1
|
Furuyama W, Yamada K, Sakaguchi M, Marzi A, Nanbo A. Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production. Microbiol Spectr 2024; 12:e0026924. [PMID: 39078193 PMCID: PMC11370620 DOI: 10.1128/spectrum.00269-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Filoviruses produce viral particles with characteristic filamentous morphology. The major viral matrix protein, VP40, is trafficked to the plasma membrane and promotes viral particle formation and subsequent viral egress. In the present study, we assessed the role of the small GTPase Rab11-mediated endocytic pathway in Marburg virus (MARV) particle formation and budding. Although Rab11 was predominantly localized in the perinuclear region, it exhibited a more diffuse distribution in the cytoplasm of cells transiently expressing MARV VP40. Rab11 was incorporated into MARV-like particles. Expression of the dominant-negative form of Rab11 and knockdown of Rab11 decreased the amount of VP40 fractions in the cell periphery. Moreover, downregulation of Rab11 moderately reduced the release of MARV-like particles and authentic MARV. We further demonstrated that VP40 induces the distribution of the microtubule network toward the cell periphery, which was partly associated with Rab11. Depolymerization of microtubules reduced the accumulation of VP40 in the cell periphery along with viral particle formation. VP40 physically interacted with α-tubulin, a major component of microtubules, but not with Rab11. Taken together, these results suggested that VP40 partly interacts with microtubules and facilitates their distribution toward the cell periphery, leading to the trafficking of transiently tethering Rab11-positive vesicles toward the cell surface. As we previously demonstrated the role of Rab11 in the formation of Ebola virus particles, the results here suggest that filoviruses in general exploit the vesicle-trafficking machinery for proper virus-particle formation and subsequent egress. These pathways may be a potential target for the development of pan-filovirus therapeutics.IMPORTANCEFiloviruses, including Marburg and Ebola viruses, produce distinct filamentous viral particles. Although it is well known that the major viral matrix protein of these viruses, VP40, is trafficked to the cell surface and promotes viral particle production, details regarding the associated molecular mechanisms remain unclear. To address this knowledge gap, we investigated the role of the small GTPase Rab11-mediated endocytic pathway in this process. Our findings revealed that Marburg virus exploits the Rab11-mediated vesicle-trafficking pathway for the release of virus-like particles and authentic virions in a microtubule network-dependent manner. Previous findings demonstrated that Rab11 is also involved in Ebola virus-particle production. Taken together, these data suggest that filoviruses, in general, may hijack the microtubule-dependent vesicle-trafficking machinery for productive replication. Therefore, this pathway presents as a potential target for the development of pan-filovirus therapeutics.
Collapse
Affiliation(s)
- Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kento Yamada
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Dai YC, Yeh SY, Cheng YY, Huang WH, Liou GG, Yang TY, Chang CY, Fang TF, Chang CW, Su MT, Lee CP, Chen MR. BGLF4 kinase regulates the formation of the EBV cytoplasmic assembly compartment and the recruitment of cellular IQGAP1 for virion release. J Virol 2024; 98:e0189923. [PMID: 38294245 PMCID: PMC10878254 DOI: 10.1128/jvi.01899-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.
Collapse
Affiliation(s)
- Yu-Ching Dai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yun Yeh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Han Huang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chou-Wei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang W, Jiang M, Liao X, Li Y, Xin S, Yang L, Xin Y, Umar A, Lu J. IFIT3 inhibits Epstein-Barr virus reactivation via upregulating innate immunity. J Med Virol 2023; 95:e29237. [PMID: 37994186 DOI: 10.1002/jmv.29237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, can establish latent infection in B lymphocytes and certain epithelial cells after primary infection. Under certain circumstances, EBV can enter into lytic replication. However, the regulation of EBV latent-lytic infection remains largely unclear. The important immune molecule, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), was upregulated in EBV latently infected cells. When the lytic replication of EBV was induced, the expression of IFIT3 was further increased. In turn, IFIT3 overexpression dramatically inhibited the lytic replication of EBV, while IFIT3 knockdown facilitated EBV lytic replication. Moreover, upon the lytic induction, the ectopic IFIT3 expression promoted the activation of the interferon (IFN) pathway, including the production of IFN-stimulated genes (ISGs), IFNB1, and the phosphorylation of IFN-regulatory factor 3 (IRF3). In contrast, the depletion of IFIT3 led to decreased ISGs and IFNB1 expression. Mechanically, IFIT3 inhibited EBV lytic replication through IFN signaling. This study revealed that the host innate immune-related factor IFIT3 played an important role in regulating EBV latent-lytic homeostasis. The results implied that EBV has evolved well to utilize host factors to maintain latent infection.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Mingjuan Jiang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Xuefei Liao
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yujie Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
6
|
Yuan M, Lyu S, Wang Y, E L, Liu T, Hou X, Li Y, Zhang C. Host Factors Genes BcCLC1 and BcCLC2 Confer Turnip Mosaic Virus Resistance in Non-Heading Chinese Cabbage ( Brassica campestris ssp. chinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2269. [PMID: 37375894 DOI: 10.3390/plants12122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Clathrin is an evolutionarily highly conserved evolutionary protein consisting of clathrin light chains (CLC) and clathrin heavy chains (CHC), and these form its basic structure. Clathrin is an important host factor in the process of viral infection. In this study, we cloned the BcCLC1 gene and the BcCLC2 gene from the '49CX' variety of non-heading Chinese cabbage (NHCC, Brassica campestris L. ssp. chinensis Makino) and verified their functions. The results showed that BcCLC1 was mainly localized in the cytomembrane and cytoplasm, and only a small amount entered the nucleus. BcCLC2 encoded a protein comprising 265 amino acids that were distributed in the cytomembrane, nucleus, and cytoplasm. A BiFC assay and yeast two-hybrid (Y2H) analysis showed that BcCLCs (BcCLC1 and BcCLC2) could interact with several TuMV proteins. We further investigated the mechanism of BcCLCs in regulating TuMV virus infections in NHCC, and observed that BcCLCs gene silencing inhibited TuMV infections and overexpression of BcCLCs in Arabidopsis promoted TuMV infections in NHCC. Finally, mutants of Arabidopsis homologs of BcCLCs were also screened and subjected to TuMV inoculation tests. In conclusion, we speculate that BcCLCs confer Turnip mosaic virus (TuMV) resistance in NHCC by interacting with TuMV proteins to promote the intracellular transport of the virus.
Collapse
Affiliation(s)
- Mengguo Yuan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaolong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu E
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Li S, Yang L, Li Y, Yue W, Xin S, Li J, Long S, Zhang W, Cao P, Lu J. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr 2023; 11:e0123722. [PMID: 36728436 PMCID: PMC10101146 DOI: 10.1128/spectrum.01237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.
Collapse
Affiliation(s)
- Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wenxing Yue
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Sijing Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
9
|
Chang K, Majmudar H, Tandon R, Volin MV, Tiwari V. Induction of Filopodia During Cytomegalovirus Entry Into Human Iris Stromal Cells. Front Microbiol 2022; 13:834927. [PMID: 35450284 PMCID: PMC9018114 DOI: 10.3389/fmicb.2022.834927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Many viruses exploit thin projections of filopodia for cell entry and cell-to-cell spread. Using primary cultures of human iris stromal (HIS) cells derived from human eye donors, we report a significant increase in filopodia formation during human cytomegalovirus (HCMV) infection. Using confocal microscopy, we observed a large number of virions being frequently associated along the filopodia prior to cell infection. Depolymerization of actin filaments resulted in a significant inhibition of HCMV entry into HIS cell. Our results further revealed that the transient expression of HCMV envelope glycoprotein B (gB) triggers the induction of the filopodial system. Since gB is known to bind the diverse chains of heparan sulfate (HS), a comparative study was performed to evaluate the gB-mediated filopodial induction in cells expressing either wild-type HS and/or 3-O sulfated HS (3-OS HS). We found that cells co-expressing HCMV gB together with the 3-O sulfotranseferase-3 (3-OST-3) enzyme had a much higher and robust filopodia induction compared to cells co-expressing gB with wild-type HS. The above results were further verified by pre-treating HIS cells with anti-3-OS HS (G2) peptide and/or heparinase-I before challenging with HCMV infection, which resulted in a significant loss in the filopodial counts as well as decreased viral infectivity. Taken together, our findings highlight that HCMV entry into HIS cells actively modulates the actin cytoskeleton via coordinated actions possibly between gB and the 3-OS HS receptor to influence viral infectivity.
Collapse
Affiliation(s)
- Kenneth Chang
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Hardik Majmudar
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael V Volin
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
10
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
11
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
12
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
13
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
14
|
Lipid-protein interactions in virus assembly and budding from the host cell plasma membrane. Biochem Soc Trans 2021; 49:1633-1641. [PMID: 34431495 PMCID: PMC8421045 DOI: 10.1042/bst20200854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Lipid enveloped viruses contain a lipid bilayer coat that protects their genome to help facilitate entry into the new host cell. This lipid bilayer comes from the host cell which they infect. After viral replication, the mature virion hijacks the host cell plasma membrane where it is then released to infect new cells. This process is facilitated by the interaction between phospholipids that make up the plasma membrane and specialized viral matrix proteins. This step in the viral lifecycle may represent a viable therapeutic strategy for small molecules that aim to block enveloped virus spread. In this review, we summarize the current knowledge on the role of plasma membrane lipid-protein interactions on viral assembly and budding.
Collapse
|
15
|
P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathog 2021; 17:e1009616. [PMID: 34111220 PMCID: PMC8191996 DOI: 10.1371/journal.ppat.1009616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix protein VP40 is essential for driving this process. Many post-translational modifications such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet. Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyltransferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4 acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines, suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mechanism that governs VP40 ubiquitination and provides insights into how acetylation controls EBOV VP40 egress. Ebola virus (EBOV) is one of the deadliest pathogens, causing fatal hemorrhagic fever diseases in humans and primates. In this study, we find that P300-mediated NEDD4 acetylation facilitates EBOV egress. Acetylation promotes NEDD4-VP40 interactions which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. This study implies that inhibitory effect of acetylation can be regarded as an attractive candidate of drug target for the treatment of Ebola virus disease.
Collapse
|
16
|
Amiar S, Husby ML, Wijesinghe KJ, Angel S, Bhattarai N, Gerstman BS, Chapagain PP, Li S, Stahelin RV. Lipid-specific oligomerization of the Marburg virus matrix protein VP40 is regulated by two distinct interfaces for virion assembly. J Biol Chem 2021; 296:100796. [PMID: 34019871 PMCID: PMC8191294 DOI: 10.1016/j.jbc.2021.100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023] Open
Abstract
Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD–NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD–CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein–protein or lipid–protein interactions to inhibit virus budding.
Collapse
Affiliation(s)
- Souad Amiar
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Monica L Husby
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Kaveesha J Wijesinghe
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephanie Angel
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Nisha Bhattarai
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
17
|
Sabo Y, de Los Santos K, Goff SP. IQGAP1 Negatively Regulates HIV-1 Gag Trafficking and Virion Production. Cell Rep 2021; 30:4065-4081.e4. [PMID: 32209469 PMCID: PMC7199802 DOI: 10.1016/j.celrep.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
IQGAP1 is a master regulator of many cellular processes, including intracellular vesicle trafficking and endocytosis. We show that depletion of IQGAP1 in a variety of cell types increases the release of HIV-1 infectious virions and that overexpression diminishes virion production, with neither affecting the early stages of infection. IQGAP1 negatively regulates the steady-state levels of HIV-1 Gag at the plasma membrane, the site of assembly. We establish that IQGAP1 interacts with both the nucleocapsid and p6 domains of Gag, and interaction with either domain is sufficient for its regulatory function. Finally, we demonstrate that IQGAP1 regulation is independent of HIV-1 Gag “late-domains” sequences required by the virus to recruit the cellular ESCRT machinery. Thus, we provide evidence that IQGAP1 is a negative regulatory factor inhibiting efficient budding of HIV-1 by reducing Gag accumulation at the plasma membrane. IQGAP1 is a ubiquitously expressed master regulator of many cellular processes, including intracellular trafficking. Sabo et al. demonstrate that in a variety of cell types, IQGAP1 acts as a negative regulator of HIV-1 viral particle release by reducing accumulation of the Gag viral structural protein at the plasma membrane.
Collapse
Affiliation(s)
- Yosef Sabo
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Infectious Diseases, Columbia University, New York, NY 10032, USA
| | - Kenia de Los Santos
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Stephen P Goff
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. J Virol 2021; 95:JVI.00121-21. [PMID: 33536174 PMCID: PMC8103691 DOI: 10.1128/jvi.00121-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.
Collapse
|
19
|
Ubiquitin Ligase SMURF2 Interacts with Filovirus VP40 and Promotes Egress of VP40 VLPs. Viruses 2021; 13:v13020288. [PMID: 33673144 PMCID: PMC7918931 DOI: 10.3390/v13020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus–cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40–SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.
Collapse
|
20
|
Mo CF, Li J, Yang SX, Guo HJ, Liu Y, Luo XY, Wang YT, Li MH, Li JY, Zou Q. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1154-1163. [PMID: 32632148 PMCID: PMC7525663 DOI: 10.1038/s41416-020-0970-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells. METHODS IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study. RESULTS IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis. CONCLUSIONS Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
Collapse
Affiliation(s)
- Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Jun Li
- Department of Gastroenterology, The first affiliated hospital of Chengdu medical college, Chengdu, China
| | - Shu-Xia Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan-Tang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China. .,School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
21
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Han Z, Dash S, Sagum CA, Ruthel G, Jaladanki CK, Berry CT, Schwoerer MP, Harty NM, Freedman BD, Bedford MT, Fan H, Sidhu SS, Sudol M, Shtanko O, Harty RN. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathog 2020; 16:e1008231. [PMID: 31905227 PMCID: PMC6977764 DOI: 10.1371/journal.ppat.1008231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 11/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies. By screening an array of 115 mammalian WW-domains with the PPxY motif from MARV VP40 (mVP40), we identified YAP1 and TAZ, transcriptional effectors of the Hippo pathway, as mVP40 interactors, and demonstrated that ectopically expressed YAP1 or TAZ inhibited budding of mVP40 virus-like particles (VLPs) in a WW-domain/PPxY dependent manner. Angiomotin (Amot), a multi-PPxY containing regulator of YAP1 nuclear/cytoplasmic localization and function, rescued mVP40 VLP egress from either YAP1- or TAZ-mediated inhibition in a PPxY-dependent manner. Indeed, endogenous Amot expression was critical for egress of mVP40 VLPs and authentic MARV. In sum, we have revealed a link between the Hippo pathway and filovirus egress by identifying negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shantoshini Dash
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaitanya K. Jaladanki
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corbett T. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael P. Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nina M. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce D. Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Hao Fan
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marius Sudol
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Xin S, Du S, Liu L, Xie Y, Zuo L, Yang J, Hu J, Yue W, Zhang J, Cao P, Zhu F, Lu J. Epstein-Barr Virus Nuclear Antigen 1 Recruits Cyclophilin A to Facilitate the Replication of Viral DNA Genome. Front Microbiol 2019; 10:2879. [PMID: 31921057 PMCID: PMC6923202 DOI: 10.3389/fmicb.2019.02879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1)-mediated DNA episomal genome replication and persistence are essential for the viral pathogenesis. Cyclophilin A (CYPA) is upregulated in EBV-associated nasopharyngeal carcinoma (NPC) with unknown roles. In the present approach, cytosolic CYPA was found to be bound with EBNA1 into the nucleus. The amino acid 376-459 of the EBNA1 domain was important for the binding. CYPA depletion attenuated and ectopic CYPA expression improved EBNA1 expression in EBV-positive cells. The loss of viral copy number was also accelerated by CYPA consumption in daughter cells during culture passages. Mechanistically, CYPA mediated the connection of EBNA1 with oriP (origin of EBV DNA replication) and subsequent oriP transcription, which is a key step for the initiation of EBV genome replication. Moreover, CYPA overexpression markedly antagonized the connection of EBNA1 to Ubiquitin-specific protease 7 (USP7), which is a strong host barrier with a role of inhibiting EBV genome replication. The PPIase activity of CYPA was required for the promotion of oriP transcription and antagonism with USP7. The results revealed a strategy that EBV recruited a host factor to counteract the host defense, thus facilitating its own latent genome replication. This study provides a new insight into EBV pathogenesis and potential virus-targeted therapeutics in EBV-associated NPC, in which CYPA is upregulated at all stages.
Collapse
Affiliation(s)
- Shuyu Xin
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shujuan Du
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lingzhi Liu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Xie
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lielian Zuo
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjin Hu
- Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenxing Yue
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Zhang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Fanxiu Zhu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
24
|
Characterization of pUL5, an HCMV protein interacting with the cellular protein IQGAP1. Virology 2019; 540:57-65. [PMID: 31739185 DOI: 10.1016/j.virol.2019.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023]
Abstract
Among the Herpesviridae, human cytomegalovirus (HCMV) owns the largest genome and displays a huge coding potential. Here, we characterized the UL5 gene product (pUL5) of the clinical isolate TR strain. The protein was predicted as a 166-amino-acid membrane protein with a theoretical mass of 19 kDa. Recombinant virus expressing pUL5 with a tag allowed the identification of two pUL5 non-glycosylated species of approximately 19 and 9 kDa, expressed with early and late kinetic respectively. Experiments in infection confirmed that the lower molecular weight species was translated from an internal ATG in the UL5 open reading frame. Confocal microscopy analysis showed that pUL5 localized within the assembly compartment, but is not incorporated in the virion, as shown by Western blot on purified viral particles. Finally, pull-down experiments coupled with mass spectrometry analysis identified IQGAP1 as a pUL5 interactor, giving new hints on possible roles of pUL5 during HCMV infection.
Collapse
|
25
|
Identification and Classification of Hubs in microRNA Target Gene Networks in Human Neural Stem/Progenitor Cells following Japanese Encephalitis Virus Infection. mSphere 2019; 4:4/5/e00588-19. [PMID: 31578247 PMCID: PMC6796970 DOI: 10.1128/msphere.00588-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses are known to modulate host microRNA (miRNA) machinery for their own benefit. Japanese encephalitis virus (JEV), a neurotropic RNA virus, has been reported to manipulate several miRNAs in neurons or microglia. However, no report indicates a complete sketch of the miRNA profile of neural stem/progenitor cells (NSPCs), hence the focus of our current study. We used an miRNA array of 84 miRNAs in uninfected and JEV-infected human neuronal progenitor cells and primary neural precursor cells isolated from aborted fetuses. Severalfold downregulation of hsa-miR-9-5p, hsa-miR-22-3p, hsa-miR-124-3p, and hsa-miR-132-3p was found postinfection in both of the cell types compared to the uninfected cells. Subsequently, we screened for the target genes of these miRNAs and looked for the biological pathways that were significantly regulated by the genes. The target genes involved in two or more pathways were sorted out. Protein-protein interaction (PPI) networks of the miRNA target genes were formed based on their interaction patterns. A binary adjacency matrix for each gene network was prepared. Different modules or communities were identified in those networks by community detection algorithms. Mathematically, we identified the hub genes by analyzing their degree centrality and participation coefficient in the network. The hub genes were classified as either provincial (P < 0.4) or connector (P > 0.4) hubs. We validated the expression of hub genes in both cell line and primary cells through qRT-PCR after JEV infection and respective miR mimic transfection. Taken together, our findings highlight the importance of specific target gene networks of miRNAs affected by JEV infection in NSPCs.IMPORTANCE JEV damages the neural stem/progenitor cell population of the mammalian brain. However, JEV-induced alteration in the miRNA expression pattern of the cell population remains an open question, hence warranting our present study. In this study, we specifically address the downregulation of four miRNAs, and we prepared a protein-protein interaction network of miRNA target genes. We identified two types of hub genes in the PPI network, namely, connector hubs and provincial hubs. These two types of miRNA target hub genes critically influence the participation strength in the networks and thereby significantly impact up- and downregulation in several key biological pathways. Computational analysis of the PPI networks identifies key protein interactions and hubs in those modules, which opens up the possibility of precise identification and classification of host factors for viral infection in NSPCs.
Collapse
|
26
|
Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 2019; 17:593-606. [DOI: 10.1038/s41579-019-0233-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
|
27
|
Abstract
The Herpesviridae are structurally complex DNA viruses whose capsids undergo primary envelopment at the inner nuclear membrane and secondary envelopment at organelles in the cytoplasm. In both locations, there is evidence that envelope formation and scission involve the participation of multiple viral proteins and also the cellular ESCRT apparatus. It nevertheless appears that the best-understood viral strategies for ESCRT recruitment, those adopted by the retroviruses and many other families of enveloped RNA viruses, are not utilized by the Herpesviridae, at least during envelopment in the cytoplasm. Thus, although a large number of herpesvirus proteins have been assigned roles in envelopment, there is a dearth of candidates for the acquisition of the ESCRT complex and the control of envelope scission. This review summarizes our current understanding of ESCRT association by enveloped viruses, examines what is known of herpesvirus ESCRT utilization in the nucleus and cytoplasm, and identifies candidate cellular and viral proteins that could link enveloping herpesviruses to cellular ESCRT components.
Collapse
|
28
|
Urata S, Ishikawa T, Yasuda J. Roles of YIGL sequence of Ebola virus VP40 on genome replication and particle production. J Gen Virol 2019; 100:1099-1111. [PMID: 31184566 DOI: 10.1099/jgv.0.001286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ebola virus (EBOV) VP40 is a major driving force of nascent virion production and a negative regulator of genome replication/transcription. Here, we showed that the YIGL sequence at the C-terminus of EBOV VP40 is important for virus-like particle (VLP) production and the regulation of genome replication/transcription. Accordingly, a mutation in the YIGL sequence caused defects in VLP production and genome replication/transcription. The residues I293 and L295 in the YIGL sequence were particularly critical for VLP production. Furthermore, an in silico analysis indicated that the amino acids surrounding the YIGL sequence contribute to intramolecular interactions within VP40. Among those surrounding residues, F209 was shown to be critical for VLP production. These results suggested that the VP40 YIGL sequence regulates two different viral replication steps, VLP production and genome replication/transcription, and the nearby residue F209 influences VLP production.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseasesn, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Emerging Infectious Diseasesn, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
29
|
Abstract
This chapter reviews our current knowledge about the spatiotemporal assembly of filoviral particles. We will follow particles from nucleocapsid entry into the cytoplasm until the nucleocapsids are enveloped at the plasma membrane. We will also highlight the currently open scientific questions surrounding filovirus assembly.
Collapse
|
30
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
31
|
Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019; 11:v11010025. [PMID: 30609802 PMCID: PMC6357148 DOI: 10.3390/v11010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.
Collapse
Affiliation(s)
- Tamsin B Gordon
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Glenn A Marsh
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3010, Australia.
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
32
|
Han Z, Schwoerer MP, Hicks P, Liang J, Ruthel G, Berry CT, Freedman BD, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Harty RN. Host Protein BAG3 is a Negative Regulator of Lassa VLP Egress. Diseases 2018; 6:diseases6030064. [PMID: 30011814 PMCID: PMC6163595 DOI: 10.3390/diseases6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lassa fever virus (LFV) belongs to the Arenaviridae family and can cause acute hemorrhagic fever in humans. The LFV Z protein plays a central role in virion assembly and egress, such that independent expression of LFV Z leads to the production of virus-like particles (VLPs) that mimic egress of infectious virus. LFV Z contains both PTAP and PPPY L-domain motifs that are known to recruit host proteins that are important for mediating efficient virus egress and spread. The viral PPPY motif is known to interact with specific host WW-domain bearing proteins. Here we identified host WW-domain bearing protein BCL2 Associated Athanogene 3 (BAG3) as a LFV Z PPPY interactor using our proline-rich reading array of WW-domain containing mammalian proteins. BAG3 is a stress-induced molecular co-chaperone that functions to regulate cellular protein homeostasis and cell survival via Chaperone-Assisted Selective Autophagy (CASA). Similar to our previously published findings for the VP40 proteins of Ebola and Marburg viruses, our results using VLP budding assays, BAG3 knockout cells, and confocal microscopy indicate that BAG3 is a WW-domain interactor that negatively regulates egress of LFV Z VLPs, rather than promoting VLP release. Our results suggest that CASA and specifically BAG3 may represent a novel host defense mechanism, whereby BAG3 may dampen egress of several hemorrhagic fever viruses by interacting and interfering with the budding function of viral PPxY-containing matrix proteins.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael P Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Philip Hicks
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cari A Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA.
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M1C 1A4, Canada.
| | - Marius Sudol
- Department of Physiology, Institute for Molecular and Cell Biology (IMCB, AStar), National University of Singapore, Singapore 119077, Singapore.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Filovirus proteins for antiviral drug discovery: Structure/function of proteins involved in assembly and budding. Antiviral Res 2018; 150:183-192. [DOI: 10.1016/j.antiviral.2017.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/30/2023]
|
34
|
Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci U S A 2018; 115:1075-1080. [PMID: 29339477 PMCID: PMC5798334 DOI: 10.1073/pnas.1712263115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Larissa Kolesnikova
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany;
- Thematic Translational Unit Emerging Infections, German Center of Infection Research (DZIF), 35037 Marburg, Germany
| |
Collapse
|
35
|
Abstract
Independent expression of the VP40 or Z matrix proteins of filoviruses (marburgviruses and ebolaviruses) and arenaviruses (Lassa fever and Junín), respectively, gives rise to the production and release of virus-like particles (VLPs) that are morphologically identical to infectious virions. We can detect and quantify VLP production and egress in mammalian cells by transient transfection, SDS-PAGE, Western blotting, and live cell imaging techniques such as total internal reflection fluorescence (TIRF) microscopy. Since the VLP budding assay accurately mimics budding of infectious virus, this BSL-2 assay is safe and useful for the interrogation of both viral and host determinants required for budding and can be used as an initial screen to identify and validate small molecule inhibitors of virus release and spread.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Yamayoshi S. [Functional analysis of Host proteins involved in RNA virus replication]. Uirusu 2018; 68:71-78. [PMID: 31105137 DOI: 10.2222/jsv.68.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since RNA virus genome encodes only a limited number of viral proteins, replication of RNA virus mostly relies on host cells. Elucidation of host proteins that play important roles in the virus replication cycles contributes not only to fundamental virology research but also to applied research such as development of antiviral drugs. We revealed that Ebola virus matrix protein VP40 utilized host COPII transport machinery for its intracellular transport to the plasma membrane. Second, we demonstrated that enterovirus A71 used Scavenger receptor class B member 2 (SCARB2) as a cellular receptor. Finally, we found that host protein CLUH played an important role in the subnuclear transport of influenza virus ribonucleoprotein (vRNP) complexes. Here, I would like to briefly introduce these findings.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| |
Collapse
|
37
|
Molinas A, Turkina MV, Magnusson KE, Mirazimi A, Vikström E. Perturbation of Wound Healing, Cytoskeletal Organization and Cellular Protein Networks during Hazara Virus Infection. Front Cell Dev Biol 2017; 5:98. [PMID: 29209610 PMCID: PMC5702460 DOI: 10.3389/fcell.2017.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
Normal epithelial and endothelial renewal and healing after bacterial and viral challenges are essential for homeostasis along the intestine and the blood and lymphatic vessels. We thus investigated whether and how virus affects migration of human epithelial cells and specifically how the nucleocapsid protein (N) modulates the cellular proteome and interactome using human Caco-2 cells in a wound-healing assay with Hazara virus as a model. Here, Hazara virus blocked cell migration in a dose- and time-dependent manner, disrupted the actin cytoskeleton and specifically reduced the expression of the IQ-motif-containing GTPase-activating protein 1 (IQGAP1) and water channel aquaporin 6 (AQP6) that regulate cytoskeletal organization, water homeostasis and vesicle communication. Moreover, in the Caco-2 cell proteome, we identified several distinct groups of molecules associating with N upon Hazara virus infection, being involved in the ensemble of important cellular processes, e.g., chaperone activity, metabolism, cellular defense against infections, cell morphology, and migration. These events do not only facilitate the virus life cycle, but they are also crucial for membrane and cytoskeleton dynamics, cellular self-renewal and wound healing, being so essential for body integrity and homeostasis.
Collapse
Affiliation(s)
- Andrea Molinas
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. J Virol 2017; 91:JVI.00812-17. [PMID: 28768865 DOI: 10.1128/jvi.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress.IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress.
Collapse
|
39
|
|
40
|
Liang J, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Han Z, Harty RN. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathog 2017; 13:e1006132. [PMID: 28076420 PMCID: PMC5226679 DOI: 10.1371/journal.ppat.1006132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Republic of Singapore
| | - Ziying Han
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
41
|
IQGAP2 is a novel interferon-alpha antiviral effector gene acting non-conventionally through the NF-κB pathway. J Hepatol 2016; 65:972-979. [PMID: 27401546 PMCID: PMC5656012 DOI: 10.1016/j.jhep.2016.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/27/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Type I interferons (IFN) provide the first line of defense against invading pathogens but its mechanism of action is still not well understood. Using unbiased genome-wide siRNA screens, we recently identified IQ-motif containing GTPase activating protein 2 (IQGAP2), a tumor suppressor predominantly expressed in the liver, as a novel gene putatively required for IFN antiviral response against hepatitis C virus (HCV) infection. Here we sought to characterize IQGAP2 role in IFN response. METHODS We used transient small interfering RNA knockdown strategy in hepatic cell lines highly permissive to JFH1 strain of HCV infection. RESULTS We found that IQGAP2 acts downstream of IFN binding to its receptor, and independently of the JAK-STAT pathway, by physically interacting with RelA (also known as p65), a subunit of the NF-κB transcription factor. Interestingly, our data reveal a mechanism distinct from the well-characterized role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in IFN production. Indeed, IFN alone was sufficient to stimulate NF-κB-dependent transcription in the absence of viral infection. Finally, both IQGAP2 and RelA were required for the induction by IFN of a subset of IFN-stimulated genes (ISG) with known antiviral properties. CONCLUSIONS Our data identify a novel function for IQGAP2 in IFN antiviral response in hepatoma cells. We demonstrate the involvement of IQGAP2 in regulating ISG induction by IFN in an NF-κB-dependent manner. The IQGAP2 pathway may provide new targets for antiviral strategies in the liver, and may have a wider therapeutic implication in other disease pathogeneses driven by NF-κB activation. LAY SUMMARY In this study, we identify a novel mechanism of action of interferon involving the IQGAP2 protein and the NF-κB pathway that is ultimately protective against hepatitis C virus infection. This newly identified pathway functions independently of the well-known STAT pathway and may therefore provide new targets for antiviral strategies in the liver.
Collapse
|
42
|
ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. J Virol 2016; 90:9163-71. [PMID: 27489272 DOI: 10.1128/jvi.01078-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Ebola virus (EBOV) and Marburg virus (MARV) belong to the Filoviridae family and can cause outbreaks of severe hemorrhagic fever, with high mortality rates in humans. The EBOV VP40 (eVP40) and MARV VP40 (mVP40) matrix proteins play a central role in virion assembly and egress, such that independent expression of VP40 leads to the production and egress of virus-like particles (VLPs) that accurately mimic the budding of infectious virus. Late (L) budding domains of eVP40 recruit host proteins (e.g., Tsg101, Nedd4, and Alix) that are important for efficient virus egress and spread. For example, the PPxY-type L domain of eVP40 and mVP40 recruits the host Nedd4 E3 ubiquitin ligase via its WW domains to facilitate budding. Here we sought to identify additional WW domain host interactors and demonstrate that the PPxY L domain motif of eVP40 interacts specifically with the WW domain of the host E3 ubiquitin ligase ITCH. ITCH, like Nedd4, is a member of the HECT class of E3 ubiquitin ligases, and the resultant physical and functional interaction with eVP40 facilitates VLP and virus budding. Identification of this novel eVP40 interactor highlights the functional interplay between cellular E3 ligases, ubiquitination, and regulation of VP40-mediated egress. IMPORTANCE The unprecedented magnitude and scope of the recent 2014-2015 EBOV outbreak in West Africa and its emergence here in the United States and other countries underscore the critical need for a better understanding of the biology and pathogenesis of this emerging pathogen. We have identified a novel and functional EBOV VP40 interactor, ITCH, that regulates VP40-mediated egress. This virus-host interaction may represent a new target for our previously identified small-molecule inhibitors of virus egress.
Collapse
|
43
|
Nagy PD. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annu Rev Virol 2016; 3:491-515. [PMID: 27578441 DOI: 10.1146/annurev-virology-110615-042312] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant positive-strand (+)RNA viruses are intracellular infectious agents that reorganize subcellular membranes and rewire the cellular metabolism of host cells to achieve viral replication in elaborate replication compartments. This review describes the viral replication process based on tombusviruses, highlighting common strategies with other plant and animal viruses. Overall, the works on Tomato bushy stunt virus (TBSV) have revealed intriguing and complex functions of co-opted cellular translation factors, heat shock proteins, DEAD-box helicases, lipid transfer proteins, and membrane-deforming proteins in virus replication. The emerging picture is that many of the co-opted host factors are from highly expressed and conserved protein families. By hijacking host proteins, phospholipids, sterols, and the actin network, TBSV exerts supremacy over the host cell to support viral replication in large replication compartments. Altogether, these advances in our understanding of tombusvirus-host interactions are broadly applicable to many other viruses, which also usurp conserved host factors for various viral processes.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
44
|
Analysis of Ebola virus polymerase domains to find strain-specific differences and to gain insight on their pathogenicity. Virusdisease 2016; 27:242-250. [PMID: 28466035 PMCID: PMC5394698 DOI: 10.1007/s13337-016-0334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/23/2016] [Indexed: 11/21/2022] Open
Abstract
Ebola virus, a member of the family Filoviridae has caused immense morbidity and mortality in recent times, especially in West Africa. The infection characterized by chills, fever, diarrhea, and myalgia can progress to hemorrhage and death. Hence, it is a high priority area to better understand its biology in order to expedite vaccine development pipelines. In this regard, this study analyzes the domains in RNA polymerase of fifteen publicly-available Ebola isolates belonging to three strains (Zaire, Sudan and Reston). The protein FASTA sequences of the isolates belonging Zaire, Sudan and Reston strains were extracted from UniProt database and submitted to the interactive web tool SMART for the polymerase domain profiles. Subsequent in silico investigation furnished interesting results that sure can contribute to the understanding of Ebola pathogenesis. The key findings and patterns have been presented, and based on them hypotheses have been formulated for further empirical validation.
Collapse
|
45
|
Abstract
Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.
Collapse
|
46
|
Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathog 2015; 11:e1005220. [PMID: 26513362 PMCID: PMC4634230 DOI: 10.1371/journal.ppat.1005220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. Filoviruses (Ebola and Marburg viruses) and arenaviruses (Lassa and Junín viruses) are high-priority pathogens that hijack host proteins and pathways to complete their replication cycles and spread from cell to cell. Here we provide genetic and pharmacological evidence to demonstrate that the host calcium channel protein Orai1 and ER calcium sensor protein STIM1 regulate efficient budding and spread of BSL-4 pathogens Ebola, Marburg, Lassa, and Junín viruses. Our findings are of broad significance as they provide new mechanistic insight into fundamental, immutable, and conserved mechanisms of hemorrhagic fever virus pathogenesis. Moreover, this strategy of targeting highly conserved host cellular protein(s) and mechanisms required by these viruses to complete their life cycle should elicit minimal drug resistance.
Collapse
|
47
|
The Ebola Virus Matrix Protein VP40 Interacts With Several Host Protein Networks to Facilitate Viral Replication. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Abstract
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.
Collapse
Affiliation(s)
- Qian Cong
- a Departments of Biophysics and Biochemistry ; University of Texas Southwestern Medical Center at Dallas ; Dallas , TX USA
| | | | | |
Collapse
|
49
|
Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol 2015; 10:537-546. [PMID: 26120351 DOI: 10.2217/fvl.15.6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The highly virulent nature of Ebola virus, evident from the 2014 West African pandemic, highlights the need to develop vaccines or therapeutic agents that limit the pathogenesis and spread of this virus. While vaccines represent an obvious approach, targeting virus interactions with host proteins that critically regulate the virus lifecycle also represent important therapeutic strategies. Among Ebola virus proteins at this critical interface is its matrix protein, VP40, which is abundantly expressed during infection and plays a number of critical roles in the viral lifecycle. In addition to regulating viral transcription, VP40 coordinates virion assembly and budding from infected cells. Details of the molecular mechanisms underpinning these essential functions are currently being elucidated, with a particular emphasis on its interactions with host proteins that control virion assembly and egress. This review focuses on the strategies geared toward developing novel therapeutic agents that target VP40-specific control of host functions critical to virion transcription, assembly and egress.
Collapse
Affiliation(s)
- Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Han Z, Madara JJ, Liu Y, Liu W, Ruthel G, Freedman BD, Harty RN. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress. J Infect Dis 2015; 212 Suppl 2:S138-45. [PMID: 25786915 DOI: 10.1093/infdis/jiu838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Yuliang Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Wenbo Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|