1
|
Yajima H, Nomai T, Okumura K, Maenaka K, Ito J, Hashiguchi T, Sato K. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 2024; 15:e0322023. [PMID: 39283095 PMCID: PMC11481514 DOI: 10.1128/mbio.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Due to the incessant emergence of various SARS-CoV-2 variants with enhanced fitness in the human population, controlling the COVID-19 pandemic has been challenging. Understanding how the virus enhances its fitness during a pandemic could offer valuable insights for more effective control of viral epidemics. In this manuscript, we review the evolution of SARS-CoV-2 from early 2022 to the end of 2023-from Omicron BA.2 to XBB descendants. Focusing on viral evolution during this period, we provide concrete examples that SARS-CoV-2 has increased its fitness by enhancing several functions of the spike (S) protein, including its binding affinity to the ACE2 receptor and its ability to evade humoral immunity. Furthermore, we explore how specific mutations modify these functions of the S protein through structural alterations. This review provides evolutionary, molecular, and structural insights into how SARS-CoV-2 has increased its fitness and repeatedly caused epidemic surges during the pandemic.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) ConsortiumMatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
2
|
Zhang Y, Sun S, Du C, Hu K, Zhang C, Liu M, Wu Q, Dong N. Transmembrane serine protease TMPRSS2 implicated in SARS-CoV-2 infection is autoactivated intracellularly and requires N-glycosylation for regulation. J Biol Chem 2022; 298:102643. [PMID: 36309092 PMCID: PMC9598255 DOI: 10.1016/j.jbc.2022.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
Transmembrane protease serine 2 (TMPRSS2) is a membrane-bound protease expressed in many human epithelial tissues, including the airway and lung. TMPRSS2-mediated cleavage of viral spike protein is a key mechanism in severe acute respiratory syndrome coronavirus 2 activation and host cell entry. To date, the cellular mechanisms that regulate TMPRSS2 activity and cell surface expression are not fully characterized. In this study, we examined two major post-translational events, zymogen activation and N-glycosylation, in human TMPRSS2. In experiments with human embryonic kidney 293, bronchial epithelial 16HBE, and lung alveolar epithelial A549 cells, we found that TMPRSS2 was activated via intracellular autocatalysis and that this process was blocked in the presence of hepatocyte growth factor activator inhibitors 1 and 2. By glycosidase digestion and site-directed mutagenesis, we showed that human TMPRSS2 was N-glycosylated. N-glycosylation at an evolutionarily conserved site in the scavenger receptor cysteine-rich domain was required for calnexin-assisted protein folding in the endoplasmic reticulum and subsequent intracellular trafficking, zymogen activation, and cell surface expression. Moreover, we showed that TMPRSS2 cleaved severe acute respiratory syndrome coronavirus 2 spike protein intracellularly in human embryonic kidney 293 cells. These results provide new insights into the cellular mechanism in regulating TMPRSS2 biosynthesis and function. Our findings should help to understand the role of TMPRSS2 in major respiratory viral diseases.
Collapse
Affiliation(s)
- Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chunyu Du
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China,NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaixuan Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China,NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China,For correspondence: Qingyu Wu; Ningzheng Dong
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China,NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China,For correspondence: Qingyu Wu; Ningzheng Dong
| |
Collapse
|
3
|
Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol 2022; 66:15-23. [PMID: 34561887 PMCID: PMC8652499 DOI: 10.1111/1348-0421.12945] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Spike (S) protein cleavage is a crucial step in coronavirus infection. In this review, this process is discussed, with particular focus on the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared with influenza virus and paramyxovirus membrane fusion proteins, the cleavage activation mechanism of coronavirus S protein is much more complex. The S protein has two cleavage sites (S1/S2 and S2'), and the cleavage motif for furin protease at the S1/S2 site that results from a unique four-amino acid insertion is one of the distinguishing features of SARS-CoV-2. The viral particle incorporates the S protein, which has already undergone S1/S2 cleavage by furin, and then undergoes further cleavage at the S2' site, mediated by the type II transmembrane serine protease transmembrane protease serine 2 (TMPRSS2), after binding to the receptor angiotensin-converting enzyme 2 (ACE2) to facilitate membrane fusion at the plasma membrane. In addition, SARS-CoV-2 can enter the cell by endocytosis and be proteolytically activated by cathepsin L, although this is not a major mode of SARS-CoV-2 infection. SARS-CoV-2 variants with enhanced infectivity have been emerging throughout the ongoing pandemic, and there is a close relationship between enhanced infectivity and changes in S protein cleavability. All four variants of concern carry the D614G mutation, which indirectly enhances S1/S2 cleavability by furin. The P681R mutation of the delta variant directly increases S1/S2 cleavability, enhancing membrane fusion and SARS-CoV-2 virulence. Changes in S protein cleavability can significantly impact viral infectivity, tissue tropism, and virulence. Understanding these mechanisms is critical to counteracting the coronavirus pandemic.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3National Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
4
|
ACE2, the Counter-Regulatory Renin-Angiotensin System Axis and COVID-19 Severity. J Clin Med 2021; 10:jcm10173885. [PMID: 34501332 PMCID: PMC8432177 DOI: 10.3390/jcm10173885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin (ANG)-converting enzyme (ACE2) is an entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). ACE2 also contributes to a deviation of the lung renin-angiotensin system (RAS) towards its counter-regulatory axis, thus transforming harmful ANG II to protective ANG (1-7). Based on this purported ACE2 double function, it has been put forward that the benefit from ACE2 upregulation with renin-angiotensin-aldosterone system inhibitors (RAASi) counterbalances COVID-19 risks due to counter-regulatory RAS axis amplification. In this manuscript we discuss the relationship between ACE2 expression and function in the lungs and other organs and COVID-19 severity. Recent data suggested that the involvement of ACE2 in the lung counter-regulatory RAS axis is limited. In this setting, an augmentation of ACE2 expression and/or a dissociation of ACE2 from the ANG (1-7)/Mas pathways that leaves unopposed the ACE2 function, the SARS-CoV-2 entry receptor, predisposes to more severe disease and it appears to often occur in the relevant risk factors. Further, the effect of RAASi on ACE2 expression and on COVID-19 severity and the overall clinical implications are discussed.
Collapse
|