1
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobarrubias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. J Virol 2024; 98:e0165523. [PMID: 38214547 PMCID: PMC10878278 DOI: 10.1128/jvi.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Kyle Cobarrubias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Michael J. Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A. Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adaora Adimora
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Mark H. Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I. Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - the MACS/WIHS combined cohort study (MWCSS)OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- College of Dentistry, New York University, New York, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobamibias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. RESEARCH SQUARE 2023:rs.3.rs-3259040. [PMID: 37645749 PMCID: PMC10462229 DOI: 10.21203/rs.3.rs-3259040/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kyle Cobamibias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nande M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, NC, USA
| | - Margaret A Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adaora Adimora
- Departments of Medicine and Epidemiology, University of North Carolina School of Medicine, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, NY, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons. PLoS Comput Biol 2018; 14:e1006498. [PMID: 30543621 PMCID: PMC6314628 DOI: 10.1371/journal.pcbi.1006498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/02/2019] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing of viral populations has advanced our understanding of viral population dynamics, the development of drug resistance, and escape from host immune responses. Many applications require complete gene sequences, which can be impossible to reconstruct from short reads. HIV env, the protein of interest for HIV vaccine studies, is exceptionally challenging for long-read sequencing and analysis due to its length, high substitution rate, and extensive indel variation. While long-read sequencing is attractive in this setting, the analysis of such data is not well handled by existing methods. To address this, we introduce FLEA (Full-Length Envelope Analyzer), which performs end-to-end analysis and visualization of long-read sequencing data. FLEA consists of both a pipeline (optionally run on a high-performance cluster), and a client-side web application that provides interactive results. The pipeline transforms FASTQ reads into high-quality consensus sequences (HQCSs) and uses them to build a codon-aware multiple sequence alignment. The resulting alignment is then used to infer phylogenies, selection pressure, and evolutionary dynamics. The web application provides publication-quality plots and interactive visualizations, including an annotated viral alignment browser, time series plots of evolutionary dynamics, visualizations of gene-wide selective pressures (such as dN/dS) across time and across protein structure, and a phylogenetic tree browser. We demonstrate how FLEA may be used to process Pacific Biosciences HIV env data and describe recent examples of its use. Simulations show how FLEA dramatically reduces the error rate of this sequencing platform, providing an accurate portrait of complex and variable HIV env populations. A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python source code for the FLEA pipeline can be found at https://github.com/veg/flea-pipeline. The client-side application is available at https://github.com/veg/flea-web-app. A live demo of the P018 results can be found at http://flea.murrell.group/view/P018. Viral populations constantly evolve and diversify. In this article we introduce a method, FLEA, for reconstructing and visualizing the details of evolutionary changes. FLEA specifically processes data from sequencing platforms that generate reads that are long, but error-prone. To study the evolutionary dynamics of entire genes during viral infection, data is collected via long-read sequencing at discrete time points, allowing us to understand how the virus changes over time. However, the experimental and sequencing process is imperfect, so the resulting data contain not only real evolutionary changes, but also mutations and other genetic artifacts caused by sequencing errors. Our method corrects most of these errors by combining thousands of erroneous sequences into a much smaller number of unique consensus sequences that represent biologically meaningful variation. The resulting high-quality sequences are used for further analysis, such as building an evolutionary tree that tracks and interprets the genetic changes in the viral population over time. FLEA is open source, and is freely available online.
Collapse
|