1
|
Cerna GM, Serieys LEK, Riley SPD, Richet C, Kraberger S, Varsani A. A circovirus and cycloviruses identified in feces of bobcats (Lynx rufus) in California. Arch Virol 2023; 168:23. [PMID: 36593430 DOI: 10.1007/s00705-022-05656-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/25/2022] [Indexed: 01/04/2023]
Abstract
Viruses in the family Circoviridae have small circular single-stranded DNA (ssDNA) genomes. Circoviruses are known to infect a wide variety of animals, with notable disease pathology in psittacine (psittacine beak and feather disease) and porcine (postweaning multisystemic wasting syndrome) species. There is still a dearth of research investigating circoviruses associated with felid species. In six fecal samples collected from bobcats (Lynx rufus) in California from 2010 to 2011, we identified six viruses belonging to the genera Circovirus (n = 1) and Cyclovirus (n = 5), using a high-throughput-sequencing-based approach. Of these, the virus in the genus Circovirus represents a new species, as it shares only 54-60% genome-wide sequence identity with the other members of this genus. The five viruses in the genus Cyclovirus represent three new species, sharing <73% genome-wide sequence identity with all other cycloviruses. Three of the cycloviruses belong to a single putative species and were obtained from the feces of three individual bobcats, sharing 95.7-99.9% sequence identity, whereas the other two unique cycloviruses were identified in a single fecal sample. At present, it is unknown whether the identified viruses infect bobcats, their prey, or their gut parasites.
Collapse
Affiliation(s)
- Gabriella M Cerna
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, 401 W. Hillcrest Dr, Thousand Oaks, CA, 91360, USA
| | - Cécile Richet
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
2
|
Kozakiewicz CP, Burridge CP, Lee JS, Kraberger SJ, Fountain-Jones NM, Fisher RN, Lyren LM, Jennings MK, Riley SPD, Serieys LEK, Craft ME, Funk WC, Crooks KR, VandeWoude S, Carver S. Habitat connectivity and host relatedness influence virus spread across an urbanising landscape in a fragmentation-sensitive carnivore. Virus Evol 2022; 9:veac122. [PMID: 36694819 PMCID: PMC9865512 DOI: 10.1093/ve/veac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/22/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism (SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic discontinuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban development may influence the incidence and management of wildlife disease.
Collapse
Affiliation(s)
| | | | - Justin S Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA 92101, USA
| | - Lisa M Lyren
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA 92101, USA
| | - Megan K Jennings
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA 91360, USA
| | | | - Meggan E Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kevin R Crooks
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA,Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
3
|
Gilbertson MLJ, Fountain-Jones NM, Malmberg JL, Gagne RB, Lee JS, Kraberger S, Kechejian S, Petch R, Chiu ES, Onorato D, Cunningham MW, Crooks KR, Funk WC, Carver S, VandeWoude S, VanderWaal K, Craft ME. Apathogenic proxies for transmission dynamics of a fatal virus. Front Vet Sci 2022; 9:940007. [PMID: 36157183 PMCID: PMC9493079 DOI: 10.3389/fvets.2022.940007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.
Collapse
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Jennifer L. Malmberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Roderick B. Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Raegan Petch
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elliott S. Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, United States
| | - Mark W. Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, United States
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Ryser-Degiorgis MP, Marti I, Pisano SRR, Pewsner M, Wehrle M, Breitenmoser-Würsten C, Origgi FC, Kübber-Heiss A, Knauer F, Posautz A, Eberspächer-Schweda M, Huder JB, Böni J, Kubacki J, Bachofen C, Riond B, Hofmann-Lehmann R, Meli ML. Management of Suspected Cases of Feline Immunodeficiency Virus Infection in Eurasian Lynx ( Lynx lynx) During an International Translocation Program. Front Vet Sci 2021; 8:730874. [PMID: 34760956 PMCID: PMC8573149 DOI: 10.3389/fvets.2021.730874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
The Eurasian lynx (Lynx lynx) population in Switzerland serves as a source for reintroductions in neighboring countries. In 2016–2017, three lynx from the same geographical area were found seropositive for feline immunodeficiency virus (FIV) in the framework of an international translocation program. This novel finding raised questions about the virus origin and pathogenicity to lynx, the emerging character of the infection, and the interpretation of serological results in other lynx caught for translocation. Archived serum samples from 84 lynx captured in 2001–2016 were retrospectively tested for FIV antibodies by Western blot. All archived samples were FIV-negative. The three seropositive lynx were monitored in quarantine enclosures prior to euthanasia and necropsy. They showed disease signs, pathological findings, and occurrence of co-infections reminding of those described in FIV-infected domestic cats. All attempts to isolate and characterize the virus failed but serological data and spatiotemporal proximity of the cases suggested emergence of a lentivirus with antigenic and pathogenic similarities to FIV in the Swiss lynx population. A decision scheme was developed to minimize potential health risks posed by FIV infection, both in the recipient and source lynx populations, considering conservation goals, animal welfare, and the limited action range resulting from local human conflicts. Development and implementation of a cautious decision scheme was particularly challenging because FIV pathogenic potential in lynx was unclear, negative FIV serological results obtained within the first weeks after infection are unpredictable, and neither euthanasia nor repatriation of multiple lynx was acceptable options. The proposed scheme distinguished between three scenarios: release at the capture site, translocation, or euthanasia. Until April 2021, none of the 40 lynx newly captured in Switzerland tested FIV-seropositive. Altogether, seropositivity to FIV was documented in none of 124 lynx tested at their first capture, but three of them seroconverted in 2016–2017. Diagnosis of FIV infection in the three seropositive lynx remains uncertain, but clinical observations and pathological findings confirmed that euthanasia was appropriate. Our experiences underline the necessity to include FIV in pathogen screenings of free-ranging European wild felids, the importance of lynx health monitoring, and the usefulness of health protocols in wildlife translocation.
Collapse
Affiliation(s)
| | - Iris Marti
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mirjam Pewsner
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Francesco C Origgi
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Matthias Eberspächer-Schweda
- Dentistry and Oral Surgery Service, Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jon B Huder
- Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gagne RB, Kraberger S, McMinn R, Trumbo DR, Anderson CR, Logan KA, Alldredge MW, Griffin K, Vandewoude S. Viral Sequences Recovered From Puma Tooth DNA Reconstruct Statewide Viral Phylogenies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring pathogens in wildlife populations is imperative for effective management, and for identifying locations for pathogen spillover among wildlife, domestic species and humans. Wildlife pathogen surveillance is challenging, however, as sampling often requires the capture of a significant proportion of the population to understand host pathogen dynamics. To address this challenge, we assessed the ability to use hunter-collected teeth from puma across Colorado to recover genetic data of two feline retroviruses, feline foamy virus (FFV) and feline immunodeficiency virus (FIVpco) and show they can be utilized for this purpose. Comparative phylogenetic analyses of FIVpco and FFV from tooth and blood samples to previous analyses conducted with blood samples collected over a nine-year period from two distinct areas was undertaken highlighting the value of tooth derived samples. We found less FIVpco phylogeographic structuring than observed from sampling only two regions and that FFV data confirmed previous findings of endemic infection, minimal geographic structuring, and supported frequent cross-species transmission from domestic cats to pumas. Viral analysis conducted using intentionally collected blood samples required extensive financial, capture and sampling efforts. This analysis illustrates that viral genomic data can be cost effectively obtained using tooth samples incidentally-collected from hunter harvested pumas, taking advantage of samples collected for morphological age identification. This technique should be considered as an opportunistic method to provide broad geographic sampling to define viral dynamics more accurately in wildlife.
Collapse
|
6
|
Comprehensive Investigation on the Interplay between Feline APOBEC3Z3 Proteins and Feline Immunodeficiency Virus Vif Proteins. J Virol 2021; 95:e0017821. [PMID: 33762419 PMCID: PMC8437355 DOI: 10.1128/jvi.00178-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the hosts of lentiviruses, almost 40 species of felids (family Felidae) are distributed around the world, and more than 20 feline species test positive for feline immunodeficiency virus (FIV), a lineage of lentiviruses. These observations suggest that FIVs globally infected a variety of feline species through multiple cross-species transmission events during a million-year history. Cellular restriction factors potentially inhibit lentiviral replication and limit cross-species lentiviral transmission, and cellular APOBEC3 deaminases are known as a potent restriction factor. In contrast, lentiviruses have evolutionary-acquired viral infectivity factor (Vif) to neutralize the APOBEC3-mediated antiviral effect. Because the APOBEC3-Vif interaction is strictly specific for viruses and their hosts, a comprehensive investigation focusing on Vif-APOBEC3 interplay can provide clues that will elucidate the roles of this virus-host interplay on cross-species transmission of lentiviruses. Here, we performed a comprehensive investigation with 144 patterns of a round robin test using 18 feline APOBEC3Z3 genes, an antiviral APOBEC3 gene in felid, and 8 FIV Vifs and derived a matrix showing the interplay between feline APOBEC3Z3 and FIV Vif. We particularly focused on the interplay between the APOBEC3Z3 of three felids (domestic cat, ocelot, and Asian golden cat) and an FIV Vif (strain Petaluma), and revealed that residues 65 and 66 of the APOBEC3Z3 protein of multiple felids are responsible for the counteraction triggered by FIV Petaluma Vif. Altogether, our findings can be a clue to elucidate not only the scenarios of the cross-species transmissions of FIVs in felids but also the evolutionary interaction between mammals and lentiviruses. IMPORTANCE Most of the emergences of new virus infections originate from the cross-species transmission of viruses. The fact that some virus infections are strictly specific for the host species indicates that certain “species barriers” in the hosts restrict cross-species jump of viruses, while viruses have evolutionary acquired their own “arms” to overcome/antagonize/neutralize these hurdles. Therefore, understanding of the molecular mechanism leading to successful cross-species viral transmission is crucial for considering the menus of the emergence of novel pathogenic viruses. In the field of retrovirology, APOBEC3-Vif interaction is a well-studied example of the battles between hosts and viruses. Here, we determined the sequences of 11 novel feline APOBEC3Z3 genes and demonstrated that all 18 different feline APOBEC3Z3 proteins tested exhibit anti-feline immunodeficiency virus (FIV) activity. Our comprehensive investigation focusing on the interplay between feline APOBEC3 and FIV Vif can be a clue to elucidate the scenarios of the cross-species transmissions of FIVs in felids.
Collapse
|
7
|
Sacristán I, Acuña F, Aguilar E, García S, José López M, Cabello J, Hidalgo‐Hermoso E, Sanderson J, Terio KA, Barrs V, Beatty J, Johnson WE, Millán J, Poulin E, Napolitano C. Cross-species transmission of retroviruses among domestic and wild felids in human-occupied landscapes in Chile. Evol Appl 2021; 14:1070-1082. [PMID: 33897821 PMCID: PMC8061269 DOI: 10.1111/eva.13181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023] Open
Abstract
Human transformation of natural habitats facilitates pathogen transmission between domestic and wild species. The guigna (Leopardus guigna), a small felid found in Chile, has experienced habitat loss and an increased probability of contact with domestic cats. Here, we describe the interspecific transmission of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) between domestic cats and guignas and assess its correlation with human landscape perturbation. Blood and tissue samples from 102 free-ranging guignas and 262 domestic cats were collected and analyzed by PCR and sequencing. Guigna and domestic cat FeLV and FIV prevalence were very similar. Phylogenetic analysis showed guigna FeLV and FIV sequences are positioned within worldwide domestic cat virus clades with high nucleotide similarity. Guigna FeLV infection was significantly associated with fragmented landscapes with resident domestic cats. There was little evidence of clinical signs of disease in guignas. Our results contribute to the understanding of the implications of landscape perturbation and emerging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vanessa Barrs
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Julia Beatty
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Warren E. Johnson
- Smithsonian Conservation Biology InstituteNational Zoological ParkWashintonDistrict of ColumbiaUSA
- The Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Present address:
The Walter Reed Biosystematics UnitSmithsonian InstitutionSuitlandMarylandUSA
| | - Javier Millán
- Universidad Andres BelloSantiagoChile
- Instituto Agroalimentario de Aragón‐IA2University of Zaragoza‐CITAZaragozaSpain
- Fundación ARAIDZaragozaSpain
| | - Elie Poulin
- Universidad de ChileSantiagoChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Constanza Napolitano
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
- Departamento de Ciencias Biológicas y BiodiversidadUniversidad de Los LagosOsornoChile
| |
Collapse
|
8
|
Ramírez-Álvarez D, Napolitano C, Salgado I. Puma ( Puma concolor) in the Neighborhood? Records Near Human Settlements and Insights into Human-Carnivore Coexistence in Central Chile. Animals (Basel) 2021; 11:ani11040965. [PMID: 33807134 PMCID: PMC8066551 DOI: 10.3390/ani11040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary The presence of carnivores near human settlements is a poorly studied topic that generates concern and perception of risk in some human communities, especially for medium to large felids. Apart from the conflict of the potential predation of livestock, there is the insecurity perception of a potential attack on people. To gain a better understanding of how, when, and how close pumas approached human settlements, we analyze 51 puma records near populated areas over eight years in central Chile. The results show that pumas approached human-populated areas; in 23.5% of the records pumas are found between 0 and 999 m from the nearest human settlement, 25.5% are between 1000 and 4999 m, and 51% are over 5000 m. We associate puma records with landscape features, such as mountain ranges, land-use, road, and urban infrastructure; and based on previous knowledge of puma biology, behavior, and habitat preference, we identify their area of occupation and the potential biological corridor used for their movements from the Andes Range to the coast. Our results show the adaptability of pumas to human-dominated landscapes, and their capacity to overcome landscape barriers, such as human infrastructure, contributing to a better understanding of the population dynamics in the study area. Studies on human–carnivore coexistence, through formulas that consider local realities and the reduction of implicit risks for humans, are urgently needed, both globally and locally, and likely the only way to secure the long-term conservation of pumas in human-dominated landscapes. Abstract The wildland–urban interface lies at the confluence of human-dominated and wild landscapes—creating a number of management and conservation challenges. Wildlife sightings near human settlements have appeared to increase in the last years. This article reports 51 records of presences, sightings, and livestock attacks of Puma concolor, a large-sized felid, collected from 2012 to 2020 across the O’Higgins region in central Chile. Puma records were concentrated in the east of the region in the Andes Range and foothills (90%). The number of puma records is higher in the last four to six years than in previously studied years. Of the 51 records, 23.5% are between 0 and 999 m from the nearest human settlement (classified as very close), 25.5% are between 1000 and 4999 m (moderately close), and 51% are over 5000 m (distant). Most of the sightings are recorded in the summer (35%) and spring (29%). We identify an area of approximately 9000 km2 of suitable habitat as the most probable corridor effectively connecting pumas moving between eastern and western areas, encompassing the Angostura de Paine mountain range. Our results contribute to the understanding of the presence and movements of P. concolor near urban areas and human settlements, confirming their persistence in and adaptation to human-dominated landscapes. We also provide insights into human–carnivore coexistence in the current global context in the densely populated central Chile.
Collapse
Affiliation(s)
- Diego Ramírez-Álvarez
- Unidad de Vida Silvestre, Servicio Agrícola y Ganadero (SAG), Región de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: (D.R.-Á.); (C.N.)
| | - Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno 5312435, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago 7800003, Chile
- Correspondence: (D.R.-Á.); (C.N.)
| | - Iván Salgado
- Unidad de Vida Silvestre, Servicio Agrícola y Ganadero (SAG), Región de O’Higgins, Rancagua 2820000, Chile;
| |
Collapse
|
9
|
Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore. Commun Biol 2021; 4:12. [PMID: 33398025 PMCID: PMC7782801 DOI: 10.1038/s42003-020-01548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.
Collapse
|
10
|
Kozakiewicz CP, Burridge CP, Funk WC, Craft ME, Crooks KR, Fisher RN, Fountain‐Jones NM, Jennings MK, Kraberger SJ, Lee JS, Lyren LM, Riley SPD, Serieys LEK, VandeWoude S, Carver S. Does the virus cross the road? Viral phylogeographic patterns among bobcat populations reflect a history of urban development. Evol Appl 2020; 13:1806-1817. [PMID: 32908587 PMCID: PMC7463333 DOI: 10.1111/eva.12927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Urban development has major impacts on connectivity among wildlife populations and is thus likely an important factor shaping pathogen transmission in wildlife. However, most investigations of wildlife diseases in urban areas focus on prevalence and infection risk rather than potential effects of urbanization on transmission itself. Feline immunodeficiency virus (FIV) is a directly transmitted retrovirus that infects many felid species and can be used as a model for studying pathogen transmission at landscape scales. We investigated phylogenetic relationships among FIV isolates sampled from five bobcat (Lynx rufus) populations in coastal southern California that appear isolated due to major highways and dense urban development. Divergence dates among FIV phylogenetic lineages in several cases reflected historical urban growth and construction of major highways. We found strong FIV phylogeographic structure among three host populations north-west of Los Angeles, largely coincident with host genetic structure. In contrast, relatively little FIV phylogeographic structure existed among two genetically distinct host populations south-east of Los Angeles. Rates of FIV transfer among host populations did not vary significantly, with the lack of phylogenetic structure south-east of Los Angeles unlikely to reflect frequent contemporary transmission among populations. Our results indicate that major barriers to host gene flow can also act as barriers to pathogen spread, suggesting potentially reduced susceptibility of fragmented populations to novel directly transmitted pathogens. Infrequent exchange of FIV among host populations suggests that populations would best be managed as distinct units in the event of a severe disease outbreak. Phylogeographic inference of pathogen transmission is useful for estimating the ability of geographic barriers to constrain disease spread and can provide insights into contemporary and historical drivers of host population connectivity.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt PaulMNUSA
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCOUSA
| | - Robert N. Fisher
- Western Ecological Research CenterU.S. Geological SurveySan DiegoCAUSA
| | | | | | - Simona J. Kraberger
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Justin S. Lee
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Lisa M. Lyren
- Western Ecological Research CenterU.S. Geological SurveyThousand OaksCAUSA
| | - Seth P. D. Riley
- National Park ServiceSanta Monica Mountains National Recreation AreaThousand OaksCAUSA
| | - Laurel E. K. Serieys
- Department of Environmental StudiesUniversity of California Santa CruzSanta CruzCAUSA
- Institute for Communities and Wildlife in AfricaBiological SciencesUniversity of Cape TownCape TownSouth Africa
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTASAustralia
| |
Collapse
|
11
|
Kraberger S, Fountain-Jones NM, Gagne RB, Malmberg J, Dannemiller NG, Logan K, Alldredge M, Varsani A, Crooks KR, Craft M, Carver S, VandeWoude S. Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evol 2020; 6:vez058. [PMID: 31942245 PMCID: PMC6955097 DOI: 10.1093/ve/vez058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nicholas G Dannemiller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken Logan
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526, USA
| | - Mat Alldredge
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Meggan Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Malmberg JL, Lee JS, Gagne RB, Kraberger S, Kechejian S, Roelke M, McBride R, Onorato D, Cunningham M, Crooks KR, VandeWoude S. Altered lentiviral infection dynamics follow genetic rescue of the Florida panther. Proc Biol Sci 2019; 286:20191689. [PMID: 31640509 DOI: 10.1098/rspb.2019.1689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Wildlife translocations are a commonly used strategy in endangered species recovery programmes. Although translocations require detailed assessment of risk, their impact on parasite distribution has not been thoroughly assessed. This is despite the observation that actions that alter host-parasite distributions can drive evolution or introduce new parasites to previously sequestered populations. Here, we use a contemporary approach to amplify viral sequences from archived biological samples to characterize a previously undocumented impact of the successful genetic rescue of the Florida panther (Puma concolor coryi). Our efforts reveal transmission of feline immunodeficiency virus (FIV) during translocation of pumas from Texas to Florida, resulting in extirpation of a historic Florida panther FIV subtype and expansion of a genetically stable subtype that is highly conserved in Texas and Florida. We used coalescent theory to estimate viral demography across time and show an exponential increase in the effective population size of FIV coincident with expansion of the panther population. Additionally, we show that FIV isolates from Texas are basal to isolates from Florida. Interestingly, FIV genomes recovered from Florida and Texas demonstrate exceptionally low interhost divergence. Low host genomic diversity and lack of additional introgressions may underlie the surprising lack of FIV evolution over 2 decades. We conclude that modern FIV in the Florida panther disseminated following genetic rescue and rapid population expansion, and that infectious disease risks should be carefully considered during conservation efforts involving translocations. Further, viral evolutionary dynamics may be significantly altered by ecological niche, host diversity and connectivity between host populations.
Collapse
Affiliation(s)
- Jennifer L Malmberg
- Department of Veterinary Sciences, University of Wyoming, Wyoming State Veterinary Laboratory, Laramie, WY, USA
| | - Justin S Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Simona Kraberger
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Sarah Kechejian
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, USA
| | - Mark Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Kellner A, Carver S, Scorza V, McKee CD, Lappin M, Crooks KR, VandeWoude S, Antolin MF. Transmission pathways and spillover of an erythrocytic bacterial pathogen from domestic cats to wild felids. Ecol Evol 2018; 8:9779-9792. [PMID: 30386574 PMCID: PMC6202716 DOI: 10.1002/ece3.4451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022] Open
Abstract
Many pathogens infect multiple hosts, and spillover from domestic to wild species poses a significant risk of spread of diseases that threaten wildlife and humans. Documentation of cross-species transmission, and unraveling the mechanisms that drive it, remains a challenge. Focusing on co-occurring domestic and wild felids, we evaluate possible transmission mechanisms and evidence of spillover of "Candidatus Mycoplasma haemominutum" (CMhm), an erythrocytic bacterial parasite of cats. We examine transmission and possibility of spillover by analyzing CMhm prevalence, modeling possible transmission pathways, deducing genotypes of CMhm pathogens infecting felid hosts based on sequences of the bacterial 16S rRNA gene, and conducting phylogenetic analyses with ancestral state reconstruction to identify likely cross-species transmission events. Model selection analyses suggest both indirect (i.e., spread via vectors) and direct (i.e., via interspecific predation) pathways may play a role in CMhm transmission. Phylogenetic analyses indicate that transmission of CMhm appears to predominate within host species, with occasional spillover, at unknown frequency, between species. These analyses are consistent with transmission by predation of smaller cats by larger species, with subsequent within-species persistence after spillover. Our results implicate domestic cats as a source of global dispersal and spillover to wild felids via predation. We contribute to the emerging documentation of predation as a common means of pathogen spillover from domestic to wild cats, including pathogens of global conservation significance. These findings suggest risks for top predators as bioaccumulators of pathogens from subordinate species.
Collapse
Affiliation(s)
- Annie Kellner
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
- Department of BiologyColorado State UniversityFort CollinsColorado
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Scott Carver
- School of Biological SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Valeria Scorza
- Department of Clinical SciencesColorado State UniversityFort CollinsColorado
| | - Clifton D. McKee
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
- Department of BiologyColorado State UniversityFort CollinsColorado
| | - Michael Lappin
- Department of Clinical SciencesColorado State UniversityFort CollinsColorado
| | - Kevin R. Crooks
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Michael F. Antolin
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
- Department of BiologyColorado State UniversityFort CollinsColorado
| |
Collapse
|
14
|
Effects of Low-level Brodifacoum Exposure on the Feline Immune Response. Sci Rep 2018; 8:8168. [PMID: 29802369 PMCID: PMC5970145 DOI: 10.1038/s41598-018-26558-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Anticoagulant rodenticides have been implicated as a potential inciting factor in the development of mange in wild felids, but a causative association between anticoagulant rodenticide exposure and immune suppression has not been established. Specific-pathogen-free domestic cats were exposed to brodifacoum over a 6-week period to determine whether chronic, low-level exposure altered the feline immune response. Cats were vaccinated with irrelevant antigens at different points during the course of the experiment to assess recall and direct immune responses. Measures of immune response included delayed-type hypersensitivity tests and cell proliferation assays. IgE and antigen-specific antibodies were quantified via ELISA assays, and cytokine induction following exposure to vaccine antigens was also analyzed. While cats had marked levels of brodifacoum present in blood during the study, no cats developed coagulopathies or hematologic abnormalities. Brodifacoum-exposed cats had transient, statistically significant decreases in the production of certain cytokines, but all other measures of immune function remained unaffected throughout the study period. This study indicates that cats may be more resistant to clinical effects of brodifacoum exposure than other species and suggests that the gross impacts of environmentally realistic brodifacoum exposure on humoral and cell-mediated immunity against foreign antigen exposures in domestic cats are minimal.
Collapse
|
15
|
Prior Puma Lentivirus Infection Modifies Early Immune Responses and Attenuates Feline Immunodeficiency Virus Infection in Cats. Viruses 2018; 10:v10040210. [PMID: 29677149 PMCID: PMC5923504 DOI: 10.3390/v10040210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022] Open
Abstract
We previously showed that cats that were infected with non-pathogenic Puma lentivirus (PLV) and then infected with pathogenic feline immunodeficiency virus (FIV) (co-infection with the host adapted/pathogenic virus) had delayed FIV proviral and RNA viral loads in blood, with viral set-points that were lower than cats infected solely with FIV. This difference was associated with global CD4+ T cell preservation, greater interferon gamma (IFN-γ) mRNA expression, and no cytotoxic T lymphocyte responses in co-infected cats relative to cats with a single FIV infection. In this study, we reinforced previous observations that prior exposure to an apathogenic lentivirus infection can diminish the effects of acute infection with a second, more virulent, viral exposure. In addition, we investigated whether the viral load differences that were observed between PLV/FIV and FIV infected cats were associated with different immunocyte phenotypes and cytokines. We found that the immune landscape at the time of FIV infection influences the infection outcome. The novel findings in this study advance our knowledge about early immune correlates and documents an immune state that is associated with PLV/FIV co-infection that has positive outcomes for lentiviral diseases.
Collapse
|
16
|
Feline APOBEC3s, Barriers to Cross-Species Transmission of FIV? Viruses 2018; 10:v10040186. [PMID: 29642583 PMCID: PMC5923480 DOI: 10.3390/v10040186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 02/07/2023] Open
Abstract
The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids.
Collapse
|
17
|
Konno Y, Nagaoka S, Kimura I, Yamamoto K, Kagawa Y, Kumata R, Aso H, Ueda MT, Nakagawa S, Kobayashi T, Koyanagi Y, Sato K. New World feline APOBEC3 potently controls inter-genus lentiviral transmission. Retrovirology 2018; 15:31. [PMID: 29636069 PMCID: PMC5894237 DOI: 10.1186/s12977-018-0414-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023] Open
Abstract
Background The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. Results Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. Conclusions To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World. Electronic supplementary material The online version of this article (10.1186/s12977-018-0414-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumiko Kagawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuichi Kumata
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Science, Kyoto University, Kyoto, Japan
| | - Hirofumi Aso
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | - So Nakagawa
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, Tokai University, Kanagawa, Japan
| | - Tomoko Kobayashi
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. .,CREST, Japan Science and Technology Agency, Saitama, Japan. .,Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
18
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
19
|
|
20
|
Fountain-Jones NM, Craft ME, Funk WC, Kozakiewicz C, Trumbo DR, Boydston EE, Lyren LM, Crooks K, Lee JS, VandeWoude S, Carver S. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol Ecol 2017; 26:6487-6498. [PMID: 28987024 DOI: 10.1111/mec.14375] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of feline immunodeficiency virus (FIV) in bobcats (Lynx rufus). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host-pathogen systems, including humans.
Collapse
Affiliation(s)
- Nicholas M Fountain-Jones
- School of Biological Sciences, University of Tasmania, Hobart, Australia.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Chris Kozakiewicz
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Erin E Boydston
- Western Ecological Research Center, U.S. Geological Survey, Thousand Oaks, CA, USA
| | - Lisa M Lyren
- Western Ecological Research Center, U.S. Geological Survey, Thousand Oaks, CA, USA
| | - Kevin Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin S Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
21
|
Nakano Y, Aso H, Soper A, Yamada E, Moriwaki M, Juarez-Fernandez G, Koyanagi Y, Sato K. A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif. Retrovirology 2017; 14:31. [PMID: 28482907 PMCID: PMC5422959 DOI: 10.1186/s12977-017-0355-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/27/2017] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are mammalian-specific cellular deaminases and have a robust ability to restrain lentivirus replication. To antagonize APOBEC3-mediated antiviral action, lentiviruses have acquired viral infectivity factor (Vif) as an accessory gene. Mammalian APOBEC3 proteins inhibit lentiviral replication by enzymatically inserting G-to-A hypermutations in the viral genome, whereas lentiviral Vif proteins degrade host APOBEC3 via the ubiquitin/proteasome-dependent pathway. Recent investigations provide evidence that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins. In corollary, mammalian APOBEC3 genes are under Darwinian selective pressure to escape from antagonism by Vif. Based on these observations, it is widely accepted that lentiviral Vif and mammalian APOBEC3 have co-evolved and this concept is called an "evolutionary arms race." This review provides a comprehensive summary of current knowledge with respect to the evolutionary dynamics occurring at this pivotal host-virus interface.
Collapse
Affiliation(s)
- Yusuke Nakano
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hirofumi Aso
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Eri Yamada
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Miyu Moriwaki
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Guillermo Juarez-Fernandez
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
22
|
Lee J, Malmberg JL, Wood BA, Hladky S, Troyer R, Roelke M, Cunningham M, McBride R, Vickers W, Boyce W, Boydston E, Serieys L, Riley S, Crooks K, VandeWoude S. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections. J Virol 2017; 91:e02134-16. [PMID: 28003486 PMCID: PMC5309969 DOI: 10.1128/jvi.02134-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats (Lynx rufus) and mountain lions (Puma concolor) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers (Puma concolor coryi) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates.IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which outcome will occur are complex, and the risk of new virus emergence is therefore difficult to predict. We used molecular techniques to evaluate the transmission, fitness, and adaptation of puma lentivirus A (PLVA) between bobcats and mountain lions in two geographic regions. Our findings illustrate that mountain lion exposure to PLVA is relatively common but does not routinely result in communicable infections in the new host. This is attributed to efficient species barriers that largely prevent lentiviral adaptation. However, the evolutionary capacity for lentiviruses to adapt to novel environments may ultimately overcome host restriction mechanisms over time and under certain ecological circumstances. This phenomenon provides a unique opportunity to examine cross-species transmission events leading to new lentiviral emergence.
Collapse
Affiliation(s)
- Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Britta A Wood
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Sahaja Hladky
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ryan Troyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Melody Roelke
- Leidos Biomedical Research, Inc., Bethesda, Maryland, USA
| | - Mark Cunningham
- Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, USA
| | | | - Winston Vickers
- Wildlife Health Center, University of California, Davis, Davis, California, USA
| | - Walter Boyce
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Erin Boydston
- U.S. Geological Survey, Western Ecological Research Center, Thousand Oaks, California, USA
| | - Laurel Serieys
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Seth Riley
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, California, USA
| | - Kevin Crooks
- Department of Fish, Wildlife, and Conservation Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
23
|
Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s. J Virol 2016; 90:10545-10557. [PMID: 27630243 DOI: 10.1128/jvi.01593-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/10/2016] [Indexed: 01/14/2023] Open
Abstract
Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. IMPORTANCE Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with either feline APOBEC3Z2 or APOBEC3Z3. These specific Vif sites are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in FIV Vif from puma. Our findings provide important insights for future experiments describing the FIV Vif interaction with feline APOBEC3s and also indicate that the conserved feline APOBEC3s interaction sites of FIV Vif allow FIV transmissions in Felidae.
Collapse
|
24
|
Gilbertson MLJ, Carver S, VandeWoude S, Crooks KR, Lappin MR, Craft ME. Is pathogen exposure spatially autocorrelated? Patterns of pathogens in puma (Puma concolor) and bobcat (Lynx rufus). Ecosphere 2016. [DOI: 10.1002/ecs2.1558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population MedicineUniversity of Minnesota Minneapolis Minnesota 55455 USA
| | - Scott Carver
- School of Biological SciencesUniversity of Tasmania Hobart Tasmania 7001 Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and PathologyColorado State University Fort Collins Colorado 80523 USA
| | - Kevin R. Crooks
- Department of Fish, Wildlife and Conservation BiologyColorado State University Fort Collins Colorado 80523 USA
| | - Michael R. Lappin
- Department of Clinical SciencesColorado State University Fort Collins Colorado 80523 USA
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
25
|
McBride R, McBride C, McBride C. Safe and Selective Capture of Bobcats ( Lynx rufus) Using Trained Hounds in the Absence of Snow. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
27
|
Carver S, Bevins SN, Lappin MR, Boydston EE, Lyren LM, Alldredge M, Logan KA, Sweanor LL, Riley SPD, Serieys LEK, Fisher RN, Vickers TW, Boyce W, Mcbride R, Cunningham MC, Jennings M, Lewis J, Lunn T, Crooks KR, Vandewoude S. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:367-381. [PMID: 27209780 DOI: 10.1890/15-0445] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding how landscape, host, and pathogen traits contribute to disease exposure requires systematic evaluations of pathogens within and among host species and geographic regions. The relative importance of these attributes is critical for management of wildlife and mitigating domestic animal and human disease, particularly given rapid ecological changes, such as urbanization. We screened > 1000 samples from sympatric populations of puma (Puma concolor), bobcat (Lynx rufus), and domestic cat (Felis catus) across urban gradients in six sites, representing three regions, in North America for exposure to a representative suite of bacterial, protozoal, and viral pathogens (Bartonella sp., Toxoplasma gondii, feline herpesvirus-1, feline panleukopenea virus, feline calicivirus, and feline immunodeficiency virus). We evaluated prevalence within each species, and examined host trait and land cover determinants of exposure; providing an unprecedented analysis of factors relating to potential for infections in domesticated and wild felids. Prevalence differed among host species (highest for puma and lowest for domestic cat) and was greater for indirectly transmitted pathogens. Sex was inconsistently predictive of exposure to directly transmitted pathogens only, and age infrequently predictive of both direct and indirectly transmitted pathogens. Determinants of pathogen exposure were widely divergent between the wild felid species. For puma, suburban land use predicted increased exposure to Bartonella sp. in southern California, and FHV-1 exposure increased near urban edges in Florida. This may suggest interspecific transmission with domestic cats via flea vectors (California) and direct contact (Florida) around urban boundaries. Bobcats captured near urban areas had increased exposure to T. gondii in Florida, suggesting an urban source of prey Bobcats captured near urban areas in Colorado and Florida had higher FIV exposure, possibly suggesting increased intraspecific interactions through pile-up of home ranges. Beyond these regional and pathogen specific relationships, proximity to the wildland-urban interface did not generally increase the probability of disease exposure in wild or domestic felids, empha- sizing the importance of local ecological determinants. Indeed, pathogen exposure was often negatively associated with the wildland-urban interface for all felids. Our analyses suggest cross-species pathogen transmission events around this interface may be infrequent, but followed by self-sustaining propagation within the new host species. virus; puma (Puma concolor); Toxoplasma gondii; urbanization.
Collapse
|