1
|
Miller CM, Barrett BS, Chen J, Morrison JH, Radomile C, Santiago ML, Poeschla EM. Systemic Expression of a Viral RdRP Protects against Retrovirus Infection and Disease. J Virol 2020; 94:e00071-20. [PMID: 32051266 PMCID: PMC7163129 DOI: 10.1128/jvi.00071-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is normally programmed for immediate but transient upregulation in response to invading pathogens, and interferon (IFN)-stimulated gene (ISG) activation is a central feature. In contrast, chronic innate immune system activation is typically associated with autoimmunity and a broad array of autoinflammatory diseases that include the interferonopathies. Here, we studied retroviral susceptibility in a transgenic mouse model with lifelong innate immune system hyperactivation. The mice transgenically express low levels of a picornaviral RNA-dependent RNA polymerase (RdRP), which synthesizes double-stranded RNAs that are sensed by melanoma differentiation-associated protein 5 (MDA5) to trigger constitutive upregulation of many ISGs. However, in striking counterpoint to the paradigm established by numerous human and murine examples of ISG hyperactivation, including constitutive MDA5 activation, they lack autoinflammatory sequelae. RdRP-transgenic mice (RdRP mice) resist infection and disease caused by several pathogenic RNA and DNA viruses. However, retroviruses are sensed through other mechanisms, persist in the host, and have distinctive replication and immunity-evading properties. We infected RdRP mice and wild-type (WT) mice with various doses of a pathogenic retrovirus (Friend virus) and assessed immune parameters and disease at 1, 4, and 8 weeks. Compared to WT mice, RdRP mice had significantly reduced splenomegaly, viral loads, and infection of multiple target cell types in the spleen and the bone marrow. During chronic infection, RdRP mice had 2.35 ± 0.66 log10 lower circulating viral RNA than WT. Protection required ongoing type I IFN signaling. The results show that the reconfigured RdRP mouse innate immune system substantially reduced retroviral replication, set point, and pathogenesis.IMPORTANCE Immune control of retroviruses is notoriously difficult, a fundamental problem that has been most clinically consequential with the HIV-1 pandemic. As humans expand further into previously uninhabited areas, the likelihood of new zoonotic retroviral exposures increases. The role of the innate immune system, including ISGs, in controlling retroviral infections is currently an area of intensive study. This work provides evidence that a primed innate immune system is an effective defense against retroviral pathogenesis, resulting in reduced viral replication and burden of disease outcomes. RdRP mice also had considerably lower Friend retrovirus (FV) viremia. The results could have implications for harnessing ISG responses to reduce transmission or control pathogenesis of human retroviral pathogens.
Collapse
Affiliation(s)
- Caitlin M Miller
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Bradley S Barrett
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Jianfang Chen
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - James H Morrison
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Caleb Radomile
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| |
Collapse
|
2
|
Bankers L, Miller C, Liu G, Thongkittidilok C, Morrison J, Poeschla EM. Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation. THE JOURNAL OF IMMUNOLOGY 2020; 204:2791-2807. [PMID: 32277054 DOI: 10.4049/jimmunol.1901421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
Pathogen-associated molecular patterns (e.g., dsRNA) activate expression of IFN-stimulated genes (ISGs), which protect hosts from infection. Although transient ISG upregulation is essential for effective innate immunity, constitutive activation typically causes harmful autoimmunity in mice and humans, often including severe developmental abnormalities. We have shown that transgenic mice expressing a picornavirus RNA-dependent RNA polymerase (RdRP) outside the viral context (RdRP mice) exhibit constitutive, MDA5-dependent, and quantitatively dramatic upregulation of many ISGs, which confers broad viral infection resistance. Remarkably, RdRP mice never develop autoinflammation, interferonopathy, or other discernible abnormalities. In this study, we used RNA sequencing and other methods to analyze ISG expression across five time points from fetal development to adulthood in wild-type and RdRP mice. In RdRP mice, the proportion of upregulated ISGs increased during development, with the most dramatic induction occurring 2 wk postnatally. The amplified ISG profile is then maintained lifelong. Molecular pathways and biological functions associated with innate immune and IFN signaling are only activated postnatally, suggesting constrained fetal responsiveness to innate immune stimuli. Biological functions supporting replication of viruses are only inhibited postnatally. We further determined that the RdRP is expressed at low levels and that blocking Ifnar1 reverses the amplified ISG transcriptome in adults. In conclusion, the upregulated ISG profile of RdRP mice is mostly triggered early postnatally, is maintained through adulthood, and requires ongoing type I IFN signaling to maintain it. The model provides opportunities to study the systems biology of innate immunity and to determine how sustained ISG upregulation can be compatible with robust health.
Collapse
Affiliation(s)
- Laura Bankers
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Caitlin Miller
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Guoqi Liu
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Chommanart Thongkittidilok
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - James Morrison
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Eric M Poeschla
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| |
Collapse
|
3
|
Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J 2019; 16:127. [PMID: 31694654 PMCID: PMC6833258 DOI: 10.1186/s12985-019-1238-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Capsid (C) protein plays an important role in the replication of classical swine fever virus (CSFV). The ubiquitin proteasome system (UPS) involves in replication of many viruses via modulation of viral proteins. The relationship of CSFV with UPS is poorly understood and the impact of 26S proteasome on C protein has never been reported before. METHODS In this study, fused C protein with an EGFP tag is expressed in PK-15 and 3D4/2 cells. MG132 and 3-methyladenine (3-MA) are used to detect the roles of 26S proteasome and autophagolysosome in expression levels of C protein. Truncated and mutant C proteins are used to find the exact residues responsible for the degradation of C protein. Immunoprecipitaion is performed to find whether C protein is ubiquitinated or not. RESULTS C-EGFP protein expresses in a cleaved form at a low level and is degraded by 26S proteasome which could be partly inhibited by MG132. C-terminal residues play more important roles in the degradation of C protein than N-terminal residues. Residues 260 to 267, especially M260 and L261, are crucial for the degradation. In addition, C-terminal residues 262 to 267 determine cleavage efficiency of C protein. CONCLUSIONS CSFV C protein is degraded by 26S proteasome in a ubiquitin-independent manner. Last 8 residues at C-terminus of immature C protein play a major role in proteasomal degradation of CSFV C protein and determine the cleavage efficiency of C protein by signal peptide peptidase (SPP). Our findings provide valuable help for fully understanding degradation process of C protein and contribute to fully understanding the role of C protein in CSFV replication.
Collapse
|
4
|
Kang HS, Myoung J, So EY, Bahk YY, Kim BS. Transgenic expression of non-structural genes of Theiler's virus suppresses initial viral replication and pathogenesis of demyelination. J Neuroinflammation 2016; 13:133. [PMID: 27250711 PMCID: PMC4888636 DOI: 10.1186/s12974-016-0597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL/J mice induces an immune-mediated demyelinating disease and has extensively been used as a relevant infectious model for multiple sclerosis (MS). Infection of the host with many other viruses also leads to acute or chronic inflammatory diseases in the central nervous system (CNS). Levels of viral load in the host often play a critical role in the pathogenesis of virus-induced diseases. Thus, the inhibition of viral replication in the host against a broad spectrum of similar viruses is critically important for preventing the viral pathogenicity. METHODS P2/P3-expressing transgenic (B6 X SJL)F1 founders were generated and bred onto the C57BL/6 and SJL/J backgrounds. Differences in the development of demyelinating disease were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected control and P2/P3-Tg mice were analyzed after infection using quantitative PCR, ELISA, and flow cytometry. Various cell types from the control and P2/P3-Tg mice, as well as cells transfected in vitro with the P2 and/or P3 regions, were also analyzed for viral replication and innate cytokine production. RESULTS P2/P3-transgenic (P2/P3-Tg) mice carrying the viral non-structural protein genes displayed significantly reduced virus-specific T cell responses in the CNS against both the structural and non-structural proteins. Consequently, viral loads in the CNS were greater in the Tg mice during the chronic infection. However, P2/P3-Tg SJL mice exhibited reduced disease incidence and less severe clinical symptoms than did their non-transgenic littermates. Interestingly, P2/P3-Tg mice showed low viral loads in the CNS at a very early period after infection (1-3 days) with TMEV and related EMCV but not unrelated VSV. Cells from P2/P3-Tg mice and cells transfected with the P2 and/or P3 regions in vitro yielded also lower viral replication but higher IFN-α/β production. CONCLUSIONS This study demonstrates that the expression of viral non-structural genes in mice inhibits initial viral replication and suppresses sustaining pathogenic anti-viral immune responses to broad viral determinants. It appears that the elevation of innate immune cytokines produced in the cells expressing the non-structural viral genes upon viral infection is responsible for the inhibitions. The inhibition is partially virus-specific as it is more efficient for a related virus compared to an unrelated virus, suggesting a role for the similarity in the viral genome structures. Therefore, the expression of viral non-structural genes may serve as a useful new method to prevent a broadly virus-specific pathogenesis in the hosts.
Collapse
Affiliation(s)
- Hyun Seok Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL, 60611, USA
| | - Jinjong Myoung
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL, 60611, USA
- Present address: Korea Zoonosis Research Institute, Chonbuk National University, Chollabuk-Do, 570-390, Republic of Korea
| | - Eui Young So
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL, 60611, USA
- Present address: Department of Orthopaedics, Warren Alpert-Medical School, Brown University-Rhode Island, Providence, RI, USA
| | - Young Yil Bahk
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL, 60611, USA
- Present address: Department of Biotechnology, Konkuk University, Chungju, Chunbuk, 380-701, Republic of Korea
| | - Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Painter MM, Morrison JH, Zoecklein LJ, Rinkoski TA, Watzlawik JO, Papke LM, Warrington AE, Bieber AJ, Matchett WE, Turkowski KL, Poeschla EM, Rodriguez M. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity. PLoS Pathog 2015; 11:e1005311. [PMID: 26633895 PMCID: PMC4669089 DOI: 10.1371/journal.ppat.1005311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/05/2015] [Indexed: 01/09/2023] Open
Abstract
For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.
Collapse
Affiliation(s)
- Meghan M. Painter
- Mayo Graduate School of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - James H. Morrison
- Department of Molecular Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Laurie J. Zoecklein
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tommy A. Rinkoski
- Department of Molecular Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jens O. Watzlawik
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Louisa M. Papke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arthur E. Warrington
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Allan J. Bieber
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United State of America
| | - William E. Matchett
- Mayo Graduate School of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kari L. Turkowski
- Mayo Graduate School of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric M. Poeschla
- Department of Molecular Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
6
|
Luo H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol 2015; 17:1-10. [PMID: 26426962 PMCID: PMC7102833 DOI: 10.1016/j.coviro.2015.09.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/24/2023]
Abstract
Many viruses have evolved to utilize the host UPS for their own benefit. Viruses subvert the UPS to maintain optimal level/function of viral proteins. Viruses exploit the UPS to degrade host proteins which impede viral growth. The UPS serves as an important host anti-viral defense mechanism. The UPS is inhibited by some viruses to prevent viral clearance.
The ubiquitin–proteasome system (UPS) plays a central role in a wide range of fundamental cellular functions by ensuring protein quality control and through maintaining a critical level of important regulatory proteins. Viruses subvert or manipulate this cellular machinery to favor viral propagation and to evade host immune response. The UPS serves as a double-edged sword in viral pathogenesis: on the one hand, the UPS is utilized by many viruses to maintain proper function and level of viral proteins; while on the other hand, the UPS constitutes a host defense mechanism to eliminate viral components. To combat this host anti-viral machinery, viruses have evolved to employ the UPS to degrade or inactivate cellular proteins that limit viral growth. This review will highlight our current knowledge pertaining to the different roles for the UPS in viral pathogenesis.
Collapse
Affiliation(s)
- Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Chen L, Li S, Li Y, Duan X, Liu B, McGilvray I. Ubiquitin-like protein modifiers and their potential for antiviral and anti-HCV therapy. Expert Rev Proteomics 2014; 10:275-87. [PMID: 23777217 DOI: 10.1586/epr.13.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
All viral infections subvert the host immune response. Targeting the host mechanisms that are modulated by viral infection offers new avenues for antiviral drug development. Host ubiquitin and multiple ubiquitin-like modifiers (Ubls) are commonly altered by, or important for, viral infection. Protein modification by ubiquitin or Ubls contributes to numerous cellular processes, such as protein degradation, signal transduction, protein relocalization and pathogen-host interactions. This post-translational modification plays an essential role for viral life cycles and host antiviral mechanisms. Some Ubls, such as ISG15 and SUMO, have been shown to modulate virus infections and are potential targets for therapeutic manipulation. Hepatitis C virus (HCV) is a positive-stranded RNA virus that predominantly infects hepatocytes. Recent data suggest that ISG15 might be a potential drug target for anti-HCV therapy. Inhibition of ISG15 expression and/or ISG15 conjugation (ISGylation) provides a rationale for the design of new anti-HCV drugs.
Collapse
Affiliation(s)
- Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Great loss has been caused by Duck viral Hepatitis on waterfowl industry within the scope of world. But the information about the causative virus is limited and even less about the 3D gene. 3D gene is an important gene in virus life cycle, its encoding protein participates in the whole procedure of virus RNA replication. Generally, bioinformatics analysis plays an important role in studying genes and proteins. To better understand the encoding protein of 3D gene and get more information about the virus, here in this article we intend to provide some new information about the encoding protein of 3D gene from H strain of duck hepatitis virus type A for further research.
Collapse
|
9
|
Choi AG, Wong J, Marchant D, Luo H. The ubiquitin-proteasome system in positive-strand RNA virus infection. Rev Med Virol 2012; 23:85-96. [PMID: 22782620 PMCID: PMC7169083 DOI: 10.1002/rmv.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses. The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein degradation may also constitute a host defense process against some positive-stranded RNA viral infections. This issue will also be discussed in the current review.
Collapse
Affiliation(s)
- Alex GoEun Choi
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
10
|
Pirko I, Chen Y, Lohrey AK, McDole J, Gamez JD, Allen KS, Pavelko KD, Lindquist DM, Dunn RS, Macura SI, Johnson AJ. Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation. PLoS One 2012; 7:e31459. [PMID: 22348089 PMCID: PMC3278445 DOI: 10.1371/journal.pone.0031459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.
Collapse
Affiliation(s)
- Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yi Chen
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Anne K. Lohrey
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeremiah McDole
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jeffrey D. Gamez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kathleen S. Allen
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - R. Scott Dunn
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Slobodan I. Macura
- Department of Biochemistry, NMR Core Facility, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
11
|
Denic A, Zoecklein L, Kerkvliet J, Papke L, Edukulla R, Warrington A, Bieber A, Pease LR, David CS, Rodriguez M. Transgenic expression of viral capsid proteins predisposes to axonal injury in a murine model of multiple sclerosis. Brain Pathol 2011; 21:501-15. [PMID: 21314744 DOI: 10.1111/j.1750-3639.2011.00474.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We used transgenic expression of capsid antigens to Theiler's murine encephalomyelitis virus (TMEV) to study the influence of VP1, VP2 or VP2(121-130) to either protection or pathogenesis to chronic spinal cord demyelination, axonal loss and functional deficits during the acute and chronic phases of infection. We used both mice that are normally susceptible (FVB) and mice normally resistant (FVB.D(b) ) to demyelination. Transgenic expression of VP2(121-130) epitope in resistant FVB.D(b) mice caused spinal cord pathology and virus persistence because the VP2(121-130) epitope is the dominant peptide recognized by D(b) , which is critical for virus clearance. In contrast, all three FVB TMEV transgenic mice showed more demyelination, inflammation and axonal loss as compared with wild-type FVB mice, even though virus load was not increased. Motor function measured by rotarod showed weak correlation with total number of midthoracic axons, but a strong correlation with large-caliber axons (>10µm(2) ). This study supports the hypothesis that expression of viral capsid proteins as self influences the extent of axonal pathology following Theiler's virus-induced demyelination. The findings provide insight into the role of axonal injury in the development of functional deficits that may have relevance to human demyelinating disease.
Collapse
|
12
|
Abstract
Transgenic expression of the RNA-dependent RNA polymerase 3D(pol) inhibited infection of Theiler's murine encephalitis virus (TMEV), a picornavirus from which it was derived. Here, we infected 3D(pol) transgenic mice with another picornavirus, as well as an alphaherpesvirus and a rhabdovirus. 3D(pol) transgenic FVB mice had significantly lower viral loads and survived longer after infection with all three types of viruses than nontransgenic FVB mice. Viral inhibition among three different types of virus by transgenic 3D(pol) suggests that the mechanism of action is not the direct interference with picornaviral 3D(pol) but instead may be the changing of host cells to an antiviral state before or after viral infection occurs, as basal interferon levels were higher in 3D(pol) transgenic mice before infection. Further study of this mechanism may open new possibilities for future antiviral therapy.
Collapse
|
13
|
Abstract
The RNA-dependent RNA-polymerase, 3Dpol, is an essential component in the picornavirus genome for the replication of single stranded RNA. However, transgenic expression of 3Dpol in mice has antiviral effects. Here, we discuss the structure and function of 3Dpol during picornavirus replication, we review the evidence and consequence of a host immune response to epitopes in 3Dpol after picornavirus infection, highlight data showing the antiviral effects of transgenic 3Dpol from Theiler's murine encephalomyelitis virus (TMEV), and discuss potential mechanisms by which 3Dpol is causing this antiviral effect in mice.
Collapse
|