1
|
Morgan IM. The functions of papillomavirus E2 proteins. Virology 2025; 603:110387. [PMID: 39826199 DOI: 10.1016/j.virol.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
All papillomaviruses encode an E2 protein and it is essential for the viral life cycle. E2 has three domains; a carboxyl-terminal DNA binding and dimerization domain, an amino-terminal protein interaction domain and a hinge region linking these two. Following homo-dimerization human papillomavirus E2 binds to four 12bp palindromic DNA sequences located in the non-coding long control region (LCR) of the viral genome. E2 has three main roles during the viral life cycle. It regulates transcription from the host, and potentially the viral, genome. It initiates viral replication via recruitment of the helicase E1 to the origin of replication. It segregates the viral genome during mitosis to ensure that viral genomes reside in daughter nuclei. This review will describe all of these functions and the mechanisms and interacting partners E2 uses to achieve them. It will also describe a potential role for E2 in mediating HPV cancer therapeutic outcomes.
Collapse
Affiliation(s)
- Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA
| |
Collapse
|
2
|
Gonzalez J, DeSmet M, Androphy EJ. A Conserved Di-Lysine Motif in the E2 Transactivation Domain Regulates MmuPV1 Replication and Disease Progression. Pathogens 2025; 14:84. [PMID: 39861045 PMCID: PMC11768324 DOI: 10.3390/pathogens14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31. This motif is similarly conserved in the E2 of the murine papillomavirus, MmuPV1. Using site-directed mutagenesis, we show that the first lysine (K) residue within the motif, K112, is absolutely required for E2-mediated transcription and transient replication in vitro. Furthermore, mutation of the second lysine residue, K113, to the potential acetyl-lysine mimic glutamine (Q) abrogated E2 transcription and decreased transient replication in vitro, while the acetylation defective arginine (R) mutant remained functional. Both K113 mutants were able to induce wart formation in vivo, though disease progression appeared to be delayed in the K113Q group. These findings suggest that acetylation of K113 may act as a mechanism for repressing MmuPV1 E2 activity.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliot J. Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Prabhakar AT, Morgan IM. A new role for human papillomavirus 16 E2: Mitotic activation of the DNA damage response to promote viral genome segregation. Tumour Virus Res 2024; 18:200291. [PMID: 39245413 PMCID: PMC11416546 DOI: 10.1016/j.tvr.2024.200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Human papillomaviruses (HPV) are causative agents in around 5% of all human cancers. To identify and develop new targeted HPV therapeutics we must enhance our understanding of the viral life cycle and how it interacts with the host. The HPV E2 protein dimerizes and binds to 12bp target sequences in the viral genome and segregates the viral genome during mitosis. In this function, E2 binds to the viral genome and the host chromatin simultaneously, ensuring viral genomes reside in daughter nuclei following cell division. We have demonstrated that a mitotic interaction between E2 and the DNA damage response (DDR) protein TOPBP1 is required for E2 segregation function. In non-infected cells, following DNA damage, TOPBP1 is recruited to the mitotic host genome via interaction with MDC1 and this interaction protects DNA integrity during mitosis. Recently we demonstrated that the E2-TOPBP1 interaction activates the DNA damage response (DDR) during mitosis independently from external stimuli, promoting TOPBP1 interaction with mitotic chromatin and therefore segregation of the viral genome. Therefore, the virus has hijacked an existing host mechanism in order to segregate the viral genome. This intricate E2 function will be described and discussed.
Collapse
Affiliation(s)
- Apurva T Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA.
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA.
| |
Collapse
|
4
|
Prabhakar AT, James CD, Fontan CT, Otoa R, Wang X, Bristol ML, Yeager C, Hill RD, Dubey A, Wu SY, Chiang CM, Morgan IM. Direct interaction with the BRD4 carboxyl-terminal motif (CTM) and TopBP1 is required for human papillomavirus 16 E2 association with mitotic chromatin and plasmid segregation function. J Virol 2023; 97:e0078223. [PMID: 37712702 PMCID: PMC10617519 DOI: 10.1128/jvi.00782-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Human papillomavirus 16 (HPV16) is a causative agent in around 3%-4% of all human cancers, and currently, there are no anti-viral therapeutics available for combating this disease burden. In order to identify new therapeutic targets, we must increase our understanding of the HPV16 life cycle. Previously, we demonstrated that an interaction between E2 and the cellular protein TopBP1 mediates the plasmid segregation function of E2, allowing distribution of viral genomes into daughter nuclei following cell division. Here, we demonstrate that E2 interaction with an additional host protein, BRD4, is also essential for E2 segregation function, and that BRD4 exists in a complex with TopBP1. Overall, these results enhance our understanding of a critical part of the HPV16 life cycle and presents several therapeutic targets for disruption of the viral life cycle.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Calvin Yeager
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ronald D. Hill
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aanchal Dubey
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
5
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
6
|
Prabhakar AT, James CD, Fontan CT, Otoa R, Wang X, Bristol ML, Hill RD, Dubey A, Wu SY, Chiang CM, Morgan IM. Direct interaction with the BRD4 carboxyl-terminal motif (CTM) and TopBP1 is required for human papillomavirus 16 E2 association with mitotic chromatin and plasmid segregation function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542291. [PMID: 37292798 PMCID: PMC10245903 DOI: 10.1101/2023.05.25.542291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the human papillomavirus 16 life cycle, the E2 protein binds simultaneously to the viral genome and host chromatin throughout mitosis, ensuring viral genomes reside in daughter cell nuclei following cell division. Previously, we demonstrated that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1, and that this interaction is required for optimum E2 mitotic chromatin association and plasmid segregation function. Others have implicated BRD4 in mediating the plasmid segregation function of E2 and we have demonstrated that there is a TopBP1-BRD4 complex in the cell. We therefore further investigated the role of the E2-BRD4 interaction in mediating E2 association with mitotic chromatin and plasmid segregation function. Using a combination of immunofluorescence and our novel plasmid segregation assay in U2OS and N/Tert-1 cells stably expressing a variety of E2 mutants, we report that direct interaction with the BRD4 carboxyl-terminal motif (CTM) and TopBP1 is required for E2 association with mitotic chromatin and plasmid segregation. We also identify a novel TopBP1 mediated interaction between E2 and the BRD4 extra-terminal (ET) domain in vivo . Overall, the results demonstrate that direct interaction with TopBP1 and the BRD4 CTM are required for E2 mitotic chromatin association and plasmid segregation function. Disruption of this complex offers therapeutic options for targeting segregation of viral genomes into daughter cells, potentially combatting HPV16 infections, and cancers that retain episomal genomes. Importance HPV16 is a causative agent in around 3-4% of all human cancers and currently there are no anti-viral therapeutics available for combating this disease burden. In order to identify new therapeutic targets, we must increase our understanding of the HPV16 life cycle. Previously, we demonstrated that an interaction between E2 and the cellular protein TopBP1 mediates the plasmid segregation function of E2, allowing distribution of viral genomes into daughter nuclei following cell division. Here, we demonstrate that E2 interaction with an additional host protein, BRD4, is also essential for E2 segregation function, and that BRD4 exists in a complex with TopBP1. Overall, these results enhance our understanding of a critical part of the HPV16 life cycle and presents several therapeutic targets for disruption of the viral life cycle.
Collapse
|
7
|
Human Papillomavirus 16 E2 Interaction with TopBP1 Is Required for E2 and Viral Genome Stability during the Viral Life Cycle. J Virol 2023; 97:e0006323. [PMID: 36840558 PMCID: PMC10062148 DOI: 10.1128/jvi.00063-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
CK2 phosphorylation of HPV16 E2 at serine 23 promotes interaction with TopBP1, and this interaction is important for E2 plasmid segregation function. Here, we demonstrate that the E2-TopBP1 interaction is critical for E2 and viral genome stability during the viral life cycle. Introduction of the S23A mutation into the HPV16 genome results in a loss of E2 expression and viral genome integration during organotypic rafting. Coculture of N/Tert-1+E2-S23A cells with J2 fibroblasts results in E2-S23A degradation via the proteasome; wild-type E2 is not degraded. TopBP1 siRNA treatment of N/Tert-1+E2-WT cells results in E2 degradation only in the presence of J2 cells demonstrating the critical role for TopBP1 in maintaining E2 stability. The CK2 inhibitor CX4945 promotes E2-WT degradation in the presence of fibroblasts as it disrupts E2-TopBP1 interaction. siRNA targeting SIRT1 rescues E2-S23A stability in N/Tert-1 cells treated with J2 fibroblasts, with an increased E2-S23A acetylation. The results demonstrate that the E2-TopBP1 interaction is critical during the viral life cycle as it prevents fibroblast stimulated SIRT1 mediated deacetylation of E2 that promotes protein degradation. This means that the E2-TopBP1 complex maintains E2 and viral genome stability and that disruption of this complex can promote viral genome integration. Finally, we demonstrate that HPV11 E2 also interacts with TopBP1 and that this interaction is critical for HPV11 E2 stability in the presence of J2 cells. Treatment of N/Tert-1 + 11E2-WT cells with CX4945 results in 11E2 degradation. Therefore, CK2 inhibition is a therapeutic strategy for alleviating HPV11 diseases, including juvenile respiratory papillomatosis. IMPORTANCE Human papillomaviruses are pathogens that cause a host of diseases ranging from benign warts to cancers. There are no therapeutics available for combating these diseases that directly target viral proteins or processes; therefore, we must enhance our understanding of HPV life cycles to assist with identifying novel treatments. In this report, we demonstrate that HPV16 and HPV11 E2 protein expression is dependent upon TopBP1 interaction in keratinocytes interacting with fibroblasts, which recapitulate stromal interactions in culture. The degradation of 16E2 promotes HPV16 genome integration; therefore, the E2-TopBP1 interaction is critical during the viral life cycle. We demonstrate that the CK2 inhibitor CX4945 disrupts HPV11 interaction with TopBP1 and destabilizes HPV11 E2 protein in the presence of J2 fibroblasts; we propose that CX4945 could alleviate HPV11 disease burden.
Collapse
|
8
|
Prabhakar AT, James CD, Fontan CT, Otoa R, Wang X, Bristol ML, Hill RD, Dubey A, Morgan IM. Human papillomavirus 16 E2 interaction with TopBP1 is required for E2 and viral genome stability during the viral life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523702. [PMID: 36712128 PMCID: PMC9882167 DOI: 10.1101/2023.01.11.523702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CK2 phosphorylation of HPV16 E2 at serine 23 promotes interaction with TopBP1, and this interaction is important for E2 plasmid segregation function. Here we demonstrate that the E2-TopBP1 interaction is critical for E2 and viral genome stability during the viral life cycle. Introduction of the S23A mutation into the HPV16 genome results in a loss of E2 expression and viral genome integration during organotypic rafting. Co-culture of N/Tert-1+E2-S23A cells with J2 fibroblasts results in E2-S23A degradation via the proteasome, wild-type E2 is not degraded. TopBP1 siRNA treatment of N/Tert-1+E2-WT cells results in E2 degradation only in the presence of J2 cells demonstrating the critical role for TopBP1 in maintaining E2 stability. The CK2 inhibitor CX4945 promotes E2-WT degradation in the presence of fibroblasts as it disrupts E2-TopBP1 interaction. siRNA targeting SIRT1 rescues E2-S23A stability in N/Tert-1 cells treated with J2 fibroblasts, with an increased E2-S23A acetylation. The results demonstrate that the E2-TopBP1 interaction is critical during the viral life cycle as it prevents fibroblast stimulated SIRT1 mediated deacetylation of E2 that promotes protein degradation. This means that the E2-TopBP1 complex maintains E2 and viral genome stability and that disruption of this complex can promote viral genome integration. Finally, we demonstrate that HPV11 E2 also interacts with TopBP1 and that this interaction is critical for HPV11 E2 stability in the presence of J2 cells. Treatment of N/Tert-1+11E2-WT cells with CX4945 results in 11E2 degradation. Therefore, CK2 inhibition is a therapeutic strategy for alleviating HPV11 diseases, including juvenile respiratory papillomatosis. Importance Human papillomaviruses are pathogens that cause a host of diseases ranging from benign warts to cancers. There are no therapeutics available for combating these diseases that directly target viral proteins or processes, therefore we must enhance our understanding of HPV life cycles to assist with identifying novel treatments. In this report, we demonstrate that HPV16 and HPV11 E2 protein expression is dependent upon TopBP1 interaction in keratinocytes interacting with fibroblasts, which recapitulate stromal interactions in culture. The degradation of 16E2 promotes HPV16 genome integration, therefore the E2-TopBP1 interaction is critical during the viral life cycle. We demonstrate that the CK2 inhibitor CX4945 disrupts HPV11 interaction with TopBP1 and destabilizes HPV11 E2 protein in the presence of J2 fibroblasts; we propose that CX4945 could alleviate HPV11 disease burden.
Collapse
|
9
|
Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022; 23:1818. [PMID: 35163748 PMCID: PMC8836588 DOI: 10.3390/ijms23031818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential. HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Daria A. Haręża
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
10
|
Cheung KL, Kim C, Zhou MM. The Functions of BET Proteins in Gene Transcription of Biology and Diseases. Front Mol Biosci 2021; 8:728777. [PMID: 34540900 PMCID: PMC8446420 DOI: 10.3389/fmolb.2021.728777] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022] Open
Abstract
The BET (bromodomain and extra-terminal domain) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT, are widely acknowledged as major transcriptional regulators in biology. They are characterized by two tandem bromodomains (BDs) that bind to lysine-acetylated histones and transcription factors, recruit transcription factors and coactivators to target gene sites, and activate RNA polymerase II machinery for transcriptional elongation. Pharmacological inhibition of BET proteins with BD inhibitors has been shown as a promising therapeutic strategy for the treatment of many human diseases including cancer and inflammatory disorders. The recent advances in bromodomain protein biology have further uncovered the complex and versatile functions of BET proteins in the regulation of gene expression in chromatin. In this review article, we highlight our current understanding of BET proteins' functions in mediating protein-protein interactions required for chromatin-templated gene transcription and splicing, chromatin remodeling, DNA replication, and DNA damage repair. We further discuss context-dependent activator vs. repressor functions of individual BET proteins, isoforms, and bromodomains that may be harnessed for future development of BET bromodomain inhibitors as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
|
11
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
12
|
Hirose Y, Yamaguchi-Naka M, Onuki M, Tenjimbayashi Y, Tasaka N, Satoh T, Tanaka K, Iwata T, Sekizawa A, Matsumoto K, Kukimoto I. High Levels of Within-Host Variations of Human Papillomavirus 16 E1/E2 Genes in Invasive Cervical Cancer. Front Microbiol 2020; 11:596334. [PMID: 33324377 PMCID: PMC7721666 DOI: 10.3389/fmicb.2020.596334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most common HPV genotype found in invasive cervical cancer (ICC). Recent comprehensive genomics studies of HPV16 have revealed that a large number of minor nucleotide variations in the viral genome are present in each infected woman; however, it remains unclear whether such within-host variations of HPV16 are linked to cervical carcinogenesis. Here, by employing next-generation sequencing approaches, we explored the mutational profiles of the HPV16 genome within individual clinical specimens from ICC (n = 31) and normal cervix (n = 21) in greater detail. A total of 367 minor nucleotide variations (167 from ICC and 200 from the normal cervix) were detected throughout the viral genome in both groups, while nucleotide variations at high frequencies (>10% abundance in relative read counts in a single sample) were more prevalent in ICC (10 in ICC versus 1 in normal). Among the high-level variations found in ICC, six were located in the E1/E2 genes, and all of them were non-synonymous substitutions (Q142K, M207I, and L262V for E1; D153Y, R302T, and T357A for E2). In vitro functional analyses of these E1/E2 variants revealed that E1/M207I, E2/D153Y, and E2/R302T had reduced abilities to support viral replication, and that E2/D153Y and E2/R302T failed to suppress the viral early promoter. These results imply that some within-host variations of E1/E2 present at high levels in ICC may be positively selected for and contribute to cervical cancer development through dysfunction or de-stabilization of viral replication/transcription proteins.
Collapse
Affiliation(s)
- Yusuke Hirose
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mayuko Yamaguchi-Naka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mamiko Onuki
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Tenjimbayashi
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohsei Tanaka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Koji Matsumoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Phosphorylation of the Human Papillomavirus E2 Protein at Tyrosine 138 Regulates Episomal Replication. J Virol 2020; 94:JVI.00488-20. [PMID: 32350070 DOI: 10.1128/jvi.00488-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/19/2020] [Indexed: 01/15/2023] Open
Abstract
The papillomavirus (PV) E2 protein is a critical regulator of viral transcription and genome replication. We previously reported that tyrosine (Y) 138 of HPV-31 E2 is phosphorylated by the fibroblast growth factor receptor 3 (FGFR3) kinase. In this study, we generated quasiviruses containing G418-selectable HPV-31 genomes with phosphodeficient phenylalanine mutant E2 Y138F and phosphomimetic glutamic acid mutant Y138E. We observed significantly fewer early viral transcripts immediately after infection with these Y138 mutant genomes even though E2 occupancy at the viral origin was equivalent to that of wild-type E2. Keratinocytes infected with Y138F quasiviruses formed stable colonies, and the genomes were maintained as episomes, while those infected with Y138E quasiviruses did not. We previously reported that the HPV-31 E2 Y138 mutation to glutamic acid did not bind to the Brd4 C-terminal motif (CTM). Here, we demonstrate that HPV-16 E2 Y138E bound to full-length Brd4 but not to the Brd4 CTM. We conclude that association of E2 with the Brd4 CTM is necessary for viral genome replication and suggest that this interaction can be regulated by phosphorylation of E2 Y138.IMPORTANCE Papillomavirus (PV) is a double-stranded DNA tumor virus infecting the cutaneous and mucosal epithelium. The PV E2 protein associates with a number of cellular factors to mediate replication of the HPV genome. Fibroblast growth factor receptor 3 (FGFR3) regulates HPV replication through phosphorylation of tyrosine 138 in the HPV E2 protein. Employing a quasivirus infection model and selection for G418 resistant genomes, we demonstrated that Y138 is a critical residue for Brd4 association and that inability to complex with Brd4 does not support episomal replication.
Collapse
|
14
|
Phosphorylation of a Conserved Tyrosine in the Papillomavirus E2 Protein Regulates Brd4 Binding and Viral Replication. J Virol 2019; 93:JVI.01801-18. [PMID: 30842331 DOI: 10.1128/jvi.01801-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
The papillomavirus (PV) E2 protein coordinates viral transcription and genome replication. Following a strategy to identify amino acids in E2 that are posttranslationally modified, we reported that tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) complexes with and phosphorylates E2, which inhibits viral DNA replication. Here, we present several lines of evidence indicating that tyrosine (Y) 138 of HPV-31 E2 is a substrate of FGFR3. The active form of FGFR3 bound to and phosphorylated the region of amino acids (aa) 107 to 175 in HPV-31 E2. The E2 phenylalanine (F) mutant Y138F displayed reduced FGFR3-induced phosphotyrosine. A constitutive kinase-active FGFR3 inhibited wild-type (WT) E2-induced E1-dependent DNA replication, while the 138F mutant retained activity. The tyrosine to glutamic acid (E) mutant Y138E, which can mimic phosphotyrosine, failed to induce transient DNA replication, although it maintained the ability to bind and localize the viral DNA helicase E1 to the viral origin. The bromodomain-containing protein 4 (Brd4) binds to E2 and is necessary for initiation of viral DNA synthesis. Interestingly, the Y138E protein coimmunoprecipitated with full-length Brd4 but was defective for association with its C-terminal domain (CTD). These results imply that the activity of the FGFR3 kinase in the infected epithelial cell restricts the HPV replication program through phosphorylation of E2 at Y138, which interferes with E2 binding to the Brd4 CTD, and that this interaction is required for initiation of viral DNA synthesis.IMPORTANCE Human papillomaviruses (HPVs) are highly infectious pathogens that commonly infect the oropharynx and uterine cervix. The idea that posttranslational modifications of viral proteins coordinates viral genome replication is less explored. We recently discovered that fibroblast growth factor receptor 3 (FGFR3) phosphorylates the viral E2 protein. The current study demonstrates that FGFR3 phosphorylates E2 at tyrosine 138, which inhibits association with the C-terminal peptide of Brd4. This study illustrates a novel regulatory mechanism of virus-host interaction and provides insight into the role of Brd4 in viral replication.
Collapse
|
15
|
Human Papillomavirus Replication Regulation by Acetylation of a Conserved Lysine in the E2 Protein. J Virol 2018; 92:JVI.01912-17. [PMID: 29142126 DOI: 10.1128/jvi.01912-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/25/2022] Open
Abstract
The papillomavirus (PV) E2 protein is a sequence-specific DNA binding protein that recruits cellular factors to its genome in infected epithelial cells. E2 also binds to and loads the viral E1 DNA helicase at the origin of replication. Posttranslational modifications (PTMs) of PV E2 have been identified as potential regulators of E2 functions. We recently reported lysine 111 (K111) as a target of p300 acetylation in bovine PV (BPV). The di-lysines at 111 and 112 are conserved in almost all papillomaviruses. We pursued a mutational approach to query the functional significance of lysine in human PV (HPV) E2. Amino acid substitutions that prevent acetylation, including arginine, were unable to stimulate transcription and E1-mediated DNA replication. The arginine K111 mutant retained E2 transcriptional repression, nuclear localization, DNA and chromatin binding, and association with E2 binding partners involved in PV transcription and replication. While the replication-defective E2-K111R mutant recruited E1 to the viral replication origin, surprisingly, unwinding of the duplex DNA did not occur. In contrast, the K111 glutamine (K111Q) mutant increased origin melting and stimulated replication compared to wild-type E2. These experiments reveal a novel activity of E2 necessary for denaturing the viral origin that likely depends on acetylation of highly conserved lysine 111.IMPORTANCE HPV is one of the most common sexually transmitted infections in the United States. Over 200 HPVs have been described, and they manifest in a variety of ways; they can be asymptomatic or can result in benign lesions (papillomas) or progress to malignancy. Although 90% of infections are asymptomatic and resolve easily, HPV16 and -18 alone are responsible for 70% of all cervical cancers, which are almost entirely caused by HPV infection. Interestingly, 60 to 90% of other cancers have been linked to HPV. The goal of this research is to further elucidate the mechanisms that regulate and mediate viral replication.
Collapse
|
16
|
Sankovski E, Abroi A, Ustav M, Ustav M. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology 2018; 514:142-155. [PMID: 29179037 DOI: 10.1016/j.virol.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022]
Abstract
Nuclear myosin 1c (NM1) associates with RNA polymerases and is a partner in the chromatin remodeling complex B-WICH. This complex, which also contains WSTF and SNF2h proteins, is involved in transcriptional regulation. We report herein that papillomavirus protein E2 binds to NM1 and co-precipitates with the WSTF and SNF2h proteins. Our data suggest that E2 associates with the cellular B-WICH complex through binding to NM1. E2 and NM1 associate via their N-terminal domains and this interaction is ATP dependent. The cellular multifunctional protein Brd4 and beta-actin are also present in the NM1-E2 complex. NM1 downregulation by siRNA increases the replication of the BPV1 and HPV5 genomes but does not affect HPV18 genome replication. These results suggest that the B-WICH complex may play a role in the papillomavirus life cycle through NM1 and E2 protein interaction.
Collapse
Affiliation(s)
- Eve Sankovski
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Aare Abroi
- Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
17
|
Phosphorylation of the Bovine Papillomavirus E2 Protein on Tyrosine Regulates Its Transcription and Replication Functions. J Virol 2017; 91:JVI.01854-16. [PMID: 27807239 DOI: 10.1128/jvi.01854-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/30/2016] [Indexed: 12/21/2022] Open
Abstract
Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102. While its phosphodeficient phenylalanine (F) mutant activated both transcription and replication in luciferase reporter assays, a mutant that may act as a phosphomimetic, with a Y102-to-glutamate (E) mutation, lost both activities. The E2 Y102F protein interacted with cellular E2-binding factors and the viral helicase E1; however, in contrast, the Y102E mutant associated with only a subset and was unable to bind to E1. While the Y102F mutant fully supported transient viral DNA replication, BPV genomes encoding this mutation as well as Y102E were not maintained as stable episomes in murine C127 cells. These data imply that phosphorylation at Y102 disrupts the helical fold of the N-terminal region of E2 and its interaction with key cellular and viral proteins. We hypothesize that the resulting inhibition of viral transcription and replication in basal epithelial cells prevents the development of a lytic infection. IMPORTANCE Papillomaviruses (PVs) are small, double-stranded DNA viruses that are responsible for cervical, oropharyngeal, and various genitourinary cancers. Although vaccines against the major oncogenic human PVs are available, there is no effective treatment for existing infections. One approach to better understand the viral replicative cycle, and potential therapies to target it, is to examine the posttranslational modification of viral proteins and its effect on function. Here we have discovered that the bovine papillomavirus 1 (BPV-1) transcription and replication regulator E2 is phosphorylated at residue Y102. While a phosphodeficient mutant at this site was fully functional, a phosphomimetic mutant displayed impaired transcription and replication activity as well as a lack of an association with certain E2-binding proteins. This study highlights the influence of posttranslational modifications on viral protein function and provides additional insight into the complex interplay between papillomaviruses and their hosts.
Collapse
|
18
|
The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment. J Virol 2016; 91:JVI.01853-16. [PMID: 27795438 PMCID: PMC5165203 DOI: 10.1128/jvi.01853-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2Y131A) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2WT), the chromatin-bound pool of E2Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes.
IMPORTANCE Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection is a risk factor for cancer development and is partly achieved by the attachment of viral DNA to cellular chromatin during cell division. The HPV E2 protein plays a critical role in this tethering by binding simultaneously to the viral genome and to chromatin during mitosis. We previously showed that the cellular DNA helicase ChlR1 is required for loading of the bovine papillomavirus E2 protein onto chromatin during DNA synthesis. Here we identify a mutation in HPV16 E2 that abrogates interaction with ChlR1, and we show that ChlR1 regulates the chromatin association of HPV16 E2 and that this virus-host interaction is essential for viral episome maintenance.
Collapse
|
19
|
Abstract
Human papillomaviruses (HPVs) represent a large collection of viral types associated with significant clinical disease of cutaneous and mucosal epithelium. HPV-associated cancers are found in anogenital and oral mucosa, and at various cutaneous sites. Papillomaviruses are highly species and tissue restricted, and these viruses display both mucosotropic, cutaneotropic or dual tropism for epithelial tissues. A subset of HPV types, predominantly mucosal, are also oncogenic and cancers with these HPV types account for more than 200,000 deaths world-wide. Host control of HPV infections requires both innate and adaptive immunity, but the viruses have developed strategies to escape immune detection. Viral proteins can disrupt both innate pathogen-sensing pathways and T-cell based recognition and subsequent destruction of infected tissues. Current treatments to manage HPV infections include mostly ablative strategies in which recurrences are common and only active disease is treated. Although much is known about the papillomavirus life cycle, viral protein functions, and immune responsiveness, we still lack knowledge in a number of key areas of PV biology including tissue tropism, site-specific cancer progression, codon usage profiles, and what are the best strategies to mount an effective immune response to the carcinogenic stages of PV disease. In this review, disease transmission, protection and control are discussed together with questions related to areas in PV biology that will continue to provide productive opportunities of discovery and to further our understanding of this diverse set of human viral pathogens.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
20
|
Delcuratolo M, Fertey J, Schneider M, Schuetz J, Leiprecht N, Hudjetz B, Brodbeck S, Corall S, Dreer M, Schwab RM, Grimm M, Wu SY, Stubenrauch F, Chiang CM, Iftner T. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4. PLoS Pathog 2016; 12:e1005366. [PMID: 26727473 PMCID: PMC4699637 DOI: 10.1371/journal.ppat.1005366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
Abstract
We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. Human Papillomaviruses (HPV) are the etiological agents of cervical cancer and of skin cancer in individuals with the inherited disease epidermodysplasia verruciformis (EV). While the role of the viral oncogenes E6/E7 as drivers of tumorigenesis in cervical cancer has been firmly established, the contribution of the early viral genes in skin cancer is less clear. For EV-associated HPV8 and for the skin cancer model system using cottontail rabbit PV, an important role of the viral E2 protein in tumorigenesis was suggested earlier and regulation of cellular genes by E2 through different mechanisms was demonstrated. We show now that the viral E2 and cellular Brd4 act together to induce the cellular gene c-Fos, which as a member of the AP-1 complex, is involved in the regulation of cellular genes and the viral promoter driving the expression of viral oncogenes. As c-Fos has also been shown to be essential for skin cancer, E2 contributes to tumorigenesis via expression of E6/E7 as well as by increasing c-Fos.
Collapse
Affiliation(s)
- Maria Delcuratolo
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Fertey
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Markus Schneider
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Schuetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Natalie Leiprecht
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Hudjetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Brodbeck
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Silke Corall
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Marcel Dreer
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Roxana Michaela Schwab
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Shwu-Yuan Wu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Frank Stubenrauch
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Thomas Iftner
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
21
|
Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication. J Virol 2015; 89:4980-91. [PMID: 25694599 DOI: 10.1128/jvi.00335-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. IMPORTANCE Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease burden on the current, and future, generations. Targeting viral DNA replication that is mediated by two viral proteins, E1 and E2, in association with cellular proteins such as TopBP1 and Brd4 would have therapeutic benefits. This report suggests a role for these cellular proteins in the initiation of viral DNA replication by HPV16 E1-E2 but not for continuing replication. This is important if viral replication is to be effectively targeted; we need to understand the viral and cellular proteins required at each phase of viral DNA replication so that it can be effectively disrupted.
Collapse
|
22
|
Smith JA, Haberstroh FS, White EA, Livingston DM, DeCaprio JA, Howley PM. SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology 2014; 468-470:311-321. [PMID: 25222147 PMCID: PMC4252969 DOI: 10.1016/j.virol.2014.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/19/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
An important step in the malignant progression of HPV-associated lesions is the dysregulation of expression of the viral E6 and E7 oncogenes. This is often achieved through the loss of expression of E2, which represses the HPV LCR promoter and E6/E7 expression. Our previous studies confirmed a role for Brd4 in mediating the E2 transcriptional repression function, and identified JARID1C/SMCX and EP400 as contributors to E2-mediated repression. Here we show that TIP60, a component of the TIP60/TRRAP histone acetyltransferase complex, also contributes to the E2 repression function, and we extend our studies on SMCX. Di- and tri-methyl marks on histone H3K4 are reduced in the presence of E2 and SMCX, suggesting a mechanism by which SMCX contributes to E2-mediated repression of the HPV LCR. Together, these findings lead us to hypothesize that E2 recruits histone-modifying cellular proteins to the HPV LCR, resulting in transcriptional repression of E6 and E7.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Friederike S Haberstroh
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Elizabeth A White
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Medicine, Brigham and Women׳s Hospital, Boston, MA 02115 and Harvard Medical School, Boston, MA 02115, United States
| | - James A DeCaprio
- Department of Medicine, Brigham and Women׳s Hospital, Boston, MA 02115 and Harvard Medical School, Boston, MA 02115, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Chang SW, Liu WC, Liao KY, Tsao YP, Hsu PH, Chen SL. Phosphorylation of HPV-16 E2 at serine 243 enables binding to Brd4 and mitotic chromosomes. PLoS One 2014; 9:e110882. [PMID: 25340539 PMCID: PMC4207782 DOI: 10.1371/journal.pone.0110882] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/25/2014] [Indexed: 01/16/2023] Open
Abstract
The papillomavirus E2 protein is involved in the maintenance of persistent infection and known to bind either to cellular factors or directly to mitotic chromosomes in order to partition the viral genome into the daughter cells. However, how the HPV-16 E2 protein acts to facilitate partitioning of the viral genome remains unclear. In this study, we found that serine 243 of HPV-16 E2, located in the hinge region, is crucial for chromosome binding during mitosis. Bromodomain protein 4 (Brd4) has been identified as a cellular binding target through which the E2 protein of bovine papillomavirus type 1 (BPV-1) tethers the viral genome to mitotic chromosomes. Mutation analysis showed that, when the residue serine 243 was substituted by glutamic acid or aspartic acid, whose negative charges mimic the effect of constitutive phosphorylation, the protein still can interact with Brd4 and colocalize with Brd4 in condensed metaphase and anaphase chromosomes. However, substitution by the polar uncharged residues asparagine or glutamine abrogated Brd4 and mitotic chromosome binding. Moreover, following treatment with the inhibitor JQ1 to release Brd4 from the chromosomes, Brd4 and E2 formed punctate foci separate from the chromosomes, further supporting the hypothesis that the association of the HPV-16 E2 protein with the chromosomes is Brd4-dependent. In addition, the S243A E2 protein has a shorter half-life than the wild type, indicating that phosphorylation of the HPV-16 E2 protein at serine 243 also increases its half-life. Thus, phosphorylation of serine 243 in the hinge region of HPV-16 E2 is essential for interaction with Brd4 and required for host chromosome binding.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Liao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
The role of ubiquitin and ubiquitin-like modification systems in papillomavirus biology. Viruses 2014; 6:3584-611. [PMID: 25254385 PMCID: PMC4189040 DOI: 10.3390/v6093584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
Collapse
|
25
|
Li J, Li Q, Diaz J, You J. Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells. Viruses 2014; 6:319-35. [PMID: 24448221 PMCID: PMC3917445 DOI: 10.3390/v6010319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023] Open
Abstract
Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B) fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions.
Collapse
Affiliation(s)
- Jing Li
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Qing Li
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Jason Diaz
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Jianxin You
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
McBride AA, Jang MK. Current understanding of the role of the Brd4 protein in the papillomavirus lifecycle. Viruses 2013; 5:1374-94. [PMID: 23722886 PMCID: PMC3717712 DOI: 10.3390/v5061374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022] Open
Abstract
The Brd4 protein is an epigenetic reader that is central to regulation of cellular transcription and mitotic bookmarking. The transcription and replication proteins of many viruses interact with Brd4. We describe the multiple roles of Brd4 in the papillomavirus lifecycle.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
28
|
Zou Z, Huang B, Wu X, Zhang H, Qi J, Bradner J, Nair S, Chen LF. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA. Oncogene 2013; 33:2395-404. [PMID: 23686307 DOI: 10.1038/onc.2013.179] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Acetylation of the RelA subunit of NF-κB at lysine-310 regulates the transcriptional activation of NF-κB target genes and contributes to maintaining constitutively active NF-κB in tumors. Bromodomain-containing factor Brd4 has been shown to bind to acetylated lysine-310 (AcLys310) and to regulate the transcriptional activity of NF-κB, but the role of this binding in maintaining constitutively active NF-κB in tumors remains elusive. In this study, we demonstrate the structural basis for the binding of bromodomains (BDs) of bromodomain-containing protein 4 (Brd4) to AcLys310 and identify the BD inhibitor JQ1 as an effective small molecule to block this interaction. JQ1 suppresses TNF-α-mediated NF-κB activation and NF-κB-dependent target gene expression. In addition, JQ1 inhibits the proliferation and transformation potential of A549 lung cancer cells and suppresses the tumorigenicity of A549 cells in severe combined immunodeficiency mice. Furthermore, we demonstrate that depletion of Brd4 or treatment of cells with JQ1 induces the ubiquitination and degradation of the constitutively active nuclear form of RelA. Our results identify a novel function of Brd4 in maintaining the persistently active form of NF-κB found in tumors, and they suggest that interference with the interaction between acetylated RelA and Brd4 could be a potential therapeutic approach for the treatment of NF-κB-driven cancer.
Collapse
Affiliation(s)
- Z Zou
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - B Huang
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - X Wu
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - H Zhang
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S Nair
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - L-F Chen
- 1] Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA [2] College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
29
|
Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 2013; 87:3871-84. [PMID: 23365439 DOI: 10.1128/jvi.03068-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of the human papillomavirus (HPV) DNA genome relies on viral factors E1 and E2 and the cellular replication machinery. Bromodomain-containing protein 4 (Brd4) interacts with viral E2 protein to mediate papillomavirus (PV) genome maintenance and viral transcription. However, the functional role of Brd4 in the HPV life cycle remains to be clearly defined. In this study, we provide the first look into the E2-Brd4 interaction in the presence of other important viral factors, such as the HPV16 E1 protein and the viral genome. We show that Brd4 is recruited to actively replicating HPV16 origin foci together with HPV16 E1, E2, and a number of the cellular replication factors: replication protein A70 (RPA70), replication factor C1 (RFC1), and DNA polymerase δ. Mutagenesis disrupting the E2-Brd4 interaction abolishes the formation of the HPV16 replication complex and impairs HPV16 DNA replication in cells. Brd4 was further demonstrated to be necessary for HPV16 viral DNA replication using a cell-free replication system in which depletion of Brd4 by small interfering RNA (siRNA) silencing leads to impaired HPV16 viral DNA replication and recombinant Brd4 protein is able to rescue viral DNA replication. In addition, releasing endogenous Brd4 from cellular chromatin by using the bromodomain inhibitor JQ1(+) enhances HPV16 DNA replication, demonstrating that the role of Brd4 in HPV DNA replication could be uncoupled from its function in chromatin-associated transcriptional regulation and cell cycle control. Our study reveals a new role for Brd4 in HPV genome replication, providing novel insights into understanding the life cycle of this oncogenic DNA virus.
Collapse
|
30
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
31
|
Abstract
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.
Collapse
|
32
|
Lace MJ, Ushikai M, Yamakawa Y, Anson JR, Ishiji T, Turek LP, Haugen TH. The truncated C-terminal E2 (E2-TR) protein of bovine papillomavirus (BPV) type-1 is a transactivator that modulates transcription in vivo and in vitro in a manner distinct from the E2-TA and E8^E2 gene products. Virology 2012; 429:99-111. [DOI: 10.1016/j.virol.2012.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
33
|
Muller M, Jacob Y, Jones L, Weiss A, Brino L, Chantier T, Lotteau V, Favre M, Demeret C. Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions. PLoS Pathog 2012; 8:e1002761. [PMID: 22761572 PMCID: PMC3386243 DOI: 10.1371/journal.ppat.1002761] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/04/2012] [Indexed: 11/30/2022] Open
Abstract
Human Papillomaviruses (HPV) cause widespread infections in humans, resulting in latent infections or diseases ranging from benign hyperplasia to cancers. HPV-induced pathologies result from complex interplays between viral proteins and the host proteome. Given the major public health concern due to HPV-associated cancers, most studies have focused on the early proteins expressed by HPV genotypes with high oncogenic potential (designated high-risk HPV or HR-HPV). To advance the global understanding of HPV pathogenesis, we mapped the virus/host interaction networks of the E2 regulatory protein from 12 genotypes representative of the range of HPV pathogenicity. Large-scale identification of E2-interaction partners was performed by yeast two-hybrid screenings of a HaCaT cDNA library. Based on a high-confidence scoring scheme, a subset of these partners was then validated for pair-wise interaction in mammalian cells with the whole range of the 12 E2 proteins, allowing a comparative interaction analysis. Hierarchical clustering of E2-host interaction profiles mostly recapitulated HPV phylogeny and provides clues to the involvement of E2 in HPV infection. A set of cellular proteins could thus be identified discriminating, among the mucosal HPV, E2 proteins of HR-HPV 16 or 18 from the non-oncogenic genital HPV. The study of the interaction networks revealed a preferential hijacking of highly connected cellular proteins and the targeting of several functional families. These include transcription regulation, regulation of apoptosis, RNA processing, ubiquitination and intracellular trafficking. The present work provides an overview of E2 biological functions across multiple HPV genotypes. Over 100 types of human papillomaviruses are responsible for widespread infections in humans. They cause a wide range of pathologies, ranging from inapparent infections to benign lesions, hyperplasia or cancers. Such heterogeneity results from variable interplay among viral and host cell proteins. Aiming to identify specific features that distinguish different pathological genotypes, we mapped the virus-host interaction networks of the regulatory E2 proteins from a set of 12 genotypes representative of HPV diversity. The E2-host interaction profiles recapitulate HPV phylogeny, thus providing a valuable framework for understanding the role of E2 in HPV infection of different pathological traits. The E2 proteins tend to bind to highly connected cellular proteins, indicating a profound effect on the host cell. These interactions predominantly impact on a subset of cellular processes, like transcriptional regulation, apoptosis, RNA metabolism, ubiquitination or intracellular transport. This work improves the global understanding of HPV-associated pathologies, and provides a framework to select interactions that can be used as targets for the development of new therapeutics.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, Paris, France
| | - Yves Jacob
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
| | - Louis Jones
- Groupe Logiciels et banques de données, Institut Pasteur, Paris, France
| | | | | | | | | | - Michel Favre
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
| | - Caroline Demeret
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
34
|
HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J 2012; 31:3212-27. [PMID: 22617423 DOI: 10.1038/emboj.2012.147] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/24/2012] [Indexed: 11/08/2022] Open
Abstract
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.
Collapse
|
35
|
Chang SW, Tsao YP, Lin CY, Chen SL. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 2011; 85:6750-63. [PMID: 21543494 PMCID: PMC3126500 DOI: 10.1128/jvi.02453-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/25/2011] [Indexed: 11/20/2022] Open
Abstract
Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
36
|
King LE, Dornan ES, Donaldson MM, Morgan IM. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction. Virology 2011; 414:26-33. [PMID: 21458836 DOI: 10.1016/j.virol.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/13/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Human papillomavirus 16 E1 and E2 interact with cellular factors to replicate the viral genome. E2 forms homodimers and binds to 12 bp palindromic sequences adjacent to the viral origin and recruits E1 to the origin. E1 forms a di-hexameric helicase complex that replicates the viral genome. This manuscript demonstrates that E1 stabilises the E2 protein, increasing the half life in both C33a and 293 T cells respectively. This stabilisation requires a direct protein--protein interaction. In addition, the E1 protein enhances E2 transcription function in a manner that suggests the E1 protein itself can contribute to transcriptional regulation not simply by E2 stabilisation but by direct stimulation of transcription. This activation of E2 transcription is again dependent upon an interaction with E1. Overall the results suggest that in the viral life cycle, co-expression of E1 with E2 can increase E2 stability and enhance E2 function.
Collapse
Affiliation(s)
- Lauren E King
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
37
|
Bellanger S, Tan CL, Xue YZ, Teissier S, Thierry F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res 2011; 1:373-389. [PMID: 21968515 PMCID: PMC3180061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023] Open
Abstract
The papillomavirus (PV) E2 proteins have been shown to exert many functions in the viral cycle including pivotal roles in transcriptional regulation and in viral DNA replication. Besides these historical roles, which rely on their aptitude to bind to specific DNA sequences, E2 has also been shown to modulate the host cells through direct protein interactions mainly through its amino terminal transactivation domain. We will describe here some of these new functions of E2 and their potential implication in the HPV-induced carcinogenesis. More particularly we will focus on E2-mediated modulation of the host cell cycle and consequences to cell transformation. In all, the HPV E2 proteins exhibit complex functions independent of transcription that can modulate the host cells in concert with the viral vegetative cycle and which could be involved in early carcinogenesis.
Collapse
Affiliation(s)
- Sophie Bellanger
- Institute of Medical Biology 8A Biochemical Grove, #06-06 Immunos, 138648, Singapore
| | | | | | | | | |
Collapse
|
38
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
39
|
Abstract
The papillomavirus E2 open reading frame encodes the full-length E2 protein as well as an alternatively spliced product called E8;E2C. E8;E2C has been best studied for the high-risk human papillomaviruses, where it has been shown to regulate viral genome levels and, like the full-length E2 protein, to repress transcription from the viral promoter that directs the expression of the viral E6 and E7 oncogenes. The repression function of E8;E2C is dependent on the 12-amino-acid N-terminal sequence from the E8 open reading frame (ORF). In order to understand the mechanism by which E8;E2C mediates transcriptional repression, we performed an unbiased proteomic analysis from which we identified six high-confidence candidate interacting proteins (HCIPs) for E8;E2C; the top two are NCoR1 and TBLR1. We established an interaction of E8;E2C with an NCoR1/HDAC3 complex and demonstrated that this interaction requires the wild-type E8 open reading frame. Small interfering RNA (siRNA) knockdown studies demonstrated the involvement of NCoR1/HDAC3 in the E8;E2C-dependent repression of the viral long control region (LCR) promoter. Additional genetic work confirmed that the papillomavirus E2 and E8;E2C proteins repress transcription through distinct mechanisms.
Collapse
|
40
|
The human papillomavirus type 18 E2 protein is a cell cycle-dependent target of the SCFSkp2 ubiquitin ligase. J Virol 2010; 84:437-44. [PMID: 19828607 DOI: 10.1128/jvi.01162-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human papillomavirus type 18 (HPV-18) E2 gene is inactivated in cervical carcinoma after integration of the viral DNA into the host cellular genome. Since E2 represses the transcription of the two viral oncogenes E6 and E7, integration which allows their strong expression is considered a major step in transformation by HPV. We show here that E2 is specifically degraded at the end of the G(1) phase in a Brd4-independent manner, implying that its regulatory functions are cell cycle dependent. Degradation of E2 occurs via the Skp1/Cullin1/F-box Skp2 (SCF(Skp2)) ubiquitin ligase, since silencing of Skp2 induces stabilization of E2. In addition, the amino-terminal domain of E2 can interact with Skp2 as shown by coimmunoprecipitation experiments. We previously showed that E2 inhibits the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, leading to accumulation of several of its substrates. We demonstrate here that Skp2, which is a known APC/C substrate in G(1), is also stabilized by E2. Therefore, by negative feedback, SCF(Skp2) activation could lead to E2 degradation and E6/E7 expression specifically in the late G(1) phase. Moreover, since the SCF(Skp2) can trigger S-phase entry and Skp2 itself is a known oncogene, we believe that E2-mediated accumulation of Skp2, together with E2 degradation leading to putative release of E6 and E7 inhibition, could induce premature S-phase entry in HPV-infected cells, pointing to a direct role of E2 in the early steps of HPV-mediated transformation.
Collapse
|