1
|
Singh P, Raj R, Savithri H. Five questions on the cell-to-cell movement of Orthotospoviruses. BBA ADVANCES 2024; 6:100124. [PMID: 39498475 PMCID: PMC11533504 DOI: 10.1016/j.bbadva.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Plant viruses employ Movement proteins (MP) for their cell to cell spread through plasmodesmata (PD). MP modifies the PD and increases its size exclusion limit (SEL). However, the mechanism by which MPs are targeted to the PD is still unresolved and there is a lack of consensus owing to limited studies on their biochemical and structural characters. The non structural protein m (NSm) functions as the MP in Orthotospoviruses. Tospoviral NSm associate with ER membrane. They also form tubules in protoplasts. Groundnut bud necrosis virus (GBNV), a tospovirus, infects several crop plants throughout India and is economically very important. GBNV NSm associates with the membrane strongly via the C-terminal coiled-coil domain, modifies the membrane and causes vesicle fusion in vitro and remodels the ER network into vesicles in vivo. These vesicles are in contrast to the tubules formed by other related tospovirus in cells lacking cell wall. In this review, five important questions on the cell-to-cell movement of tospoviruses have been addressed and based on the various reports, a plausible model on the cell-to-cell movement of Orthotospoviruses is presented.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Rishi Raj
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - H.S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Duart G, Graña-Montes R, Pastor-Cantizano N, Mingarro I. Experimental and computational approaches for membrane protein insertion and topology determination. Methods 2024; 226:102-119. [PMID: 38604415 DOI: 10.1016/j.ymeth.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.
Collapse
Affiliation(s)
- Gerard Duart
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ricardo Graña-Montes
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Noelia Pastor-Cantizano
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain.
| |
Collapse
|
3
|
Komatsu K, Sasaki N, Yoshida T, Suzuki K, Masujima Y, Hashimoto M, Watanabe S, Tochio N, Kigawa T, Yamaji Y, Oshima K, Namba S, Nelson RS, Arie T. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J Virol 2021; 95:e0190620. [PMID: 34346768 PMCID: PMC8475525 DOI: 10.1128/jvi.01906-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Nobumitsu Sasaki
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Suzuki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Yuki Masujima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoya Tochio
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Department of Clinical Plant Science, Hosei University, Koganei, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Richard S. Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
4
|
Methodological approaches for the analysis of transmembrane domain interactions: A systematic review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183712. [PMID: 34331948 DOI: 10.1016/j.bbamem.2021.183712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.
Collapse
|
5
|
Membrane Association and Topology of Citrus Leprosis Virus C2 Movement and Capsid Proteins. Microorganisms 2021; 9:microorganisms9020418. [PMID: 33671330 PMCID: PMC7922530 DOI: 10.3390/microorganisms9020418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.
Collapse
|
6
|
Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Front Microbiol 2020; 11:571807. [PMID: 33250868 PMCID: PMC7672204 DOI: 10.3389/fmicb.2020.571807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein–protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
7
|
Xing F, Gao D, Liu H, Wang H, Habili N, Li S. Molecular characterization and pathogenicity analysis of prunus necrotic ringspot virus isolates from China rose (Rosa chinensis Jacq.). Arch Virol 2020; 165:2479-2486. [PMID: 32772252 DOI: 10.1007/s00705-020-04739-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
Prunus necrotic ringspot virus (PNRSV) is a viral pathogen with worldwide distribution, infecting many commercial fruit trees and ornamental plants. So far, the correlation between PNRSV infection and China rose mosaic disease has not been studied. Rose mosaic disease is characterized by severe symptoms, including mosaic, line pattern, and ringspot. Six viruses that were potentially associated with mosaic disease, including PNRSV, were tested in China roses. Only PNRSV was detected in China roses showing mosaic disease, and asymptomatic samples tested negative for this virus. This result was confirmed by small RNA sequencing, but rose leaf rosette-associated virus and rose spring dwarf-associated virus were also identified in both samples with mosaic disease and asymptomatic samples. This implied that PNRSV might be associated with China rose mosaic disease. Full genome sequences of two PNRSV isolates were determined, and the RNA1, 2 and 3 segments were found to be 3,332, 2,594 and 1,951 nucleotides (nt) in length, respectively. The three RNA segments shared 88.7-89.1% nt sequence identity in the 3'UTR, while RNA2 and RNA3 shared 98.2-99.4% identity. The higher variability in RNA1 suggests that it might have been under greater selection pressure. Phylogenetic analysis showed that the two PNRSV isolates clustered in group PV-32. Full-length infectious cDNA clones of PNRSV from China rose were constructed and used to agroinfiltrate cucumber seedlings. The inoculated cucumber leaves showed yellowing, chlorotic spots, necrosis, dwarfing, and decline at 23 to 39 days post-inoculation, demonstrating the virulence of the PNRSV isolate from China rose. These data lay a foundation for determining the molecular mechanism of rose mosaic disease caused by PNRSV.
Collapse
Affiliation(s)
- Fei Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nuredin Habili
- The Australian Wine Research Institute Waite Precinct, University of Adelaide, Adelaide, 5000, Australia
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
8
|
Li S, Su X, Luo X, Zhang Y, Zhang D, Du J, Zhang Z, OuYang X, Zhang S, Liu Y. First evidence showing that Pepper vein yellows virus P4 protein is a movement protein. BMC Microbiol 2020; 20:72. [PMID: 32228456 PMCID: PMC7106754 DOI: 10.1186/s12866-020-01758-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.
Collapse
Affiliation(s)
- Sangsang Li
- Longping Branch, Hunan University, Changsha, 410125 China
| | - Xianyan Su
- Plant Protection Institute of Anhui Academy of Agricultural Science, Hefei, 230001 China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Yu Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
| | - Deyong Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Jiao Du
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Zhanhong Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Songbai Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Yong Liu
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| |
Collapse
|
9
|
Martínez-Pérez M, Navarro JA, Pallás V, Sánchez-Navarro JA. A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Res 2019; 272:197733. [DOI: 10.1016/j.virusres.2019.197733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/01/2022]
|
10
|
Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1299. [PMID: 30254655 PMCID: PMC6141925 DOI: 10.3389/fpls.2018.01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 05/17/2023]
Abstract
Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.
Collapse
Affiliation(s)
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marilia Santos Silva
- Laboratório de Bioimagem, Embrapa Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | | | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
11
|
Zhang XY, Zhao TY, Li YY, Xiang HY, Dong SW, Zhang ZY, Wang Y, Li DW, Yu JL, Han CG. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection. Front Microbiol 2018; 9:613. [PMID: 29670592 PMCID: PMC5893644 DOI: 10.3389/fmicb.2018.00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/16/2018] [Indexed: 01/09/2023] Open
Abstract
ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology–Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Kozieł E, Bujarski JJ, Otulak K. Molecular Biology of Prune Dwarf Virus-A Lesser Known Member of the Bromoviridae but a Vital Component in the Dynamic Virus-Host Cell Interaction Network. Int J Mol Sci 2017; 18:E2733. [PMID: 29258199 PMCID: PMC5751334 DOI: 10.3390/ijms18122733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Prune dwarf virus (PDV) is one of the members of Bromoviridae family, genus Ilarvirus. Host components that participate in the regulation of viral replication or cell-to-cell movement via plasmodesmata are still unknown. In contrast, viral infections caused by some other Bromoviridae members are well characterized. Bromoviridae can be distinguished based on localization of their replication process in infected cells, cell-to-cell movement mechanisms, and plant-specific response reactions. Depending upon the genus, "genome activation" and viral replication are linked to various membranous structures ranging from endoplasmic reticulum, to tonoplast. In the case of PDV, there is still no evidence of natural resistance sources in the host plants susceptible to virus infection. Apparently, PDV has a great ability to overcome the natural defense responses in a wide spectrum of plant hosts. The first manifestations of PDV infection are specific cell membrane alterations, and the formation of replicase complexes that support PDV RNA replication inside the spherules. During each stage of its life cycle, the virus uses cell components to replicate and to spread in whole plants, within the largely suppressed cellular immunity environment. This work presents the above stages of the PDV life cycle in the context of current knowledge about other Bromoviridae members.
Collapse
Affiliation(s)
- Edmund Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Józef J Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
13
|
Margaria P, Anderson CT, Turina M, Rosa C. Identification of Ourmiavirus 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation. MOLECULAR PLANT PATHOLOGY 2016; 17:1063-79. [PMID: 26637973 PMCID: PMC6638536 DOI: 10.1111/mpp.12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/26/2015] [Indexed: 05/03/2023]
Abstract
Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine-scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement-defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild-type MP (GFP:MPwt) mainly co-localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement-defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.
Collapse
Affiliation(s)
- Paolo Margaria
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, 10135, Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Lella M, Kamilla S, Jain V, Mahalakshmi R. Molecular Mechanism of Holin Transmembrane Domain I in Pore Formation and Bacterial Cell Death. ACS Chem Biol 2016; 11:910-20. [PMID: 26701742 DOI: 10.1021/acschembio.5b00875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cell lysis during bacteriophage infection is timed by perfect orchestration between components of the holin-endolysin cassette. In bacteria, progressively accumulating holin in the inner membrane, retained in its inactive form by antiholin, is triggered into active hole formation, resulting in the canonical host cell lysis. However, the molecular mechanism of regulation and physical basis of pore formation in the mycobacterial cell membrane by D29 mycobacteriophage holin, particularly in the nonexistence of a known antiholin, is poorly understood. In this study, we report, for the first time, the use of fluorescence resonance transfer measurements to demonstrate that the first transmembrane domain (TM1) of D29 holin undergoes a helix ↔ β-hairpin conformational interconversion. We validate that this structural malleability is mediated by a centrally positioned proline and is responsible for controlled TM1 self-association in membrana, in the presence of a proton gradient across the lipid membrane. We demonstrate that TM1 is sufficient for bacterial growth inhibition. The biological effect of D29 holin structural alteration is presented as a holin self-regulatory mechanism, and its implications are discussed in the context of holin function.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Molecular
Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Soumya Kamilla
- Microbiology
and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Vikas Jain
- Microbiology
and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Radhakrishnan Mahalakshmi
- Molecular
Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| |
Collapse
|
15
|
Feng Z, Xue F, Xu M, Chen X, Zhao W, Garcia-Murria MJ, Mingarro I, Liu Y, Huang Y, Jiang L, Zhu M, Tao X. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathog 2016; 12:e1005443. [PMID: 26863622 PMCID: PMC4749231 DOI: 10.1371/journal.ppat.1005443] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022] Open
Abstract
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fan Xue
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaojiao Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenyang Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Maria J. Garcia-Murria
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lei Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Tian YP, Valkonen JPT. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc. MOLECULAR PLANT PATHOLOGY 2015; 16:735-47. [PMID: 25557768 PMCID: PMC6638495 DOI: 10.1111/mpp.12231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato.
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
17
|
Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L, Sparkes I, Hawes C, Oparka K. Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. PLANT PHYSIOLOGY 2015; 168:1563-72. [PMID: 26084919 PMCID: PMC4528765 DOI: 10.1104/pp.15.00668] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
Primary plasmodesmata (PD) arise at cytokinesis when the new cell plate forms. During this process, fine strands of endoplasmic reticulum (ER) are laid down between enlarging Golgi-derived vesicles to form nascent PD, each pore containing a desmotubule, a membranous rod derived from the cortical ER. Little is known about the forces that model the ER during cell plate formation. Here, we show that members of the reticulon (RTNLB) family of ER-tubulating proteins in Arabidopsis (Arabidopsis thaliana) may play a role in the formation of the desmotubule. RTNLB3 and RTNLB6, two RTNLBs present in the PD proteome, are recruited to the cell plate at late telophase, when primary PD are formed, and remain associated with primary PD in the mature cell wall. Both RTNLBs showed significant colocalization at PD with the viral movement protein of Tobacco mosaic virus, while superresolution imaging (three-dimensional structured illumination microscopy) of primary PD revealed the central desmotubule to be labeled by RTNLB6. Fluorescence recovery after photobleaching studies showed that these RTNLBs are mobile at the edge of the developing cell plate, where new wall materials are being delivered, but significantly less mobile at its center, where PD are forming. A truncated RTNLB3, unable to constrict the ER, was not recruited to the cell plate at cytokinesis. We discuss the potential roles of RTNLBs in desmotubule formation.
Collapse
Affiliation(s)
- Kirsten Knox
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Pengwei Wang
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Verena Kriechbaumer
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Lorenzo Frigerio
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Imogen Sparkes
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Chris Hawes
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Karl Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| |
Collapse
|
18
|
Leastro M, Pallás V, Resende R, Sánchez-Navarro J. The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 2015; 478:39-49. [DOI: 10.1016/j.virol.2015.01.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/06/2015] [Accepted: 01/31/2015] [Indexed: 01/26/2023]
|
19
|
Peiro A, Izquierdo-Garcia AC, Sanchez-Navarro JA, Pallas V, Mulet JM, Aparicio F. Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. MOLECULAR PLANT PATHOLOGY 2014; 15:881-91. [PMID: 24751128 PMCID: PMC6638666 DOI: 10.1111/mpp.12146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra- and/or intercellular viral movement. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP-PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP-containing complexes less efficient and diminishing cell-to-cell movement.
Collapse
Affiliation(s)
- Ana Peiro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Jean-François Laliberté
- INRS–Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada;
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada;
| |
Collapse
|
21
|
Peiró A, Cañizares MC, Rubio L, López C, Moriones E, Aramburu J, Sánchez-Navarro J. The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance. MOLECULAR PLANT PATHOLOGY 2014; 15:802-13. [PMID: 24690181 PMCID: PMC6638753 DOI: 10.1111/mpp.12142] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The avirulence determinant triggering the resistance conferred by the tomato gene Sw-5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance-breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non-resistance-breaking (NRB)] in Nicotiana benthamiana expressing Sw-5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell-to-cell and systemic transport of the chimeric AMV RNAs into N. tabacum with or without Sw-5, except for the constructs with NBR when Sw-5 was expressed, although RB2 showed reduced cell-to-cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co-inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw-5. These results indicate that NSm is the avirulence determinant for Sw-5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.
Collapse
Affiliation(s)
- Ana Peiró
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Groundnut bud necrosis virus encoded NSm associates with membranes via its C-terminal domain. PLoS One 2014; 9:e99370. [PMID: 24919116 PMCID: PMC4053438 DOI: 10.1371/journal.pone.0099370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200–250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.
Collapse
|
23
|
Martínez C, Coll-Bonfill N, Aramburu J, Pallás V, Aparicio F, Galipienso L. Two basic (hydrophilic) regions in the movement protein of Parietaria mottle virus have RNA binding activity and are required for cell-to-cell transport. Virus Res 2014; 184:54-61. [PMID: 24583367 DOI: 10.1016/j.virusres.2014.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
The movement protein (MP) of parietaria mottle virus (PMoV) is required for virus cell-to-cell movement. Bioinformatics analysis identified two hydrophilic non-contiguous regions (R1 and R2) rich in the basic amino acids lysine and arginine and with the predicted secondary structure of an α-helix. Different approaches were used to determine the implication of the R1 and R2 regions in RNA binding, plasmodesmata (PD) targeting and cell-to-cell movement. EMSA (Electrophoretic Mobility Shift Assay) showed that both regions have RNA-binding activity whereas that mutational analysis reported that either deletion of any of these regions, or loss of the basic amino acids, interfered with the viral intercellular movement. Subcellular localization studies showed that PMoV MP locates at PD. Mutants designed to impeded cell-to-cell movement failed to accumulate at PD indicating that basic residues in both R1 and R2 are critical for binding the MP at PD.
Collapse
Affiliation(s)
- Carolina Martínez
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Ctra. de Cabrils s/n Cabrils, 08348 Barcelona, Spain.
| | - Nuria Coll-Bonfill
- Institut D́investigacions Biomediques Agusti Pi i Sunyer, C/Rosselló 149-153, 08036 Barcelona, Spain.
| | - Jose Aramburu
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Ctra. de Cabrils s/n Cabrils, 08348 Barcelona, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| | - Luis Galipienso
- Plant Pathology and Biotechnologies for Sustainable Agriculture Section, Euro-Mediterranean Institute of Science and Technology - I.E.ME.S.T., Via Emerico Amari 123, 90139 Palermo, Italy.
| |
Collapse
|
24
|
The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes. J Virol 2013; 88:3016-26. [PMID: 24371064 DOI: 10.1128/jvi.03648-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport and for predicting interactions with host factors that mediate resistance to plant viruses.
Collapse
|
25
|
Yu C, Karlin DG, Lu Y, Wright K, Chen J, MacFarlane S. Experimental and bioinformatic evidence that raspberry leaf blotch emaravirus P4 is a movement protein of the 30K superfamily. J Gen Virol 2013; 94:2117-2128. [DOI: 10.1099/vir.0.053256-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Emaravirus is a recently described genus of negative-strand RNA plant viruses. Emaravirus P4 protein localizes to plasmodesmata, suggesting that it could be a viral movement protein (MP). In the current study, we showed that the P4 protein of raspberry leaf blotch emaravirus (RLBV) rescued the cell-to-cell movement of a defective potato virus X (PVX) that had a deletion mutation in the triple gene block 1 movement-associated protein. This demonstrated that RLBV P4 is a functional MP. Sequence analyses revealed that P4 is a distant member of the 30K superfamily of MPs. All MPs of this family contain two highly conserved regions predicted to form β-strands, namely β1 and β2. We explored by alanine mutagenesis the role of two residues of P4 (Ile106 and Asp127) located in each of these strands. We also made the equivalent substitutions in the 29K MP of tobacco rattle virus, another member of the 30K superfamily. All substitutions abolished the ability to complement PVX movement, except for the I106A substitution in the β1 region of P4. This region has been shown to mediate membrane association of 30K MPs; our results show that it is possible to make non-conservative substitutions of a well-conserved aliphatic residue within β1 without preventing the membrane association or movement function of P4.
Collapse
Affiliation(s)
- Chulang Yu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - David G. Karlin
- Division of Structural Biology, Henry Wellcome Building, Roosevelt Drive, Oxford OX3 7BN, UK
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
| | - Yuwen Lu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Kathryn Wright
- James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee DD2 5DA, UK
| | - Jianping Chen
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Stuart MacFarlane
- James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
26
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
28
|
Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA. Ilarviruses of Prunus spp.: a continued concern for fruit trees. PHYTOPATHOLOGY 2012; 102:1108-1120. [PMID: 23148725 DOI: 10.1094/phyto-02-12-0023-rvw] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.
Collapse
Affiliation(s)
- V Pallas
- Instituto de Biologia Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Aparicio F, Aparicio-Sanchis R, Gadea J, Sánchez-Navarro JÁ, Pallás V, Murguía JR. A plant virus movement protein regulates the Gcn2p kinase in budding yeast. PLoS One 2011; 6:e27409. [PMID: 22087310 PMCID: PMC3210792 DOI: 10.1371/journal.pone.0027409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Virus life cycle heavily depends on their ability to command the host machinery in order to translate their genomes. Animal viruses have been shown to interfere with host translation machinery by expressing viral proteins that either maintain or inhibit eIF2α function by phosphorylation. However, this interference mechanism has not been described for any plant virus yet. Prunnus necrotic ringspot virus (PNRSV) is a serious pathogen of cultivated stone fruit trees. The movement protein (MP) of PNRSV is necessary for the cell-to-cell movement of the virus. By using a yeast-based approach we have found that over-expression of the PNRSV MP caused a severe growth defect in yeast cells. cDNA microarrays analysis carried out to characterise at the molecular level the growth interference phenotype reported the induction of genes related to amino acid deprivation suggesting that expression of MP activates the GCN pathway in yeast cells. Accordingly, PNRSV MP triggered activation of the Gcn2p kinase, as judged by increased eIF2α phosphorylation. Activation of Gcn2p by MP expression required a functional Tor1p kinase, since rapamycin treatment alleviated the yeast cell growth defect and blocked eIF2α phosphorylation triggered by MP expression. Overall, these findings uncover a previously uncharacterised function for PNRSV MP viral protein, and point out at Tor1p and Gcn2p kinases as candidate susceptibility factors for plant viral infections.
Collapse
Affiliation(s)
- Frederic Aparicio
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - Rafael Aparicio-Sanchis
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - José Gadea
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - Jesús Ángel Sánchez-Navarro
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - Vicente Pallás
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - José Ramón Murguía
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
- * E-mail:
| |
Collapse
|
30
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
31
|
Abstract
Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes.
Collapse
|
32
|
Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J Virol 2011; 85:7797-809. [PMID: 21593169 DOI: 10.1128/jvi.02465-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called "aromatic belt," and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP.
Collapse
|
33
|
Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I. N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein Sci 2011; 20:179-86. [PMID: 21082725 DOI: 10.1002/pro.551] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-glycosylation is the most common and versatile protein modification. In eukaryotic cells, this modification is catalyzed cotranslationally by the enzyme oligosaccharyltransferase, which targets the β-amide of the asparagine in an Asn-Xaa-Ser/Thr consensus sequon (where Xaa is any amino acid but proline) in nascent proteins as they enter the endoplasmic reticulum. Because modification of the glycosylation acceptor site on membrane proteins occurs in a compartment-specific manner, the presence of glycosylation is used to indicate membrane protein topology. Moreover, glycosylation sites can be added to gain topological information. In this study, we explored the determinants of N-glycosylation with the in vitro transcription/translation of a truncated model protein in the presence of microsomes and surveyed 25,488 glycoproteins, of which 2,533 glycosylation sites had been experimentally validated. We found that glycosylation efficiency was dependent on both the distance to the C-terminus and the nature of the amino acid that preceded the consensus sequon. These findings establish a broadly applicable method for membrane protein tagging in topological studies.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot E-46100, València, Spain
| | | | | | | | | |
Collapse
|
34
|
Tilsner J, Amari K, Torrance L. Plasmodesmata viewed as specialised membrane adhesion sites. PROTOPLASMA 2011; 248:39-60. [PMID: 20938697 DOI: 10.1007/s00709-010-0217-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/27/2010] [Indexed: 05/20/2023]
Abstract
A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein-lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.
Collapse
Affiliation(s)
- Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK.
| | | | | |
Collapse
|
35
|
Harries PA, Schoelz JE, Nelson RS. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1381-93. [PMID: 20653412 DOI: 10.1094/mpmi-05-10-0121] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant viruses are obligate organisms that require host components for movement within and between cells. A mechanistic understanding of virus movement will allow the identification of new methods to control virus systemic spread and serve as a model system for understanding host macromolecule intra- and intercellular transport. Recent studies have moved beyond the identification of virus proteins involved in virus movement and their effect on plasmodesmal size exclusion limits to the analysis of their interactions with host components to allow movement within and between cells. It is clear that individual virus proteins and replication complexes associate with and, in some cases, traffic along the host cytoskeleton and membranes. Here, we review these recent findings, highlighting the diverse associations observed between these components and their trafficking capacity. Plant viruses operate individually, sometimes within virus species, to utilize unique interactions between their proteins or complexes and individual host cytoskeletal or membrane elements over time or space for their movement. However, there is not sufficient information for any plant virus to create a complete model of its intracellular movement; thus, more research is needed to achieve that goal.
Collapse
Affiliation(s)
- Phillip A Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | | |
Collapse
|
36
|
Abstract
Plant viral infection and spread depends on the successful introduction of a virus into a cell of a compatible host, followed by replication and cell-to-cell transport. The movement proteins (MPs) p8 and p9 of Turnip crinkle virus are required for cell-to-cell movement of the virus. We have examined the membrane association of p9 and found that it is an integral membrane protein with a defined topology in the endoplasmic reticulum (ER) membrane. Furthermore, we have used a site-specific photo-cross-linking strategy to study the membrane integration of the protein at the initial stages of its biosynthetic process. This process is cotranslational and proceeds through the signal recognition particle and the translocon complex.
Collapse
|