1
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
3
|
Lulić L, Jakovčević A, Kovačić I, Manojlović L, Dediol E, Skelin J, Tomaić V. HPV16 Impacts NHERF2 Expression in Oropharyngeal Cancers. Pathogens 2023; 12:1013. [PMID: 37623973 PMCID: PMC10459660 DOI: 10.3390/pathogens12081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Infection with human papillomaviruses (HPVs), in particular with HPV type 16, is now considered to be a key risk factor for the development of a subset of oropharyngeal squamous cell carcinomas (OPSCC) that show different epidemiological, clinical, and prognostic characteristics from HPV-negative (HPV-) OPSCCs. So far, extensive research efforts aiming to distinguish these two distinct entities have not identified specific biomarkers, nor led to different therapies. Previous research has shown that HPV16 E6 oncoprotein binds NHERF2, inducing its proteasomal degradation, and consequently increasing cell proliferation; we therefore aimed to investigate how this might be reflected in human histological samples. We analyzed NHERF2 expression patterns in HPV16-positive (HPV16+) and HPV- OPSCC samples, to investigate any potential differences in NHERF2 pattern. Interestingly, we observed a statistically significant decrease in NHERF2 levels in HPV16+ and poorly differentiated HPV- OPSCCs, compared with healthy tissue. Furthermore, we observed a significant reduction in the percentage of NHERF2 immunoreactive cancer cells in HPV16+ tumors, compared with well and moderately differentiated HPV- OPSCCs, suggesting the importance of 16E6's targeting of NHERF2 in HPV-driven oncogenesis in the head and neck area.
Collapse
Affiliation(s)
- Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Antonia Jakovčević
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Iva Kovačić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Luka Manojlović
- Department of Pathology and Cytology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. Protein Sci 2023; 32:e4611. [PMID: 36851847 PMCID: PMC10022582 DOI: 10.1002/pro.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Protein-protein interactions that involve recognition of short peptides are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are a family of peptide-binding domains located in several intracellular signaling and trafficking pathways. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had marginal effects on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jadon M. Blount
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Sophie N. Jackson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nicholas P. Gill
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Sarah N. Smith
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nick J. Pederson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | | | - Iain G. P. Mackley
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Dean R. Madden
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
5
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522388. [PMID: 36711692 PMCID: PMC9881875 DOI: 10.1101/2022.12.31.522388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-protein interactions that include recognition of short sequences of amino acids, or peptides, are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are an example of a peptide-binding domain located in several intracellular signaling and trafficking pathways, which form interactions critical for the regulation of receptor endocytic trafficking, tight junction formation, organization of supramolecular complexes in neurons, and other biological systems. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had a marginal effect on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Jadon M. Blount
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Sophie N. Jackson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Melody Gao
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nicholas P. Gill
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sarah N. Smith
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nick J. Pederson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Simone N. Rumph
- Department of Biochemistry, Bowdoin College, Brunswick, ME, USA
| | | | - Iain G. P. Mackley
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Dean R. Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeanine F. Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
6
|
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, Buonaguro L, Isaguliants MG, Buonaguro FM. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers (Basel) 2022; 14:5257. [PMID: 36358677 PMCID: PMC9659228 DOI: 10.3390/cancers14215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 08/29/2023] Open
Abstract
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | | | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
7
|
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front Mol Biosci 2022; 9:875208. [PMID: 35620479 PMCID: PMC9127998 DOI: 10.3389/fmolb.2022.875208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a Human Papilloma virus-related disease, which is on the rise in a number of countries, globally. Two essential oncogenes, E6 and E7, drive cell transformation and cancer development. These two oncoproteins target two of the most important tumour suppressors, p53 and pRB, for degradation through the ubiquitin ligase pathway, thus, blocking apoptosis activation and deregulation of cell cycle. This pathway can be exploited for anticancer therapeutic interventions, and Human Immunodeficiency Virus Protease Inhibitors (HIV-PIs) have attracted a lot of attention for this anticancer drug development. HIV-PIs have proven effective in treating HPV-positive cervical cancers and shown to restore impaired or deregulated p53 in HPV-associated cervical cancers by inhibiting the 26S proteasome. This review will evaluate the role players, such as HPV oncoproteins involved cervical cancer development and how they are targeted in HIV protease inhibitors-induced p53 restoration in cervical cancer. This review also covers the therapeutic potential of HIV protease inhibitors and molecular mechanisms behind the HIV protease inhibitors-induced p53-dependent anticancer activities against cervical cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
- *Correspondence: Zukile Mbita,
| |
Collapse
|
8
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
9
|
Thomas M, Banks L. The biology of papillomavirus PDZ associations: what do they offer papillomaviruses? Curr Opin Virol 2021; 51:119-126. [PMID: 34655911 DOI: 10.1016/j.coviro.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023]
Abstract
The high-risk α-type papillomaviruses have a C-terminal PDZ-binding motif (PBM) on one of the two major oncoproteins E6 or E7; the vast majority on E6. The PBM is essential for the high-risk HPV life cycle, for episomal maintenance of the virus genome, and for maintaining the mitotic stability of the infected cell. The question is why only these viruses have PBMs - are there specific constraints imposed by the mucosal epithelium in which these viruses replicate? However the low-risk α-HPVs, such as HPV-6 and HPV-11 replicate extremely efficiently without a PBM, while viruses of the alpha8 group, such as HPV-40, replicate well with a very primitive PBM. So what does PDZ-binding capacity contribute to the fitness of the virus?
Collapse
Affiliation(s)
- Miranda Thomas
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy.
| | - Lawrence Banks
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
10
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
11
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
12
|
Kirschberg M, Heuser S, Marcuzzi GP, Hufbauer M, Seeger JM, Đukić A, Tomaić V, Majewski S, Wagner S, Wittekindt C, Würdemann N, Klussmann JP, Quaas A, Kashkar H, Akgül B. ATP synthase modulation leads to an increase of spare respiratory capacity in HPV associated cancers. Sci Rep 2020; 10:17339. [PMID: 33060693 PMCID: PMC7567072 DOI: 10.1038/s41598-020-74311-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Mucosal and skin cancers are associated with infections by human papillomaviruses (HPV). The manner how viral oncoproteins hijack the host cell metabolism to meet their own energy demands and how this may contribute to tumorigenesis is poorly understood. We now show that the HPV oncoprotein E7 of HPV8, HPV11 and HPV16 directly interact with the beta subunit of the mitochondrial ATP-synthase (ATP5B), which may therefore represent a conserved feature across different HPV genera. By measuring both glycolytic and mitochondrial activity we observed that the association of E7 with ATP5B was accompanied by reduction of glycolytic activity. Interestingly, there was a drastic increase in spare mitochondrial respiratory capacity in HPV8-E7 and an even more profound increase in HPV16-E7 expressing cells. In addition, we could show that ATP5B levels were unchanged in betaHPV positive skin cancers. However, comparing HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas (OPSCC) we noticed that, while ATP5B expression levels did not correlate with patient overall survival in HPV-negative OPSCC, there was a strong correlation within the HPV16-positive OPSCC patient group. These novel findings provide evidence that HPV targets the host cell energy metabolism important for viral life cycle and HPV-mediated tumorigenesis.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Sandra Heuser
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Gian Paolo Marcuzzi
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Jens Michael Seeger
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), CECAD Research Center, University of Cologne, Cologne, Germany
| | - Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University, Giessen, Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University, Giessen, Germany
| | - Nora Würdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), CECAD Research Center, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany.
| |
Collapse
|
13
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|