1
|
Yu F, Song S, Xu J, Hao K, Wang Y, Zhao Z. Recognition of novel proteins encoded by an aquareovirus using mass spectrometry. Virology 2025; 601:110281. [PMID: 39499964 DOI: 10.1016/j.virol.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
AQUAREOVIRUS: a genus of within the family Spinareoviridae, order Reovirales, infects aquatic animals. Their genomes comprise 11 segments of double-stranded RNA, which function directly as mRNAs upon release into the cytoplasm of infected cells. Here, liquid chromatography-tandem mass spectrometry was employed to annotate small coding ORFs in the Aquareovirus-C genome. Its plus-strand RNA of segment 8 (S8) contains a novel protein-coding frame (NS15), and S5 seems to has an additional reading frame (NS18) with a putative non-AUG initiation codon. Among them, NS15 polypeptide has been proved by immunoblotting assay. Remarkably, the S4 and S11 minus-strand mRNAs may encode polypeptides, suggesting ambisense polarity of the two segmented RNAs. And the newly discovered NS12 ORF in 2019, from viral tricistronic S7 mRNA, was also confirmed by this mass-spectrometry data. Taken together, these identified new ORFs reveal the genome-coding complexity of Aquareovirus-C.
Collapse
Affiliation(s)
- Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China.
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Yu Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China.
| |
Collapse
|
2
|
Qin SK, Li KH, Liu BJ, Cao C, Yu DB, Jiang ZG, Wang J, Han YX, Wang F, Qi YL, Sun C, Yu L, Chang JT, Yin X. Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening. Virol Sin 2024; 39:917-928. [PMID: 39349279 PMCID: PMC11738791 DOI: 10.1016/j.virs.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2024] [Indexed: 10/02/2024] Open
Abstract
Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P [1] C73, G10P [11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.
Collapse
Affiliation(s)
- Song-Kang Qin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China; Laboratory of Molecular and Cellular Epigenetics, Grappe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, 4000 Liège, Belgium; Molecular Biology, Teaching and Research Center, 5030 Gembloux, Belgium
| | - Kuan-Hao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Ben-Jin Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Cun Cao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - De-Bin Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Zhi-Gang Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Jun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Yu-Xin Han
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Ying-Lin Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Chao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Li Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China
| | - Ji-Tao Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China; Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China.
| |
Collapse
|
3
|
Zhu Y, Sullender ME, Campbell DE, Wang L, Lee S, Kawagishi T, Hou G, Dizdarevic A, Jais PH, Baldridge MT, Ding S. CRISPR/Cas9 screens identify key host factors that enhance rotavirus reverse genetics efficacy and vaccine production. NPJ Vaccines 2024; 9:211. [PMID: 39505878 PMCID: PMC11542071 DOI: 10.1038/s41541-024-01007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Rotaviruses pose a significant threat to young children. To identify novel pro- and anti-rotavirus host factors, we performed genome-wide CRISPR/Cas9 screens using rhesus rotavirus and African green monkey cells. Genetic deletion of either SERPINB1 or TMEM236, the top two antiviral factors, in MA104 cells increased virus titers in a rotavirus strain independent manner. Using this information, we optimized the existing rotavirus reverse genetics systems by combining SERPINB1 knockout MA104 cells with a C3P3-G3 helper plasmid. We improved the recovery efficiency and rescued several low-titer rotavirus reporter and mutant strains that prove difficult to rescue otherwise. Furthermore, we demonstrate that TMEM236 knockout in Vero cells supported higher yields of two live-attenuated rotavirus vaccine strains than the parental cell line and represents a more robust vaccine-producing cell substrate. Collectively, we developed a third-generation optimized rotavirus reverse genetics system and generated gene-edited Vero cells as a new substrate for improving rotavirus vaccine production.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meagan E Sullender
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E Campbell
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alen Dizdarevic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe H Jais
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine 91000, Evry-Courcouronnes, France
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Diebold O, Zhou S, Sharp CP, Tesla B, Chook HW, Digard P, Gaunt ER. Towards the Development of a Minigenome Assay for Species A Rotaviruses. Viruses 2024; 16:1396. [PMID: 39339871 PMCID: PMC11437487 DOI: 10.3390/v16091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
RNA virus polymerases carry out multiple functions necessary for successful genome replication and transcription. A key tool for molecular studies of viral RNA-dependent RNA polymerases (RdRps) is a 'minigenome' or 'minireplicon' assay, in which viral RdRps are reconstituted in cells in the absence of full virus infection. Typically, plasmids expressing the viral polymerase protein(s) and other co-factors are co-transfected, along with a plasmid expressing an RNA encoding a fluorescent or luminescent reporter gene flanked by viral untranslated regions containing cis-acting elements required for viral RdRp recognition. This reconstitutes the viral transcription/replication machinery and allows the viral RdRp activity to be measured as a correlate of the reporter protein signal. Here, we report on the development of a 'first-generation' plasmid-based minigenome assay for species A rotavirus using a firefly luciferase reporter gene.
Collapse
Affiliation(s)
- Ola Diebold
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Shu Zhou
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Colin Peter Sharp
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Blanka Tesla
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hou Wei Chook
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Paul Digard
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Eleanor R Gaunt
- Virology Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Kawamura Y, Komoto S, Fukuda S, Kugita M, Tang S, Patel A, Pieknik JR, Nagao S, Taniguchi K, Krause PR, Yoshikawa T. Development of recombinant rotavirus carrying herpes simplex virus 2 glycoprotein D gene based on reverse genetics technology. Microbiol Immunol 2024; 68:56-64. [PMID: 38098134 DOI: 10.1111/1348-0421.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024]
Abstract
Vaccine development for herpes simplex virus 2 (HSV-2) has been attempted, but no vaccines are yet available. A plasmid-based reverse genetics system for Rotavirus (RV), which can cause gastroenteritis, allows the generation of recombinant RV containing foreign genes. In this study, we sought to develop simian RV (SA11) as a vector to express HSV-2 glycoprotein D (gD2) and evaluated its immunogenicity in mice. We generated the recombinant SA11-gD2 virus (rSA11-gD2) and confirmed its ability to express gD2 in vitro. The virus was orally inoculated into suckling BALB/c mice and into 8-week-old mice. Serum IgG and IgA titers against RV and gD2 were measured by ELISA. In the 8-week-old mice inoculated with rSA11-gD2, significant increases in not only antibodies against RV but also IgG against gD2 were demonstrated. In the suckling mice, antibodies against RV were induced, but gD2 antibody was not detected. Diarrhea observed after the first inoculation of rSA11-gD2 in suckling mice was similar to that induced by the parent virus. A gD2 expressing simian RV recombinant, which was orally inoculated, induced IgG against gD2. This strategy holds possibility for genital herpes vaccine development.
Collapse
Affiliation(s)
- Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Pediatrics, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita, Japan
| | - Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masanori Kugita
- Advanced Medical Research Center for Animal Models of Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Shuang Tang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amita Patel
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Julianna R Pieknik
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shizuko Nagao
- Advanced Medical Research Center for Animal Models of Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Philip R Krause
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
- Independent Consultant, Bethesda, Maryland, USA
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Philip AA, Hu S, Dai J, Patton JT. Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2. J Gen Virol 2023; 104:001899. [PMID: 37830788 PMCID: PMC10721933 DOI: 10.1099/jgv.0.001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Reverse genetic systems have been used to introduce heterologous sequences into the rotavirus segmented double-stranded (ds)RNA genome, enabling the generation of recombinant viruses that express foreign proteins and possibly serve as vaccine vectors. Notably, insertion of SARS-CoV-2 sequences into the segment seven (NSP3) RNA of simian SA11 rotavirus was previously shown to result in the production of recombinant viruses that efficiently expressed the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the S1 region of the SARS-CoV-2 spike protein. However, efforts to generate a similar recombinant (r) SA11 virus that efficiently expressed full-length S1 were less successful. In this study, we describe modifications to the S1-coding cassette inserted in the segment seven RNA that allowed recovery of second-generation rSA11 viruses that efficiently expressed the ~120-kDa S1 protein. The ~120-kDa S1 products were shown to be glycosylated, based on treatment with endoglycosidase H, which reduced the protein to a size of ~80 kDa. Co-pulldown assays demonstrated that the ~120-kDa S1 proteins had affinity for the human ACE2 receptor. Although all the second-generation rSA11 viruses expressed glycosylated S1 with affinity for the ACE receptor, only the S1 product of one virus (rSA11/S1f) was appropriately recognized by anti-S1 antibodies, suggesting the rSA11/S1f virus expressed an authentic form of S1. Compared to the other second-generation rSA11 viruses, the design of the rSA11/S1f was unique, encoding an S1 product that did not include an N-terminal FLAG tag. Probably due to the impact of FLAG tags upstream of the S1 signal peptides, the S1 products of the other viruses (rSA11/3fS1 and rSA11/3fS1-His) may have undergone defective glycosylation, impeding antibody binding. In summary, these results indicate that recombinant rotaviruses can serve as expression vectors of foreign glycosylated proteins, raising the possibility of generating rotavirus-based vaccines that can induce protective immune responses against enteric and mucosal viruses with glycosylated capsid components, including SARS-CoV-2.
Collapse
Affiliation(s)
- Asha A. Philip
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Present address: CSL Seqirus, 225 Wyman Street, Waltham, MA 02452, USA
| | - Sannoong Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jin Dai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Mohd Jaafar F, Monsion B, Mertens PPC, Attoui H. Identification of Orbivirus Non-Structural Protein 5 (NS5), Its Role and Interaction with RNA/DNA in Infected Cells. Int J Mol Sci 2023; 24:ijms24076845. [PMID: 37047816 PMCID: PMC10095184 DOI: 10.3390/ijms24076845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice and were used to identify NS5 synthesised in orbivirus-infected BSR cells or cells transfected with NS5 expression plasmids. Confocal microscopy shows that although NS5 accumulates in the nucleus, particularly in the nucleolus, which becomes disrupted, it also appears in the cell cytoplasm, co-localising with mitochondria. NS5 helps to prevent the degradation of ribosomal RNAs during infection and reduces host-cell protein synthesis However, it helps to extend cell viability by supporting viral protein synthesis and virus replication. Pulldown studies showed that NS5 binds to ssRNAs and supercoiled DNAs and demonstrates interactions with ZBP1, suggesting that it modulates host-cell responses.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Peter P. C. Mertens
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| |
Collapse
|
9
|
Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022; 13:e0130822. [PMID: 35699371 PMCID: PMC9426431 DOI: 10.1128/mbio.01308-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Abstract
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Collapse
|
11
|
Fukuda S, Kugita M, Higashimoto Y, Shiogama K, Tsujikawa H, Moriguchi K, Ito N, Sugiyama M, Nagao S, Murata T, Taniguchi K, Komoto S. Rotavirus incapable of NSP6 expression can cause diarrhea in suckling mice. J Gen Virol 2022; 103. [PMID: 35639587 DOI: 10.1099/jgv.0.001745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The group A rotavirus (RVA) genome comprising 11 double-stranded RNAs encodes six structural proteins (VP1-VP4, VP6, and VP7) and six non-structural proteins (NSP1-NSP6). Among these 12 rotaviral proteins, NSP6 has been less studied as to its function. We previously prepared a recombinant NSP6-deficient RVA derived from simian strain SA11-L2 by reverse genetics, and found that the NSP6-deficient virus grew well in cell culture, although its growth was less abundant than that of the parental SA11-L2 strain. In this study, we examined the potency of a recombinant RVA incapable of NSP6 expression to cause diarrhoea in suckling mice. The suckling mice infected with the NSP6-deficient virus apparently experienced diarrhoea, although the symptom was milder and the duration of diarrhoea was shorter than in the mice infected with the authentic SA11-L2 strain. Thus, together with the results obtained for cultured cells in the previous study, it can be concluded that NSP6 is not necessarily required for replication and pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Masanori Kugita
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yuki Higashimoto
- Division of Morphology and Diagnostic Pathology, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Kazuya Shiogama
- Division of Morphology and Diagnostic Pathology, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Hanako Tsujikawa
- Division of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kyoko Moriguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naoto Ito
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
12
|
Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Mol Microbiol 2021; 117:818-836. [PMID: 34954851 DOI: 10.1111/mmi.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase-domain like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hours of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
13
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Kobayashi T, Patton JT, Desselberger U. Species A rotavirus reverse genetics: Achievements and prospects. Virus Res 2021; 306:198583. [PMID: 34600933 DOI: 10.1016/j.virusres.2021.198583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, USA.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital,Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
15
|
Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses 2021; 13:v13091791. [PMID: 34578372 PMCID: PMC8473093 DOI: 10.3390/v13091791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022] Open
Abstract
Human rotaviruses (HuRVAs) are highly important causes of acute gastroenteritis in infants and young children worldwide. A lack of reliable and reproducible reverse genetics systems for HuRVAs has limited a proper understanding of HuRVA biology and also the rational design of live-attenuated vaccines. Since the development of the first reverse genetics system for RVAs (partially plasmid-based reverse genetics system) in 2006, there have been many efforts with the goal of generating infectious recombinant HuRVAs entirely from cloned cDNAs. However, the establishment of a HuRVA reverse genetics system was very challenging until 2019. This review article provides an overview of the historical background of the recent development of long-awaited HuRVA reverse genetics systems, beginning with the generation of recombinant human-simian reassortant RVAs with the aid of a helper virus in 2006 and the generation of recombinant animal (simian) RVAs in a helper virus-free manner in 2017, and culminating in the generation of recombinant HuRVAs entirely from plasmid cDNAs in 2019. Notably, the original HuRVA reverse genetics system has already been optimized to increase the efficiency of virus generation. Although the application of HuRVA reverse genetics systems has only just been initiated, these technologies will help to answer HuRVA research questions regarding viral replication and pathogenicity that could not be addressed before, and to develop next-generation vaccines and intestine-specific rotaviral vectors.
Collapse
|
16
|
Hatazawa R, Fukuda S, Kumamoto K, Matsushita F, Nagao S, Murata T, Taniguchi K, Matsui T, Komoto S. Strategy for generation of replication-competent recombinant rotaviruses expressing multiple foreign genes. J Gen Virol 2021; 102. [PMID: 33843576 DOI: 10.1099/jgv.0.001587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With the recent establishment of robust reverse genetics systems for rotavirus, rotavirus is being developed as a vector to express foreign genes. However, insertion of larger sequences such as those encoding multiple foreign genes into the rotavirus genome has been challenging because the virus segments are small. In this paper, we attempted to insert multiple foreign genes into a single gene segment of rotavirus to determine whether it can efficiently express multiple exogenous genes from its genome. At first, we engineered a truncated NSP1 segment platform lacking most of the NSP1 open reading frame and including a self-cleaving 2A sequence (2A), which made it possible to generate a recombinant rotavirus stably expressing NanoLuc (Nluc) luciferase as a model foreign gene. Based on this approach, we then demonstrated the generation of a replication-competent recombinant rotavirus expressing three reporter genes (Nluc, EGFP, and mCherry) by separating them with self-cleaving 2As, indicating the capacity of rotaviruses as to the insertion of multiple foreign genes. Importantly, the inserted multiple foreign genes remained genetically stable during serial passages in cell culture, indicating the potential of rotaviruses as attractive expression vectors. The strategy described here will serve as a model for the generation of rotavirus-based vectors designed for the expression and/or delivery of multiple foreign genes.
Collapse
Affiliation(s)
- Riona Hatazawa
- Department of Molecular Laboratory Medicine, Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Kanako Kumamoto
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Fumio Matsushita
- Department of Molecular Laboratory Medicine, Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taei Matsui
- Department of Molecular Laboratory Medicine, Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
17
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
18
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
19
|
Philip AA, Patton JT. Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2021; 9:449. [PMID: 34063562 PMCID: PMC8147602 DOI: 10.3390/vaccines9050449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Among vaccines administered to children are those targeting rotavirus, a segmented double-stranded RNA virus that represents a major cause of severe gastroenteritis. To explore the feasibility of establishing a combined rotavirus-SARS-CoV-2 vaccine, we generated recombinant (r)SA11 rotaviruses with modified segment 7 RNAs that contained coding cassettes for NSP3, a translational 2A stop-restart signal, and a FLAG-tagged portion of the SARS-CoV-2 spike (S) protein: S1 fragment, N-terminal domain (NTD), receptor-binding domain (RBD), extended RBD (ExRBD), or S2 core (CR) domain. Generation of rSA11 containing the S1 coding sequence required a sequence insertion of 2.2 kbp, the largest such insertion yet introduced into the rotavirus genome. Immunoblotting showed that rSA11 viruses containing the smaller NTD, RBD, ExRBD, and CR coding sequences expressed S-protein products of expected size, with ExRBD expressed at highest levels. These rSA11 viruses were genetically stable during serial passage. In contrast, the rSA11 virus containing the full-length S coding sequence (rSA11/NSP3-fS1) failed to express its expected 80 kDa fS1 product, for unexplained reasons. Moreover, rSA11/NSP3-fS1 was genetically unstable, with variants lacking the S1 insertion appearing during serial passage. Nonetheless, these results emphasize the potential usefulness of rotavirus vaccines as expression vectors of immunogenic portions of the SARS-CoV-2 S protein, including NTD, RBD, ExRBD, and CR, that have sizes smaller than the S1 fragment.
Collapse
|
20
|
Falkenhagen A, Huyzers M, van Dijk AA, Johne R. Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4. Viruses 2021; 13:v13030363. [PMID: 33668972 PMCID: PMC7996497 DOI: 10.3390/v13030363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a plasmid-based reverse genetics system based on simian RVA strain SA11, we previously showed that the rescue of viable reassortants containing a heterologous VP4-encoding genome segment was strain-dependent. In order to unravel the reasons for the reassortment restrictions, we designed here a series of plasmids encoding chimeric VP4s. Exchange of the VP4 domains interacting with VP6 and VP7 was not sufficient for rescue of viable viruses. In contrast, the exchange of fragments encoding the receptor-binding region of VP4 resulted in virus rescue. All parent strains and the rescued reassortants replicated efficiently in MA-104 cells used for virus propagation. In contrast, replication in BSR T7/5 cells used for plasmid transfection was only efficient for the SA11 strain, whereas the rescued reassortants replicated slowly, and the parent strains failing to produce reassortants did not replicate. While future research in this area is necessary, replication in BSR T7/5 cells may be one factor that affects the rescue of RVAs.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
- Correspondence:
| | - Marno Huyzers
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, 2531 Potchefstroom, South Africa; (M.H.); (A.A.v.D.)
| | - Alberdina A. van Dijk
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, 2531 Potchefstroom, South Africa; (M.H.); (A.A.v.D.)
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| |
Collapse
|
21
|
Kanai Y, Kobayashi T. Rotavirus reverse genetics systems: Development and application. Virus Res 2021; 295:198296. [PMID: 33440223 DOI: 10.1016/j.virusres.2021.198296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Rotaviruses (RVs) cause acute gastroenteritis in infants and young children. Since 2006, live-attenuated vaccines have reduced the number of RV-associated deaths; however, RV is still responsible for an estimated 228,047 annual deaths worldwide. RV, a member of the family Reoviridae, has an 11-segmented double-stranded RNA genome contained within a non-enveloped, triple layered virus particle. In 2017, a long-awaited helper virus-free reverse genetics system for RV was established. Since then, numerous studies have reported the generation of recombinant RVs; these studies verify the robustness of reverse genetics systems. This review provides technical insight into current reverse genetics systems for RVs, as well as discussing basic and applied studies that have used these systems.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Pannacha P, Kanai Y, Kawagishi T, Nouda R, Nurdin JA, Yamasaki M, Nomura K, Lusiany T, Kobayashi T. Generation of recombinant rotaviruses encoding a split NanoLuc peptide tag. Biochem Biophys Res Commun 2020; 534:740-746. [PMID: 33250174 DOI: 10.1016/j.bbrc.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022]
Abstract
Recombinant viruses expressing fluorescent or luminescent reporter proteins are used to quantitate and visualize viral replication and transmission. Here, we used a split NanoLuc luciferase (NLuc) system comprising large LgBiT and small HiBiT peptide fragments to generate stable reporter rotaviruses (RVs). Reporter RVs expressing NSP1-HiBiT fusion protein were generated by placing an 11 amino acid HiBiT peptide tag at the C-terminus of the intact simian RV NSP1 open reading frame or truncated human RV NSP1 open reading frame. Virus-infected cell lysates exhibited NLuc activity that paralleled virus replication. The antiviral activity of neutralizing antibodies and antiviral reagents against the recombinant HiBiT reporter viruses were monitored by measuring reductions in NLuc expression. These findings demonstrate that the HiBiT reporter RV systems are powerful tools for studying the viral life cycle and pathogenesis, and a robust platform for developing novel antiviral drugs.
Collapse
Affiliation(s)
- Pimfhun Pannacha
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeffery A Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Keiichiro Nomura
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tina Lusiany
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
Desselberger U. Potential of plasmid only based reverse genetics of rotavirus for the development of next-generation vaccines. Curr Opin Virol 2020; 44:1-6. [DOI: 10.1016/j.coviro.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/28/2023]
|
24
|
Generation of recombinant rotaviruses from just 11 cDNAs encoding a viral genome. Virus Res 2020; 286:198075. [DOI: 10.1016/j.virusres.2020.198075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
|
25
|
Patzina-Mehling C, Falkenhagen A, Trojnar E, Gadicherla AK, Johne R. Potential of avian and mammalian species A rotaviruses to reassort as explored by plasmid only-based reverse genetics. Virus Res 2020; 286:198027. [DOI: 10.1016/j.virusres.2020.198027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
26
|
Philip AA, Patton JT. Expression of Separate Heterologous Proteins from the Rotavirus NSP3 Genome Segment Using a Translational 2A Stop-Restart Element. J Virol 2020; 94:e00959-20. [PMID: 32611753 PMCID: PMC7459566 DOI: 10.1128/jvi.00959-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The segmented 18.5-kbp dsRNA genome of rotavirus expresses 6 structural and 6 nonstructural proteins. We investigated the possibility of using the recently developed plasmid-based rotavirus reverse genetics (RG) system to generate recombinant viruses that express a separate heterologous protein in addition to the 12 viral proteins. To address this, we replaced the NSP3 open reading frame (ORF) of the segment 7 (pT7/NSP3) transcription vector used in the RG system with an ORF encoding NSP3 fused to a fluorescent reporter protein (i.e., UnaG, mRuby, mKate, or TagBFP). Inserted at the fusion junction was a teschovirus translational 2A stop-restart element designed to direct the separate expression of NSP3 and the fluorescent protein. Recombinant rotaviruses made with the modified pT7/NSP3 vectors were well growing and generally genetically stable, and they expressed NSP3 and a separate fluorescent protein detectable by live cell imaging. NSP3 made by the recombinant viruses was functional, inducing nuclear accumulation of cellular poly(A)-binding protein. Further modification of the NSP3 ORF showed that it was possible to generate recombinant viruses encoding 2 heterologous proteins (mRuby and UnaG) in addition to NSP3. Our results demonstrate that, through modification of segment 7, the rotavirus genome can be increased in size to at least 19.8 kbp and can be used to produce recombinant rotaviruses expressing a full complement of viral proteins and multiple heterologous proteins. The generation of recombinant rotaviruses expressing fluorescent proteins will be valuable for the study of rotavirus replication and pathogenesis by live cell imagining and suggest that rotaviruses will prove useful as expression vectors.IMPORTANCE Rotaviruses are a major cause of severe gastroenteritis in infants and young children. Recently, a highly efficient reverse genetics system was developed that allows genetic manipulation of the rotavirus segmented double-stranded RNA genome. Using the reverse genetics system, we show that it is possible to modify one of the rotavirus genome segments (segment 7) such that virus gains the capacity to express a separate heterologous protein in addition to the full complement of viral proteins. Through this approach, we have generated wild-type-like rotaviruses that express various fluorescent reporter proteins, including UnaG (green), mRuby (far red), mKate (red), and TagBFP (blue). Such strains will be of value in probing rotavirus biology and pathogenesis by live cell imagining techniques. Notably, our work indicates that the rotavirus genome is remarkably flexible and able to accommodate significant amounts of heterologous RNA sequence, raising the possibility of using the virus as a vaccine expression vector.
Collapse
Affiliation(s)
- Asha A Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
27
|
Rapid generation of rotavirus single-gene reassortants by means of eleven plasmid-only based reverse genetics. J Gen Virol 2020; 101:806-815. [DOI: 10.1099/jgv.0.001443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reassortment is an important mechanism in the evolution of group A rotaviruses (RVAs), yielding viruses with novel genetic and phenotypic traits. The classical methods for generating RVA reassortants with the desired genetic combinations are laborious and time-consuming because of the screening and selection processes required to isolate a desired reassortant. Taking advantage of a recently developed RVA reverse genetics system based on just 11 cloned cDNAs encoding the RVA genome (11 plasmid-only system), we prepared a panel of simian SA11-L2 virus-based single-gene reassortants, each containing 1 segment derived from human KU virus of the G1P[8] genotype. It was shown that there was no gene-specific restriction of the reassortment potential. In addition to these 11 single-gene reassortants, a triple-gene reassortant with KU-derived core-encoding VP1–3 gene segments with the SA11-L2 genetic background, which make up a virion composed of the KU-based core, and SA11-L2-based intermediate and outer layers, could also be prepared with the 11 plasmid-only system. Finally, for possible clinical application of this system, we generated a series of VP7 reassortants representing all the major human RVA G genotypes (G1–4, G9 and G12) efficiently. The preparation of each of these single-gene reassortants was achieved within just 2 weeks. Our results demonstrate that the 11 plasmid-only system allows the rapid and reliable generation of RVA single-gene reassortants, which will be useful for basic research and clinical applications.
Collapse
|
28
|
Falkenhagen A, Patzina-Mehling C, Rückner A, Vahlenkamp TW, Johne R. Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J Gen Virol 2020; 100:1595-1604. [PMID: 31665098 DOI: 10.1099/jgv.0.001322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Species A rotaviruses (RVAs) are a major cause of gastroenteritis in animals and humans. Their genome consists of 11 segments of dsRNA, and reassortment events between animal and human strains can contribute to the high genetic diversity of RVAs. We used a plasmid-based reverse genetics system to investigate the reassortment potential of the genome segment encoding the viral outer capsid protein VP4, which is a major antigenic determinant, mediates viral entry and plays an important role in host cell tropism. We rescued reassortant viruses containing VP4 from porcine, bovine, bat, pheasant or chicken RVA strains in the backbone of simian strain SA11. The VP4 reassortants could be stably passaged in MA-104 cells and induced cytopathic effects. However, analysis of growth kinetics revealed marked differences in replication efficiency. Our results show that the VP4-encoding genome segment has a high reassortment potential, even between virus strains from highly divergent species. This can result in replication-competent reassortants with new genomic, growth and antigenic features.
Collapse
Affiliation(s)
| | | | - Antje Rückner
- Institute of Virology, Leipzig University, Leipzig, Germany
| | | | - Reimar Johne
- The German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
29
|
Song Y, Feng N, Sanchez-Tacuba L, Yasukawa LL, Ren L, Silverman RH, Ding S, Greenberg HB. Reverse Genetics Reveals a Role of Rotavirus VP3 Phosphodiesterase Activity in Inhibiting RNase L Signaling and Contributing to Intestinal Viral Replication In Vivo. J Virol 2020; 94:e01952-19. [PMID: 32051268 PMCID: PMC7163120 DOI: 10.1128/jvi.01952-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Our understanding of how rotavirus (RV) subverts host innate immune signaling has greatly increased over the past decade. However, the relative contribution of each virus-encoded innate immune antagonist has not been fully studied in the context of RV infection in vivo Here, we present both in vitro and in vivo evidence that the host interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS) and RNase L pathway effectively suppresses the replication of heterologous RV strains. VP3 from homologous RVs relies on its 2'-5'-phosphodiesterase (PDE) domain to counteract RNase L-mediated antiviral signaling. Using an RV reverse-genetics system, we show that compared to the parental strain, VP3 PDE mutant RVs replicated at low levels in the small intestine and were shed less in the feces of wild-type mice, and such defects were rescued in Rnasel-/- suckling mice. Collectively, these findings highlight an important role of VP3 in promoting viral replication and pathogenesis in vivo in addition to its well-characterized function as the viral RNA-capping enzyme.IMPORTANCE Rotaviruses are significant human pathogens that result in diarrhea, dehydration, and deaths in many children around the world. Rotavirus vaccines have suboptimal efficacy in low- to middle-income countries, where the burden of the diseases is the most severe. With the ultimate goal of improving current vaccines, we aim to better understand how rotavirus interacts with the host innate immune system in the small intestine. Here, we demonstrate that interferon-activated RNase L signaling blocks rotavirus replication in a strain-specific manner. In addition, virus-encoded VP3 antagonizes RNase L activity both in vitro and in vivo These studies highlight an ever-evolving arms race between antiviral factors and viral pathogens and provide a new means of targeted attenuation for next-generation rotavirus vaccine design.
Collapse
Affiliation(s)
- Yanhua Song
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liliana Sanchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Linda L Yasukawa
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Harry B Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
30
|
Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm. J Virol 2020; 94:JVI.01965-19. [PMID: 31915278 DOI: 10.1128/jvi.01965-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/21/2019] [Indexed: 01/15/2023] Open
Abstract
One step of the life cycle common to all rotaviruses (RV) studied so far is the formation of viroplasms, membrane-less cytosolic inclusions providing a microenvironment for early morphogenesis and RNA replication. Viroplasm-like structures (VLS) are simplified viroplasm models consisting of complexes of nonstructural protein 5 (NSP5) with the RV core shell VP2 or NSP2. We identified and characterized the domains required for NSP5-VP2 interaction and VLS formation. VP2 mutations L124A, V865A, and I878A impaired both NSP5 hyperphosphorylation and NSP5/VP2 VLS formation. Moreover, NSP5-VP2 interaction does not depend on NSP5 hyperphosphorylation. The NSP5 tail region is required for VP2 interaction. Notably, VP2 L124A expression acts as a dominant-negative element by disrupting the formation of either VLS or viroplasms and blocking RNA synthesis. In silico analyses revealed that VP2 L124, V865, and I878 are conserved among RV species A to H. Detailed knowledge of the protein interaction interface required for viroplasm formation may facilitate the design of broad-spectrum antivirals to block RV replication.IMPORTANCE Alternative treatments to combat rotavirus infection are a requirement for susceptible communities where vaccines cannot be applied. This demand is urgent for newborn infants, immunocompromised patients, adults traveling to high-risk regions, and even for the livestock industry. Aside from structural and physiological divergences among RV species studied before now, all replicate within cytosolic inclusions termed viroplasms. These inclusions are composed of viral and cellular proteins and viral RNA. Viroplasm-like structures (VLS), composed of RV protein NSP5 with either NSP2 or VP2, are models for investigating viroplasms. In this study, we identified a conserved amino acid in the VP2 protein, L124, necessary for its interaction with NSP5 and the formation of both VLSs and viroplasms. As RV vaccines cover a narrow range of viral strains, the identification of VP2 L124 residue lays the foundations for the design of drugs that specifically block NSP5-VP2 interaction as a broad-spectrum RV antiviral.
Collapse
|
31
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
32
|
Generation of Recombinant Rotavirus Expressing NSP3-UnaG Fusion Protein by a Simplified Reverse Genetics System. J Virol 2019; 93:JVI.01616-19. [PMID: 31597761 DOI: 10.1128/jvi.01616-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Rotavirus is a segmented double-stranded RNA (dsRNA) virus that causes severe gastroenteritis in young children. We have established an efficient simplified rotavirus reverse genetics (RG) system that uses 11 T7 plasmids, each expressing a unique simian SA11 (+)RNA, and a cytomegalovirus support plasmid for the African swine fever virus NP868R capping enzyme. With the NP868R-based system, we generated recombinant rotavirus (rSA11/NSP3-FL-UnaG) with a genetically modified 1.5-kb segment 7 dsRNA encoding full-length nonstructural protein 3 (NSP3) fused to UnaG, a 139-amino-acid green fluorescent protein (FP). Analysis of rSA11/NSP3-FL-UnaG showed that the virus replicated efficiently and was genetically stable over 10 rounds of serial passaging. The NSP3-UnaG fusion product was well expressed in rSA11/NSP3-FL-UnaG-infected cells, reaching levels similar to NSP3 levels in wild-type recombinant SA11-infected cells. Moreover, the NSP3-UnaG protein, like functional wild-type NSP3, formed dimers in vivo Notably, the NSP3-UnaG protein was readily detected in infected cells via live-cell imaging, with intensity levels ∼3-fold greater than those of the NSP1-UnaG fusion product of rSA11/NSP1-FL-UnaG. Our results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deletion or interruption of any of the 12 open reading frames (ORFs) of the virus. Because NSP3 is expressed at higher levels than NSP1 in infected cells, rotaviruses expressing NSP3-based FPs may be more sensitive tools for studying rotavirus biology than rotaviruses expressing NSP1-based FPs. This is the first report of a recombinant rotavirus containing a genetically engineered segment 7 dsRNA.IMPORTANCE Previous studies generated recombinant rotaviruses that express FPs by inserting reporter genes into the NSP1 ORF of genome segment 5. Unfortunately, NSP1 is expressed at low levels in infected cells, making viruses expressing FP-fused NSP1 less than ideal probes of rotavirus biology. Moreover, FPs were inserted into segment 5 in such a way as to compromise NSP1, an interferon antagonist affecting viral growth and pathogenesis. We have identified an alternative approach for generating rotaviruses expressing FPs, one relying on fusing the reporter gene to the NSP3 ORF of genome segment 7. This was accomplished without interrupting any of the viral ORFs, yielding recombinant viruses that likely express the complete set of functional viral proteins. Given that NSP3 is made at moderate levels in infected cells, rotaviruses encoding NSP3-based FPs should be more sensitive probes of viral infection than rotaviruses encoding NSP1-based FPs.
Collapse
|
33
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019; 21:e13101. [PMID: 31424151 PMCID: PMC7162324 DOI: 10.1111/cmi.13101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shampa Chanda
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
34
|
Abstract
Viruses are widely used as vectors for heterologous gene expression in cultured cells or natural hosts, and therefore a large number of viruses with exogenous sequences inserted into their genomes have been engineered. Many of these engineered viruses are viable and express heterologous proteins at high levels, but the inserted sequences often prove to be unstable over time and are rapidly lost, limiting heterologous protein expression. Although virologists are aware that inserted sequences can be unstable, processes leading to insert instability are rarely considered from an evolutionary perspective. Here, we review experimental work on the stability of inserted sequences over a broad range of viruses, and we present some theoretical considerations concerning insert stability. Different virus genome organizations strongly impact insert stability, and factors such as the position of insertion can have a strong effect. In addition, we argue that insert stability not only depends on the characteristics of a particular genome, but that it will also depend on the host environment and the demography of a virus population. The interplay between all factors affecting stability is complex, which makes it challenging to develop a general model to predict the stability of genomic insertions. We highlight key questions and future directions, finding that insert stability is a surprisingly complex problem and that there is need for mechanism-based, predictive models. Combining theoretical models with experimental tests for stability under varying conditions can lead to improved engineering of viral modified genomes, which is a valuable tool for understanding genome evolution as well as for biotechnological applications, such as gene therapy.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD University of Montpellier), Centre National de la Recherche Scientifique (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
35
|
Generation of Infectious Recombinant Human Rotaviruses from Just 11 Cloned cDNAs Encoding the Rotavirus Genome. J Virol 2019; 93:JVI.02207-18. [PMID: 30728265 DOI: 10.1128/jvi.02207-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
The generation of recombinant group A rotaviruses (RVAs) entirely from cloned cDNAs has been described only for a single animal RVA strain, simian SA11-L2. We recently developed an optimized RVA reverse genetics system based on only RVA cDNAs (11-plasmid system), in which the concentration of cDNA plasmids containing the NSP2 and NSP5 genes is 3- or 5-fold increased in relation to that of the other plasmids. Based on this approach, we generated a recombinant human RVA (HuRVA)-based monoreassortant virus containing the VP4 gene of the simian SA11-L2 virus using the 11-plasmid system. In addition to this monoreassortant virus, authentic HuRVA (strain KU) was also generated with the 11-plasmid system with some modifications. Our results demonstrate that the 11-plasmid system involving just RVA cDNAs can be used for the generation of recombinant HuRVA and recombinant HuRVA-based reassortant viruses.IMPORTANCE Human group A rotavirus (HuRVA) is a leading pathogen causing severe diarrhea in young children worldwide. In this paper, we describe the generation of recombinant HuRVA (strain KU) from only 11 cloned cDNAs encoding the HuRVA genome by reverse genetics. The growth properties of the recombinant HuRVA were similar to those of the parental RVA, providing a powerful tool for better understanding of HuRVA replication and pathogenesis. Furthermore, the ability to manipulate the genome of HuRVAs "to order" will be useful for next-generation vaccine production for this medically important virus and for the engineering of clinical vectors expressing any foreign genes.
Collapse
|
36
|
Yoshikawa T, Ihira M, Higashimoto Y, Hattori F, Miura H, Sugata K, Komoto S, Taniguchi K, Iguchi A, Yamada M, Ariga T. Persistent systemic rotavirus vaccine infection in a child with X‐linked severe combined immunodeficiency. J Med Virol 2019; 91:1008-1013. [DOI: 10.1002/jmv.25410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Tetsushi Yoshikawa
- Department of PediatricsFujita Health University School of MedicineToyoake Aichi Japan
| | - Masaru Ihira
- Faculty of Clinical EngineeringToyoake Aichi Japan
| | - Yuki Higashimoto
- Faculty of Medical TechnologyFujita Health University School of Health SciencesToyoake Aichi Japan
| | - Fumihiko Hattori
- Department of PediatricsFujita Health University School of MedicineToyoake Aichi Japan
| | - Hiroki Miura
- Department of PediatricsFujita Health University School of MedicineToyoake Aichi Japan
| | - Ken Sugata
- Department of PediatricsFujita Health University School of MedicineToyoake Aichi Japan
| | - Satoshi Komoto
- Department of Virology and ParasitologyFujita Health University School of MedicineToyoake Aichi Japan
| | - Koki Taniguchi
- Department of Virology and ParasitologyFujita Health University School of MedicineToyoake Aichi Japan
| | - Akihiro Iguchi
- Department of PediatricsFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporo Japan
| | - Masafumi Yamada
- Department of PediatricsFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporo Japan
| | - Tadashi Ariga
- Department of PediatricsFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporo Japan
| |
Collapse
|
37
|
[Reverse genetics of rotaviruses: Generation of recombinant human rotaviruses from just 11 cDNAs encoding the rotavirus genome]. Uirusu 2019; 69:1-12. [PMID: 32938889 DOI: 10.2222/jsv.69.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An entirely plasmid-based reverse genetics system for animal rotavirus was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 T7 plasmids for its 11 genes under the condition of increasing the ratio (3- or 5-fold) of the cDNA plasmids for NSP2 and NSP5 genes (11-plasmid system). Utilizing this highly efficient system, we engineered the first infectious recombinant rotaviruses harboring fluorescent (EGFP and mCherry) protein genes. In addition to these recombinant animal viruses, the first infectious recombinant human rotavirus (strain KU (G1P[8])) was also generated with the 11-plasmid system with some modifications. The availability of recombinant human rotaviruses will provide a genetic platform for a better understanding of the replication, pathogenicity, and other biological characteristics of this medically important virus and enable the rational development of next-generation human rotavirus vaccines.
Collapse
|
38
|
Generation of Recombinant Rotaviruses Expressing Fluorescent Proteins by Using an Optimized Reverse Genetics System. J Virol 2018; 92:JVI.00588-18. [PMID: 29669834 DOI: 10.1128/jvi.00588-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (enhanced green fluorescent protein [EGFP] and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus and for developing future next-generation vaccines and expression vectors.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant group A rotaviruses expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus.
Collapse
|
39
|
Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. J Virol 2018; 92:JVI.02259-17. [PMID: 29321319 DOI: 10.1128/jvi.02259-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reovirus nonstructural protein σ1s is required for the establishment of viremia and hematogenous viral dissemination. However, the function of σ1s during the reovirus replication cycle is not known. In this study, we found that σ1s was required for efficient reovirus replication in simian virus 40 (SV40)-immortalized endothelial cells (SVECs), mouse embryonic fibroblasts, human umbilical vein endothelial cells (HUVECs), and T84 human colonic epithelial cells. In each of these cell lines, wild-type reovirus produced substantially higher viral titers than a σ1s-deficient mutant. The σ1s protein was not required for early events in reovirus infection, as evidenced by the fact that no difference in infectivity between the wild-type and σ1s-null viruses was observed. However, the wild-type virus produced markedly higher viral protein levels than the σ1s-deficient strain. The disparity in viral replication did not result from differences in viral transcription or protein stability. We further found that the σ1s protein was dispensable for cell killing and the induction of type I interferon responses. In the absence of σ1s, viral factory (VF) maturation was impaired but sufficient to support low levels of reovirus replication. Together, our results indicate that σ1s is not absolutely essential for viral protein production but rather potentiates reovirus protein expression to facilitate reovirus replication. Our findings suggest that σ1s enables hematogenous reovirus dissemination by promoting efficient viral protein synthesis, and thereby reovirus replication, in cells that are required for reovirus spread to the blood.IMPORTANCE Hematogenous dissemination is a critical step in the pathogenesis of many viruses. For reovirus, nonstructural protein σ1s is required for viral spread via the blood. However, the mechanism by which σ1s promotes reovirus dissemination is unknown. In this study, we identified σ1s as a viral mediator of reovirus protein expression. We found several cultured cell lines in which σ1s is required for efficient reovirus replication. In these cells, wild-type virus produced substantially higher levels of viral protein than a σ1s-deficient mutant. The σ1s protein was not required for viral mRNA transcription or viral protein stability. Since reduced levels of viral protein were synthesized in the absence of σ1s, the maturation of viral factories was impaired, and significantly fewer viral progeny were produced. Taken together, our findings indicate that σ1s is required for optimal reovirus protein production, and thereby viral replication, in cells required for hematogenous reovirus dissemination.
Collapse
|