1
|
Maldonado RJK, Parent LJ. Dynamic interactions of retroviral Gag condensates with nascent viral RNA at transcriptional burst sites: implications for genomic RNA packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632546. [PMID: 39829876 PMCID: PMC11741468 DOI: 10.1101/2025.01.11.632546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm. However, previous studies demonstrated that the Rous sarcoma virus (RSV) Gag protein traffics transiently through the nucleus, which is necessary for efficient gRNA packaging. These data formed a strong premise for the hypothesis that Gag selects nascent gRNA at transcription sites in the nucleus, the location of the highest concentration of USvRNA molecules in the cell. In support of this model, previous studies using fixed cells infected with RSV revealed that Gag co-localizes with large USvRNA nuclear foci representing viral transcriptional burst sites. To test this idea, we used single molecule labeling and imaging techniques to visualize fluorescently-tagged, actively transcribing viral genomes, and Gag proteins in living cells. Gag condensates were observed in the nucleus, transiently co-localized with USvRNA at transcriptional burst sites, forming co-localized viral ribonucleoprotein complexes (vRNPs). These results support a novel paradigm for retroviral assembly in which Gag traffics to transcriptional burst sites and interacts through a dynamic kissing interaction to capture nascent gRNA for incorporation into virions.
Collapse
Affiliation(s)
- Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
2
|
Li YQ, Fang Z, Zhang W, Rao GW, Zheng Q. Targeting XPO1 for fighting relapsed/refractory diseases: The research progress of XPO1 inhibitors. Bioorg Chem 2025; 154:108073. [PMID: 39708554 DOI: 10.1016/j.bioorg.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
XPO1 is an influential member of the nuclear transporter protein family. The proteins and RNA transported by XPO1 are related to the occurrence and development of many diseases, including refractory tumor diseases and various viral infectious diseases. XPO1 is upregulated in many malignant tumors and is associated with poor prognosis. This article reviews the anti-tumor and anti-viral mechanisms of XPO1, and summarizes the biomarkers that predict the response to XPO1 inhibitors and the research progress of XPO1 as a biomarker in different diseases. In addition, we also summarize the research status of XPO1 inhibitors, and discuss the structure-activity relationship of preclinical inhibitors targeting XPO1 and the research status of XPO1 inhibitor resistance mechanisms.
Collapse
Affiliation(s)
- Ye-Qin Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhou Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Quan Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China.
| |
Collapse
|
3
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
4
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
5
|
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites. Viruses 2020; 12:v12111281. [PMID: 33182496 PMCID: PMC7696413 DOI: 10.3390/v12111281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.
Collapse
|
6
|
Maldonado RJK, Rice B, Chen EC, Tuffy KM, Chiari EF, Fahrbach KM, Hope TJ, Parent LJ. Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus. mBio 2020; 11:e00524-20. [PMID: 32265329 PMCID: PMC7157774 DOI: 10.1128/mbio.00524-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944-3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790-6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.
Collapse
Affiliation(s)
| | - Breanna Rice
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Eunice C Chen
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kevin M Tuffy
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Estelle F Chiari
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kelly M Fahrbach
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Mougel M, Akkawi C, Chamontin C, Feuillard J, Pessel-Vivares L, Socol M, Laine S. NXF1 and CRM1 nuclear export pathways orchestrate nuclear export, translation and packaging of murine leukaemia retrovirus unspliced RNA. RNA Biol 2020; 17:528-538. [PMID: 31918596 PMCID: PMC7237160 DOI: 10.1080/15476286.2020.1713539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022] Open
Abstract
Cellular mRNAs are exported from the nucleus as fully spliced RNAs. Proofreading mechanisms eliminate unprocessed and irregular pre-mRNAs to control the quality of gene expression. Retroviruses need to export partially spliced and unspliced full-length RNAs to the cytoplasm where they serve as templates for protein synthesis and/or as encapsidated RNA in progeny viruses. Genetically complex retroviruses such as HIV-1 use Rev-equivalent proteins to export intron-retaining RNA from the nucleus using the cellular CRM1-driven nuclear export machinery. By contrast, genetically simpler retroviruses such as murine leukaemia virus (MLV) recruit the NXF1 RNA export machinery. In this study, we reveal for the first time that MLV hijacks both NXF1 and CRM1-dependent pathways to achieve optimal replication capacity. The CRM1-pathway marks the MLV full-length RNA (FL RNA) for packaging, while NXF1-driven nuclear export is coupled to translation. Thus, the cytoplasmic function of the viral RNA is determined early in the nucleus. Depending on the nature of ribonucleoprotein complex formed on FL RNA cargo in the nucleus, the FL RNA will be addressed to the translation machinery sites or to the virus-assembly sites at the plasma membrane.
Collapse
Affiliation(s)
- M. Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - C. Akkawi
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - C. Chamontin
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - J. Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - L. Pessel-Vivares
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - M. Socol
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| | - S. Laine
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, FranceG
| |
Collapse
|
8
|
Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses 2018; 10:v10050261. [PMID: 29772651 PMCID: PMC5977254 DOI: 10.3390/v10050261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose biological and pathophysiological properties resemble those of human immunodeficiency virus type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review, we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env, rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target for therapeutic interventions, gaining a better understanding of this process is highly desirable.
Collapse
|
9
|
Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3. J Virol 2017; 91:JVI.00250-17. [PMID: 28331087 PMCID: PMC5432859 DOI: 10.1128/jvi.00250-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 11/20/2022] Open
Abstract
The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.
Collapse
|
10
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
11
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
12
|
Yu KL, Lee SH, Lee ES, You JC. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus. Virology 2016; 492:204-12. [PMID: 26967976 DOI: 10.1016/j.virol.2016.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity.
Collapse
Affiliation(s)
- Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Sun Hee Lee
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Eun Soo Lee
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea.
| |
Collapse
|
13
|
Rice BL, Kaddis RJ, Stake MS, Lochmann TL, Parent LJ. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus. Front Microbiol 2015; 6:925. [PMID: 26441864 PMCID: PMC4562304 DOI: 10.3389/fmicb.2015.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/21/2015] [Indexed: 01/27/2023] Open
Abstract
Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.
Collapse
Affiliation(s)
- Breanna L Rice
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Rebecca J Kaddis
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Matthew S Stake
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA ; Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
14
|
Wu H, Wang W, Naiyer N, Fichtenbaum E, Qualley DF, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 2014; 193:39-51. [PMID: 24915282 PMCID: PMC4252577 DOI: 10.1016/j.virusres.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Wei Wang
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Nada Naiyer
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Eric Fichtenbaum
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Dominic F Qualley
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
16
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
17
|
Checkley MA, Mitchell JA, Eizenstat LD, Lockett SJ, Garfinkel DJ. Ty1 gag enhances the stability and nuclear export of Ty1 mRNA. Traffic 2013; 14:57-69. [PMID: 22998189 PMCID: PMC3548082 DOI: 10.1111/tra.12013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
Abstract
Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus-like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1-less strain expressing galactose-inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense-mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jessica A. Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Linda D. Eizenstat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | | | - David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Nucleolar trafficking of the mouse mammary tumor virus gag protein induced by interaction with ribosomal protein L9. J Virol 2012; 87:1069-82. [PMID: 23135726 DOI: 10.1128/jvi.02463-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Gag protein directs the assembly in the cytoplasm of immature viral capsids, which subsequently bud from the plasma membranes of infected cells. MMTV Gag localizes to discrete cytoplasmic foci in mouse mammary epithelial cells, consistent with the formation of cytosolic capsids. Unexpectedly, we also observed an accumulation of Gag in the nucleoli of infected cells derived from mammary gland tumors. To detect Gag-interacting proteins that might influence its subcellular localization, a yeast two-hybrid screen was performed. Ribosomal protein L9 (RPL9 or L9), an essential component of the large ribosomal subunit and a putative tumor suppressor, was identified as a Gag binding partner. Overexpression of L9 in cells expressing the MMTV(C3H) provirus resulted in specific, robust accumulation of Gag in nucleoli. Förster resonance energy transfer (FRET) and coimmunoprecipitation analyses demonstrated that Gag and L9 interact within the nucleolus, and the CA domain was the major site of interaction. In addition, the isolated NC domain of Gag localized to the nucleolus, suggesting that it contains a nucleolar localization signal (NoLS). To determine whether L9 plays a role in virus assembly, small interfering RNA (siRNA)-mediated knockdown was performed. Although Gag expression was not reduced with L9 knockdown, virus production was significantly impaired. Thus, our data support the hypothesis that efficient MMTV particle assembly is dependent upon the interaction of Gag and L9 in the nucleoli of infected cells.
Collapse
|
19
|
NC-mediated nucleolar localization of retroviral gag proteins. Virus Res 2012; 171:304-18. [PMID: 23036987 DOI: 10.1016/j.virusres.2012.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/13/2012] [Accepted: 09/22/2012] [Indexed: 11/21/2022]
Abstract
The assembly and release of retrovirus particles from the cell membrane is directed by the Gag polyprotein. The Gag protein of Rous sarcoma virus (RSV) traffics through the nucleus prior to plasma membrane localization. We previously reported that nuclear localization of RSV Gag is linked to efficient packaging of viral genomic RNA, however the intranuclear activities of RSV Gag are not well understood. To gain insight into the properties of the RSV Gag protein within the nucleus, we examined the subnuclear localization and dynamic trafficking of RSV Gag. Restriction of RSV Gag to the nucleus by mutating its nuclear export signal (NES) in the p10 domain or interfering with CRM1-mediated nuclear export of Gag by leptomycin B (LMB) treatment led to the accumulation of Gag in nucleoli and discrete nucleoplasmic foci. Retention of RSV Gag in nucleoli was reduced with cis-expression of the 5' untranslated RU5 region of the viral RNA genome, suggesting the psi (Ψ) packaging signal may alter the subnuclear localization of Gag. Fluorescence recovery after photobleaching (FRAP) demonstrated that the nucleolar fraction of Gag was highly mobile, indicating that there was rapid exchange with Gag proteins in the nucleoplasm. RSV Gag is targeted to nucleoli by a nucleolar localization signal (NoLS) in the NC domain, and similarly, the human immunodeficiency virus type 1 (HIV-1) NC protein also contains an NoLS consisting of basic residues. Interestingly, co-expression of HIV-1 NC or Rev with HIV-1 Gag resulted in accumulation of Gag in nucleoli. Moreover, a subpopulation of HIV-1 Gag was detected in the nucleoli of HeLa cells stably expressing the entire HIV-1 genome in a Rev-dependent fashion. These findings suggest that the RSV and HIV-1 Gag proteins undergo nucleolar trafficking in the setting of viral infection.
Collapse
|
20
|
The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 2012; 86:12552-60. [PMID: 22973040 DOI: 10.1128/jvi.01657-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sterile alpha motif domain- and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase that restricts the replication of lentiviruses in myeloid cells by hydrolyzing the cellular deoxynucleotide triphosphates to a level below that which is required for reverse transcription. Human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency viruses (SIVs) encode the accessory protein viral protein X (Vpx) that counteracts SAMHD1. Vpx recruits SAMHD1 to a cullin4A-RING E3 ubiquitin ligase (CRL4), which targets the enzyme for proteasomal degradation. Vpx and SAMHD1 both localize to the nucleus of the cell. We identified the nuclear localization sequence (NLS) of SAMHD1 as a conserved KRPR sequence at amino acid residues 11 to 14. SAMHD1 lacking a functional NLS localized to the cytoplasm but retained its triphosphohydrolase and antiviral activities. However, cytoplasmic SAMHD1 was resistant to Vpx-induced degradation, and its antiviral activity was not counteracted by Vpx. Cytoplasmic SAMHD1 interacted with Vpx and retained it in the cytoplasm. The inhibition of nuclear export with leptomycin B did not impair the ability of Vpx to degrade SAMHD1. These findings suggest that SAMHD1 is targeted by Vpx for ubiquitination and degradation in the nucleus.
Collapse
|