, Lv M, Sun Z, Chen J, Wang D, Gao J, Xiao S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach. FASEB J 2019; 33:14575-14587. [PMID: 31690127 DOI: 10.1096/fj.201901624rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Coronaviruses (CoVs) infect humans and multiple other animal species, causing highly prevalent and severe diseases. 3C-like proteases (3CLpros) from CoVs (also called main proteases) are essential for viral replication and are also involved in polyprotein cleavage and immune regulation, making them attractive and effective targets for the development of antiviral drugs. Herein, the 3CLpro from the porcine epidemic diarrhea virus, an enteropathogenic CoV, was used as a model to identify novel crucial residues for enzyme activity. First, we established a rapid, sensitive, and efficient luciferase-based biosensor to monitor the activity of PDEV 3CLproin vivo. Using this luciferase biosensor, along with confirming the well-known catalytic residues (His41 and Cys144), we identified 4 novel proteolytically inactivated mutants of PDEV 3CLpro, which was also confirmed in mammalian cells by biochemical experiments. Our molecular dynamics (MD) simulations showed that the hydrogen bonding interactions occurring within and outside of the protease's active site and the dynamic fluctuations of the substrate, especially the van der Waals contacts, were drastically altered, a situation related to the loss of 3CLpro activity. These data suggest that changing the intermolecular dynamics in protein-substrate complexes eliminates the mechanism underlying the protease activity. The discovery of novel crucial residues for enzyme activity in the binding pocket could potentially provide more druggable sites for the design of protease inhibitors. In addition, our in-depth study of the dynamic substrate's envelope model using MD simulations is an approach that could augment the discovery of new inhibitors against 3CLpro in CoVs and other viral 3C proteases.-Zhou, J., Fang, L., Yang, Z., Xu, S., Lv, M., Sun, Z., Chen, J., Wang, D., Gao, J., Xiao, S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach.
Collapse
Affiliation(s)
- Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengting Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jun Gao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Lawitz E, Yang JC, Stamm LM, Taylor JG, Cheng G, Brainard DM, Miller MD, Mo H, Dvory-Sobol H. Characterization of HCV resistance from a 3-day monotherapy study of voxilaprevir, a novel pangenotypic NS3/4A protease inhibitor. Antivir Ther 2019; 23:325-334. [PMID: 29063860 DOI: 10.3851/imp3202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Voxilaprevir (VOX; GS-9857) is a pangenotypic HCV NS3/4A protease inhibitor (PI) with potent antiviral activity against HCV genotypes (GTs) 1-6 and improved coverage of GT1 NS3 resistance-associated substitutions (RAS) associated with other HCV PIs. In a 3-day Phase Ib monotherapy study in patients infected with HCV GT1a, 1b, 2, 3 and 4, VOX was well-tolerated and resulted in maximal mean viral load reduction >3 log10 IU/ml at the 100 mg dose across all genotypes evaluated. This report characterizes the HCV NS3 RAS in the study. METHODS The NS3 gene was amplified and successfully deep sequenced using MiSeq for 66 patients at baseline and 61 patients post-baseline using 15% and 1% assay cutoffs. RESULTS With a 15% assay cutoff, pretreatment HCV NS3 RAS were present in the HCV of 38% (9/24) of patients with GT1a and 5% (1/19) with GT3a; there were no pretreatment NS3 RAS present in patients with GT1b (n=6), GT2 (n=7) or GT4 (n=4). In patients with and without pretreatment NS3 RAS, ≥3.4 log10 mean maximal viral load reductions over 3 days of VOX administration were observed. The majority of patients did not have detectable treatment-emergent NS3 RAS and only 12% (7/53) and 26% (14/53) had emergent NS3 RAS using 15% and 1% cutoffs, respectively. No NS3 RAS were detected in patients with GT2 or GT4. A156T or A156V were the most prevalent emergent NS3 RAS in patients with GT1a or GT1b infection, but were not observed in patients with GT3 infection. CONCLUSIONS The lack of selection of NS3 RAS in the majority of patients demonstrates a high resistance barrier for VOX. ClinicalTrails.gov identifier NCT02185794.
Collapse
Affiliation(s)
- Eric Lawitz
- Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | | | | - Hongmei Mo
- Gilead Sciences, Inc., Foster City, CA, USA
| | | |
Collapse
|
17
|
Doncheva NT, Domingues FS, McGivern DR, Shimakami T, Zeuzem S, Lengauer T, Lange CM, Albrecht M, Welsch C. Near-Neighbor Interactions in the NS3-4A Protease of HCV Impact Replicative Fitness of Drug-Resistant Viral Variants. J Mol Biol 2019; 431:2354-2368. [PMID: 31051172 DOI: 10.1016/j.jmb.2019.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
A variety of amino acid substitutions in the NS3-4A protease of the hepatitis C virus lead to protease inhibitor (PI) resistance. Many of these significantly impair the replication fitness of the resistant variants in a genotype- and subtype-dependent manner, a critical factor in determining the probability with which resistant variants will persist. However, the underlying molecular mechanisms are unknown. Here, we present a novel residue-interaction network approach to determine how near-neighbor interactions of PI resistance mutations in NS3-4A can impact protease functional sites dependent on their genomic background. We constructed subtype-specific consensus residue networks for subtypes 1a and 1b from protease structure ensembles combined with biological properties of protein residues and evolutionary amino acid conservation. By applying local and global network topology analysis and visual exploration, we characterize PI resistance-associated sites and outline differences in near-neighbor interactions. We find local residue-interaction patterns and features at protease functional sites that are subtype specific. The noncovalent bonding patterns indicate higher fitness costs conferred by PI resistance mutations in a subtype 1b genomic background and explain the prevalence of Q80K and R155K in subtype 1a. Based on local residue interactions, we predict a subtype-specific role for the protease residue NS3-Q80 in molecular mechanisms related to the assembly of infectious virus particles that is supported by experimental data on the capacity of Q80K variants to replicate and produce infectious virus in subtype 1a and 1b cell culture.
Collapse
Affiliation(s)
- Nadezhda T Doncheva
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany; Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | | | - David R McGivern
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Christian M Lange
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany
| | - Mario Albrecht
- Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
| | - Christoph Welsch
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany; Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany.
| |
Collapse
|
18
|
Ezat AA, Elshemey WM. A comparative study of the efficiency of HCV NS3/4A protease drugs against different HCV genotypes using in silico approaches. Life Sci 2018; 217:176-184. [PMID: 30528183 DOI: 10.1016/j.lfs.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the efficacy of Direct Acting Antivirals (DAAs) in the treatment of different Hepatitis C Virus (HCV) genotypes. MAIN METHODS Homology modeling is used to predict the 3D structures of different genotypes while molecular docking is employed to predict genotype - drug interactions (Binding Mode) and binding free energy (Docking Score). KEY FINDINGS Simeprevir (TMC435) and to a lesser degree MK6325 are the best drugs among the studied drugs. The predicted affinity of drugs against genotype 1a is always better than other genotypes. P2-P4 macrocyclic drugs show better performance against genotypes 2, 3 and 5. Macrocyclic drugs are better than linear drugs. SIGNIFICANCE HCV is one of the major health problems worldwide. Until the discovery of DAAs, HCV treatment faced many failures. DAAs target key functional machines of the virus life cycle and shut it down. NS3/4A protease is an important target and several drugs have been designed to inhibit its functions. There are several NS3/4A protease drugs approved by Food and Drug Administration (FDA). Unfortunately, the virus exhibits resistance against these drugs. This study is significant in elucidating that no one drug is able to treat different genotypes with the same efficiency. Therefore, treatment should be prescribed based on the HCV genotype.
Collapse
Affiliation(s)
- Ahmed A Ezat
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | - Wael M Elshemey
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
19
|
Matthew AN, Leidner F, Newton A, Petropoulos CJ, Huang W, Ali A, KurtYilmaz N, Schiffer CA. Molecular Mechanism of Resistance in a Clinically Significant Double-Mutant Variant of HCV NS3/4A Protease. Structure 2018; 26:1360-1372.e5. [PMID: 30146168 DOI: 10.1016/j.str.2018.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/01/2018] [Accepted: 07/21/2018] [Indexed: 12/22/2022]
Abstract
Despite significant progress in hepatitis C virus (HCV) protease inhibitor (PI) drug design, resistance remains a problem causing treatment failure. Double-substitution variants, notably Y56H/D168A, have emerged in patients who fail therapy with a PI-containing regimen. The resistance conferred by Asp168 substitutions has been well characterized and avoided in newer inhibitors. However, an additional mutation at Tyr56 confers resistance to even the most robust inhibitors. Here, we elucidate the molecular mechanisms of resistance for the Y56H/D168A variant against grazoprevir (and four analogs), paritaprevir, and danoprevir through inhibition assays, co-crystal structures, and molecular dynamics simulations. The PIs' susceptibility to Y56H/D168A varies, with those stacking on the catalytic His57 losing the most potency. For such inhibitors, the Y56H substitution disrupts favorable stacking interactions with the neighboring catalytic His57. This indirect mechanism of resistance threatens to cause multi-PI failure as all HCV PIs in clinical development rely on interactions with the catalytic triad.
Collapse
Affiliation(s)
- Ashley N Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alicia Newton
- Monogram Biosciences, South San Francisco, CA 94080, USA
| | | | - Wei Huang
- Monogram Biosciences, South San Francisco, CA 94080, USA
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nese KurtYilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
21
|
Soumana DI, Yilmaz NK, Ali A, Prachanronarong KL, Schiffer CA. Molecular and Dynamic Mechanism Underlying Drug Resistance in Genotype 3 Hepatitis C NS3/4A Protease. J Am Chem Soc 2016; 138:11850-9. [PMID: 27512818 PMCID: PMC5221612 DOI: 10.1021/jacs.6b06454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV), affecting an estimated 150 million people worldwide, is the leading cause of viral hepatitis, cirrhosis and hepatocellular carcinoma. HCV is genetically diverse with six genotypes (GTs) and multiple subtypes of different global distribution and prevalence. Recent development of direct-acting antivirals against HCV including NS3/4A protease inhibitors (PIs) has greatly improved treatment outcomes for GT-1. However, all current PIs exhibit significantly lower potency against GT-3. Lack of structural data on GT-3 protease has limited our ability to understand PI failure in GT-3. In this study the molecular basis for reduced potency of current inhibitors against GT-3 NS3/4A protease is elucidated with structure determination, molecular dynamics simulations and inhibition assays. A chimeric GT-1a3a NS3/4A protease amenable to crystallization was engineered to recapitulate decreased sensitivity of GT-3 protease to PIs. High-resolution crystal structures of this GT-1a3a bound to 3 PIs, asunaprevir, danoprevir and vaniprevir, had only subtle differences relative to GT-1 despite orders of magnitude loss in affinity. In contrast, hydrogen-bonding interactions within and with the protease active site and dynamic fluctuations of the PIs were drastically altered. The correlation between loss of intermolecular dynamics and inhibitor potency suggests a mechanism where polymorphisms between genotypes (or selected mutations) in the drug target confer resistance through altering the intermolecular dynamics of the protein-inhibitor complex.
Collapse
Affiliation(s)
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
22
|
Ozdemir Isik G, Ozer AN. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading. J Biomol Struct Dyn 2016; 35:1102-1114. [DOI: 10.1080/07391102.2016.1171801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gonca Ozdemir Isik
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| | - A. Nevra Ozer
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| |
Collapse
|
23
|
Abstract
The treatment of HCV infection has evolved at an extremely rapid pace over the past few years. The development of direct-acting antiviral agents, which potently inhibit different stages in the viral life cycle, has led to the replacement of interferon with well-tolerated oral therapies with cure rates of >90% in most patient populations. Understanding the mechanisms of action of the various agents as well as related issues, including the molecular basis for resistance, helps to guide drug development and clinical use. In this Review, we provide a mechanistic description of NS3/4A protease inhibitors, nucleotide and non-nucleotide inhibitors of the NS5B viral polymerase and inhibitors of the NS5A protein, followed by a summary of clinical data from studies of each drug class alone and in combination. Remaining challenges in drug development efforts are also discussed.
Collapse
|
24
|
Soumana DI, Kurt Yilmaz N, Prachanronarong KL, Aydin C, Ali A, Schiffer CA. Structural and Thermodynamic Effects of Macrocyclization in HCV NS3/4A Inhibitor MK-5172. ACS Chem Biol 2016; 11:900-9. [PMID: 26682473 DOI: 10.1021/acschembio.5b00647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound to WT and A156T protease and compared these structures, their molecular dynamics, and experimental binding thermodynamics to the parent compound. We find that the "unique" binding mode of MK-5172 is conserved even when the P2-P4 macrocycle is removed or replaced with a P1-P3 macrocycle. While beneficial to decreasing the entropic penalty associated with binding, the constraint exerted by the P2-P4 macrocycle prevents efficient rearrangement to accommodate the A156T mutation, a deficit alleviated in the linear and P1-P3 analogs. Design of macrocyclic inhibitors against NS3/4A needs to achieve the best balance between exerting optimal conformational constraint for enhancing potency, fitting within the substrate envelope and allowing adaptability to be robust against resistance mutations.
Collapse
Affiliation(s)
- Djadé I. Soumana
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Cihan Aydin
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
25
|
|
26
|
Welsch C, Haselow K, Gouttenoire J, Schneider M, Morikawa K, Martinez Y, Susser S, Sarrazin C, Zeuzem S, Antes I, Moradpour D, Lange CM. Hepatitis C virus variants resistant to macrocyclic NS3-4A inhibitors subvert IFN-β induction by efficient MAVS cleavage. J Hepatol 2015; 62:779-84. [PMID: 25463536 DOI: 10.1016/j.jhep.2014.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage. METHODS The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs. RESULTS We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs. CONCLUSIONS Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.
Collapse
Affiliation(s)
- Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany; Max-Planck-Institute for Informatics, Computational Biology & Applied Algorithmics, D-66123 Saarbrücken, Germany
| | - Katrin Haselow
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Markus Schneider
- Technical University Munich, Center for Integrated Protein Science Munich (CIPS(M)) and Department of Life Science, D-85354 Freising-Weihenstephan, Germany
| | - Kenichi Morikawa
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Yolanda Martinez
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany
| | - Simone Susser
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany
| | - Iris Antes
- Technical University Munich, Center for Integrated Protein Science Munich (CIPS(M)) and Department of Life Science, D-85354 Freising-Weihenstephan, Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Christian M Lange
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, D-60590 Frankfurt a.M., Germany.
| |
Collapse
|
27
|
Soumana DI, Ali A, Schiffer CA. Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem Biol 2014; 9:2485-90. [PMID: 25243902 PMCID: PMC4245159 DOI: 10.1021/cb5006118] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Asunaprevir (ASV), an isoquinoline-based
competitive inhibitor
targeting the hepatitis C virus (HCV) NS3/4A protease, is very potent in vivo. However, the potency is significantly compromised
by the drug resistance mutations R155K and D168A. In this study three
crystal structures of ASV and an analogue were determined to analyze
the structural basis of drug resistance susceptibility. These structures
revealed that ASV makes extensive contacts with Arg155 outside the
substrate envelope. Arg155 in turn is stabilized by Asp168, and thus
when either residue is mutated, the enzyme’s interaction with
ASV’s P2* isoquinoline is disrupted. Adding a P1–P3 macrocycle to ASV enhances the inhibitor’s
resistance barrier, likely due to poising the inhibitor to its bound
conformation. Macrocyclic inhibitors with P2* extension
moieties avoiding interaction with the protease S2 residues
including Arg155 must be chosen for future design of more robust protease
inhibitors.
Collapse
Affiliation(s)
- Djadé I. Soumana
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Akbar Ali
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Celia A. Schiffer
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
28
|
Ezat AA, El-Bialy NS, Mostafa HIA, Ibrahim MA. Molecular docking investigation of the binding interactions of macrocyclic inhibitors with HCV NS3 protease and its mutants (R155K, D168A and A156V). Protein J 2014; 33:32-47. [PMID: 24374429 DOI: 10.1007/s10930-013-9538-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C Virus (HCV) non-structural protein 3 (NS3) protease drug resistance poses serious challenges on the design of an effective treatment. Substrate Envelope Hypothesis, "the substrates of HCV NS3/4A protease have a consensus volume inside the active site called substrate envelope" is used to design potent and specific drugs to overcome this problem. Using molecular docking, we studied the binding interaction of the different inhibitors and protein and evaluated the effect of three different mutations (R155K, D168A and A156V) on the binding of inhibitors. P2-P4 macrocycles of 5A/5B and modified 5A/5B hexapeptide sequences have the best scores against the wild-type protein -204.506 and -206.823 kcal/mole, respectively. Also, charged P2-P4 macrocycles of 3/4A and 4A/4B hexapeptide sequences have low scores with the wild-type protein -200.467 and -203.186 kcal/mole, respectively. R155K mutation greatly affects the conformation of the compounds inside the active site. It inverts its orientations, and this is because the large and free side chain of K155 which restricts the conformation of the large P2-P4 macrocycle. The conformation of charged P2-P4 macrocycle of 3/4A hexapeptide sequence in wild-type, A156V and D168A proteins is nearly equal; while that of charged P2-P4 macrocycle of 4A/4B hexapeptide sequence is different. Nevertheless, these compounds have a slight increase of Van der Waals volume compared to that of substrates, they are potent against mutations and have good scores. Therefore, the suggested drugs can be used as an effective treatment solving HCV NS3/4A protease drug resistance problem.
Collapse
Affiliation(s)
- Ahmed A Ezat
- Biophysics Department, Faculty of Science, University of Cairo, Giza, 11757, Egypt,
| | | | | | | |
Collapse
|
29
|
Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 2014; 4:5411. [PMID: 24958333 PMCID: PMC4067622 DOI: 10.1038/srep05411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and‘no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.
Collapse
|
30
|
Khanlari Z, Sabahi F, Hosseini SY, Ghaderi M. HCV NS3 Blocking Effect on IFN Induced ISGs Like Viperin and IL28 With and Without NS4A. HEPATITIS MONTHLY 2014; 14:e17822. [PMID: 24976840 PMCID: PMC4071354 DOI: 10.5812/hepatmon.17822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/09/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is able to down-regulate innate immune response. It is important to know the immune pathways that this virus interacts with. HCV non-structural protein 3 (NS3) plays an important role in this viral feature. HCV NS3 protein could affect the expression of antiviral protein such as viperin, and interleukin 28whichare important proteins in antiviral response. OBJECTIVES HCV has developed different mechanisms to maintain a persistent infection, especially by disrupting type I interferon response and subsequent suppression of expression of Interferon stimulatory genes (ISGs). Viperin, a member of ISGs, is considered as a host antiviral protein, which interferes with viral replication. Since it is a good target for some viruses to evade host responses, it is interesting to study if HCV has evolved a mechanism to interfere with this member of ISGs. MATERIALS AND METHODS We evaluated the impact of NS3, NS3/4A and a mutated nonfunctional NS3 on ISGs expression such as viperin and IL-28 after the induction of IFN signaling Jak-STAT pathway using IFN-. RESULTS NS3 protein disrupted the expressions of viperin gene and IL-28, an inducer for the expression of ISGs and viperin itself. By comparing the roles of NS3 and NS3/4A protease activities in suppressing the innate immune responses, we also showed that NS3 (without NS4A) has the ability to down-regulate ISGs expression, similar to that of NS3/4A. CONCLUSIONS ISGs expression is impeded by NS3 protease activity and its interaction with Jak-STAT pathway proteins. In addition, the NS3/4A substrates spectrum seems to be similar to those of NS3.
Collapse
Affiliation(s)
- Zahra Khanlari
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding Author: Farzaneh Sabahi, Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-2182883880, Fax: +98-2182884555, E-mail:
| | - Seyed Younes Hosseini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mostafa Ghaderi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
31
|
The competitive binding between inhibitors and substrates of HCV NS3/4A protease: A general mechanism of drug resistance. Antiviral Res 2014; 103:60-70. [DOI: 10.1016/j.antiviral.2014.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 11/19/2022]
|
32
|
Ozen A, Sherman W, Schiffer CA. Improving the Resistance Profile of Hepatitis C NS3/4A Inhibitors: Dynamic Substrate Envelope Guided Design. J Chem Theory Comput 2013; 9:5693-5705. [PMID: 24587770 DOI: 10.1021/ct400603p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug resistance is a principal concern in the treatment of quickly evolving diseases. The viral protease NS3/4A is a primary drug target for the hepatitis C virus (HCV) and is known to evolve resistance mutations in response to drug therapy. At the molecular level, drug resistance reflects a subtle change in the balance of molecular recognition by NS3/4A; the drug resistant protease variants are no longer effectively inhibited by the competitive active site inhibitors but can still process the natural substrates with enough efficiency for viral survival. In previous works we have developed the "substrate envelope" hypothesis, which posits that inhibitors should be less susceptible to drug resistance if they better mimic the natural substrate molecular recognition features. In this work, we perform molecular dynamics simulations on four native substrates bound to NS3/4A and discover a clearly conserved dynamic substrate envelope. We show that the most severe drug resistance mutations in NS3/4A occur at residues that are outside the substrate envelope. Comparative analysis of three NS3/4A inhibitors reveals structural and dynamic characteristics of inhibitors that could lead to resistance. We also suggest inhibitor modifications to improve resistance profiles based on the dynamic substrate envelope. This study provides a general framework for guiding the development of novel inhibitors that will be more robust against resistance by mimicking the static and dynamic binding characteristics of natural substrates.
Collapse
Affiliation(s)
- Ayşegül Ozen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Woody Sherman
- Schrödinger, Inc., 120 West 45th Street, New York, NY 10036, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
33
|
Sakata K, Hara M, Terada T, Watanabe N, Takaya D, Yaguchi SI, Matsumoto T, Matsuura T, Shirouzu M, Yokoyama S, Yamaguchi T, Miyazawa K, Aizaki H, Suzuki T, Wakita T, Imoto M, Kojima S. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor. Sci Rep 2013; 3:3243. [PMID: 24263861 PMCID: PMC3837337 DOI: 10.1038/srep03243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/31/2013] [Indexed: 01/16/2023] Open
Abstract
Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.
Collapse
Affiliation(s)
- Kotaro Sakata
- 1] Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Saitama 351-0198, Japan [2] Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan [3] Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen Y, Altman MD, Ali A, Nalam MNL, Cao H, Rana TM, Schiffer CA, Tidor B. Testing the substrate-envelope hypothesis with designed pairs of compounds. ACS Chem Biol 2013; 8:2433-41. [PMID: 23952265 PMCID: PMC3833293 DOI: 10.1021/cb400468c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Acquired resistance to therapeutic
agents is a significant barrier to the development of clinically effective
treatments for diseases in which evolution occurs on clinical time
scales, frequently arising from target mutations. We previously reported
a general strategy to design effective inhibitors for rapidly mutating
enzyme targets, which we demonstrated for HIV-1 protease inhibition
[Altman et al. J. Am. Chem. Soc. 2008, 130, 6099–6113]. Specifically, we developed a computational inverse
design procedure with the added constraint that designed inhibitors
bind entirely inside the substrate envelope, a consensus volume occupied
by natural substrates. The rationale for the substrate-envelope constraint
is that it prevents designed inhibitors from making interactions beyond
those required by substrates and thus limits the availability of mutations
tolerated by substrates but not by designed inhibitors. The strategy
resulted in subnanomolar inhibitors that bind robustly across a clinically
derived panel of drug-resistant variants. To further test the substrate-envelope
hypothesis, here we have designed, synthesized, and assayed derivatives
of our original compounds that are larger and extend outside the substrate
envelope. Our designs resulted in pairs of compounds that are very
similar to one another, but one respects and one violates the substrate
envelope. The envelope-respecting inhibitor demonstrates robust binding
across a panel of drug-resistant protease variants, whereas the envelope-violating
one binds tightly to wild type but loses affinity to at least one
variant. This study provides strong support for the substrate-envelope
hypothesis as a design strategy for inhibitors that reduce susceptibility
to resistance mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tariq M. Rana
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | | | | |
Collapse
|
35
|
Aydin C, Mukherjee S, Hanson AM, Frick DN, Schiffer CA. The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities. Protein Sci 2013; 22:1786-98. [PMID: 24123290 DOI: 10.1002/pro.2378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022]
Abstract
Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo.
Collapse
Affiliation(s)
- Cihan Aydin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | | | | | | | | |
Collapse
|
36
|
Ali A, Aydin C, Gildemeister R, Romano KP, Cao H, Özen A, Soumana D, Newton A, Petropoulos CJ, Huang W, Schiffer CA. Evaluating the role of macrocycles in the susceptibility of hepatitis C virus NS3/4A protease inhibitors to drug resistance. ACS Chem Biol 2013; 8:1469-78. [PMID: 23594083 DOI: 10.1021/cb400100g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) infects an estimated 150 million people worldwide and is the major cause of viral hepatitis, cirrhosis, and liver cancer. The available antiviral therapies, which include PEGylated interferon, ribavirin, and one of the HCV NS3/4A protease inhibitors telaprevir or boceprevir, are ineffective for some patients and cause severe side effects. More potent NS3/4A protease inhibitors are in clinical development, but the long-term effectiveness of these drugs is challenged by the development of drug resistance. Here, we investigated the role of macrocycles in the susceptibility of NS3/4A protease inhibitors to drug resistance in asunaprevir, danoprevir, vaniprevir, and MK-5172, with similar core structures but varied P2 moieties and macrocyclizations. Linear and macrocyclic analogues of these drugs were designed, synthesized, and tested against wild-type and drug-resistant variants R155K, V36M/R155K, A156T, and D168A in enzymatic and antiviral assays. Macrocyclic inhibitors were generally more potent, but the location of the macrocycle was critical for retaining activity against drug-resistant variants: the P1-P3 macrocyclic inhibitors were less susceptible to drug resistance than the linear and P2-P4 macrocyclic analogues. In addition, the heterocyclic moiety at P2 largely determined the inhibitor resistance profile, susceptibility to drug resistance, and the extent of modulation by the helicase domain. Our findings suggest that to design robust inhibitors that retain potency to drug-resistant NS3/4A protease variants, inhibitors should combine P1-P3 macrocycles with flexible P2 moieties that optimally contact with the invariable catalytic triad of this enzyme.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Cihan Aydin
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Reinhold Gildemeister
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | | | - Hong Cao
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ayşegül Özen
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Djade Soumana
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Alicia Newton
- Monogram Biosciences, South San Francisco, California 94080, United States
| | | | - Wei Huang
- Monogram Biosciences, South San Francisco, California 94080, United States
| | - Celia A. Schiffer
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
37
|
Xue W, Ban Y, Liu H, Yao X. Computational study on the drug resistance mechanism against HCV NS3/4A protease inhibitors vaniprevir and MK-5172 by the combination use of molecular dynamics simulation, residue interaction network, and substrate envelope analysis. J Chem Inf Model 2013; 54:621-33. [PMID: 23745769 DOI: 10.1021/ci400060j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) NS3/4A protease is an important and attractive target for anti-HCV drug development and discovery. Vaniprevir (phase III clinical trials) and MK-5172 (phase II clinical trials) are two potent antiviral compounds that target NS3/4A protease. However, the emergence of resistance to these two inhibitors reduced the effectiveness of vaniprevir and MK-5172 against viral replication. Among the drug resistance mutations, three single-site mutations at residues Arg155, Ala156, and Asp168 in NS3/4A protease are especially important due to their resistance to nearly all inhibitors in clinical development. A detailed understanding of drug resistance mechanism to vaniprevir and MK-5172 is therefore very crucial for the design of novel potent agents targeting viral variants. In this work, molecular dynamics (MD) simulation, binding free energy calculation, free energy decomposition, residue interaction network (RIN), and substrate envelope analysis were used to study the detailed drug resistance mechanism of the three mutants R155K, A156T, and D168A to vaniprevir and MK-5172. MD simulation was used to investigate the binding mode for these two inhibitors to wild-type and resistant mutants of HCV NS3/4A protease. Binding free energy calculation and free energy decomposition analysis reveal that drug resistance mutations reduced the interactions between the active site residues and substituent in the P2 to P4 linker of vaniprevir and MK-5172. Furthermore, RIN and substrate envelope analysis indicate that the studied mutations of the residues are located outside the substrate (4B5A) binding site and selectively decrease the affinity of inhibitors but not the activity of the enzyme and consequently help NS3/4A protease escape from the effect of the inhibitors without influencing the affinity of substrate binding. These findings can provide useful information for understanding the drug resistance mechanism against vaniprevir and MK-5172. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | | | | | | |
Collapse
|
38
|
Horwitz JA, Dorner M, Friling T, Donovan BM, Vogt A, Loureiro J, Oh T, Rice CM, Ploss A. Expression of heterologous proteins flanked by NS3-4A cleavage sites within the hepatitis C virus polyprotein. Virology 2013; 439:23-33. [PMID: 23485372 DOI: 10.1016/j.virol.2013.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) contributes substantially to human morbidity and mortality world-wide. The development of HCV genomes expressing heterologous proteins has enhanced the ability to study viral infection, but existing systems have drawbacks. Recombinant viruses often require adaptive mutations to compensate for reduced viral titers, or rely on an artificial genomic organization that uncouples viral protein expression from recombinant gene expression. Here, we sought to exploit the viral polyprotein processing machinery to express heterologous proteins within the context of the HCV polyprotein. We show that HCV genotypes 2a and 1b permit insertion of reporter proteins between NS5A and NS5B with minimal impact on viral fitness. Using this strategy we constructed reporter genomes exhibiting a wide dynamic range, simplifying analysis of HCV infection in primary hepatocytes. Expression of heterologous proteins within the HCV genome offers new opportunities to analyze HCV infection in experimental systems without perturbing functions of individual viral proteins.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xue W, Wang M, Jin X, Liu H, Yao X. Understanding the structural and energetic basis of inhibitor and substrate bound to the full-length NS3/4A: insights from molecular dynamics simulation, binding free energy calculation and network analysis. MOLECULAR BIOSYSTEMS 2012; 8:2753-65. [DOI: 10.1039/c2mb25157d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Molecular modeling study on the resistance mechanism of HCV NS3/4A serine protease mutants R155K, A156V and D168A to TMC435. Antiviral Res 2011; 93:126-37. [PMID: 22127068 DOI: 10.1016/j.antiviral.2011.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/05/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) NS3/4A protease represents an attractive drug target for antiviral therapy. However, drug resistance often occurs, making many protease inhibitors ineffective and allowing viral replication to occur. Herein, based on the recently determined structure of NS3/4A-TMC435 complex, atomic-level models of the key residue mutated (R155K, A156V and D168A) NS3/4A-TMC435 complexes were constructed. Subsequently, by using molecular dynamics simulations, binding free energy calculation and substrate envelope analysis, the structural and energetic changes responsible for drug resistance were investigated. The values of the calculated binding free energy follow consistently the order of the experimental activities. More importantly, the computational results demonstrate that R155K and D168A mutations break the intermolecular salt bridges network at the extended S2 subsite and affect the TMC435 binding, while A156V mutation leads to a significant steric clash with TMC435 and further disrupts the two canonical substrate-like intermolecular hydrogen bond interactions (TMC435(N1-H46)⋯Arg155(O) and Ala157(N-H)⋯TMC435(O2)). In addition, by structural analysis, all the three key residue mutations occur outside the substrate envelope and selectively weaken TMC435's binding affinity without effect on its natural substrate peptide (4B5A). These findings could provide some insights into the resistance mechanism of NS3/4A protease mutants to TMC435 and would be critical for the development of novel inhibitors that are less susceptible to drug resistance.
Collapse
|
41
|
Martin MM, Condotta SA, Fenn J, Olmstead AD, Jean F. In-cell selectivity profiling of membrane-anchored and replicase-associated hepatitis C virus NS3-4A protease reveals a common, stringent substrate recognition profile. Biol Chem 2011; 392:927-35. [PMID: 21749281 DOI: 10.1515/bc.2011.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The need to identify anti-Flaviviridae agents has resulted in intensive biochemical study of recombinant nonstructural (NS) viral proteases; however, experimentation on viral protease-associated replication complexes in host cells is extremely challenging and therefore limited. It remains to be determined if membrane anchoring and/or association to replicase-membrane complexes of proteases, such as hepatitis C virus (HCV) NS3-4A, plays a regulatory role in the substrate selectivity of the protease. In this study, we examined trans-endoproteolytic cleavage activities of membrane-anchored and replicase-associated NS3-4A using an internally consistent set of membrane-anchored protein substrates mimicking all known HCV NS3-4A polyprotein cleavage sequences. Interestingly, we detected cleavage of substrates encoding for the NS4B/NS5A and NS5A/NS5B junctions, but not for the NS3/NS4A and NS4A/NS4B substrates. This stringent substrate recognition profile was also observed for the replicase-associated NS3-4A and is not genotype-specific. Our study also reveals that ER-anchoring of the substrate is critical for its cleavage by NS3-4A. Importantly, we demonstrate that in HCV-infected cells, the NS4B/NS5A substrate was cleaved efficiently. The unique ability of our membrane-anchored substrates to detect NS3-4A activity alone, in replication complexes, or within the course of infection, shows them to be powerful tools for drug discovery and for the study of HCV biology.
Collapse
Affiliation(s)
- Morgan M Martin
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|