1
|
Sergio MC, Ricciardi S, Guarino AM, Giaquinto L, De Matteis MA. Membrane remodeling and trafficking piloted by SARS-CoV-2. Trends Cell Biol 2024; 34:785-800. [PMID: 38262893 DOI: 10.1016/j.tcb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
The molecular mechanisms underlying SARS-CoV-2 host cell invasion and life cycle have been studied extensively in recent years, with a primary focus on viral entry and internalization with the aim of identifying antiviral therapies. By contrast, our understanding of the molecular mechanisms involved in the later steps of the coronavirus life cycle is relatively limited. In this review, we describe what is known about the host factors and viral proteins involved in the replication, assembly, and egress phases of SARS-CoV-2, which induce significant host membrane rearrangements. We also discuss the limits of the current approaches and the knowledge gaps still to be addressed.
Collapse
Affiliation(s)
- Maria Concetta Sergio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | | | - Andrea M Guarino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Vélez-López O, Carrasquillo-Carrión K, Cantres-Rosario YM, Machín-Martínez E, Álvarez-Ríos ME, Roche-Lima A, Tosado-Rodríguez EL, Meléndez LM. Analysis of Sigma-1 Receptor Antagonist BD1047 Effect on Upregulating Proteins in HIV-1-Infected Macrophages Exposed to Cocaine Using Quantitative Proteomics. Biomedicines 2024; 12:1934. [PMID: 39335448 PMCID: PMC11428496 DOI: 10.3390/biomedicines12091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 infects monocyte-derived macrophages (MDM) that migrate into the brain and secrete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction. Cocaine potentiates CATB secretion and neurotoxicity in HIV-infected MDM. Pretreatment with BD1047, a sigma-1 receptor antagonist, before cocaine exposure reduces HIV-1, CATB secretion, and neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV-infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to cocaine, significantly deregulates proteins and pathways involved in HIV-1 replication and CATB secretion that lead to neurotoxicity. MDM culture lysates from HIV-1-infected women treated with BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics, bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine group. We found fifteen (15) proteins related to HIV-1 infection, CATB, and mitochondrial function. Upregulated proteins were related to oxidative phosphorylation (SLC25A-31), mitochondria (ATP5PD), ion transport (VDAC2-3), endoplasmic reticulum transport (PHB, TMED10, CANX), and cytoskeleton remodeling (TUB1A-C, ANXA1). BD1047 treatment protects HIV-1-infected MDM exposed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and exocytosis associated with CATB-induced neurotoxicity.
Collapse
Affiliation(s)
- Omar Vélez-López
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Yadira M. Cantres-Rosario
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Eraysy Machín-Martínez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Manuel E. Álvarez-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| |
Collapse
|
3
|
Davies JP, Plate L. The glycoprotein quality control factor Malectin promotes coronavirus replication and viral protein biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597051. [PMID: 38895409 PMCID: PMC11185542 DOI: 10.1101/2024.06.02.597051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37235
| |
Collapse
|
4
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
6
|
Zhao Y, Yu H. Functions of SURF4 gene in vivo. Chin Med J (Engl) 2023; 136:248-250. [PMID: 36752799 PMCID: PMC10106245 DOI: 10.1097/cm9.0000000000002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 02/09/2023] Open
Affiliation(s)
- Yan Zhao
- Department of Pathology and Pathophysiology, Medical College of Nantong University, Nantong, Jiangsu 226007, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
7
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
8
|
Feng T, Li M, Zhang L, Li S, Yang Z, Kang L, Guo Y, Kong L, Wang T. Immunity of two novel hepatitis C virus polyepitope vaccines. Vaccine 2022; 40:6277-6287. [PMID: 36150975 DOI: 10.1016/j.vaccine.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) infection remains a serious public health burden around the world. So far there is no effective vaccine against this virus. Neutralizing antibody (NAb) responses to the epitopes within HCV E1 and E2 proteins are related to the resolution of hepatitis C infection. E. coli heat-labile enterotoxin B subunit (LTB) has been described as potent immunity adjuvants. In this study, we constructed recombinant pET vectors: pET-R9-Bp (B cell polyepitopes) expressing 7 epitopes from HCV E1 and E2 proteins including R9 (E2384-411aa)-Bp (E1313-327aa-E2396-424aa-E2436-447aa-E2523-540aa-E2610-627aa-E2631-648aa) and pET-LTB-R9-Bp expressing LTB adjuvant in combination with R9-Bp. Recombinant proteins R9-Bp and LTB-R9-Bp were expressed successfully in E. coli and purified by the Ni-NTA column. Both R9-Bp and LTB-R9-Bp in BALB/c mice induced robust humoral immune response in the context of intraperitoneal or intramuscular immunization but not oral immunization. Intraperitoneal administration of LTB-R9-Bp induced a higher antibody titer (peak titer: 1:341000) than that of R9-Bp (peak titer: 1:85000) after the second boost (P = 0.0036 or 0.0002). However, comparable antibody peak titers were elicited for both R9-Bp and LTB-R9-Bp in intramuscular immunization albeit with significant difference (P = 0.0032) a week after the second boost. In addition, both R9-Bp and LTB-R9-Bp induced the secretion of cytokines including IFN-γ and IL-4 at similar levels. anti-sera induced by both R9-Bp and LTB-R9-Bp recognized native HCV E1 and E2 proteins. Moreover, these HCV-specific antisera inhibited significantly the entry of HCV (P < 0.0001). Taken together, these findings showed that E. coli-based both R9-Bp and LTB-R9-Bp could become promising HCV vaccines.
Collapse
Affiliation(s)
- Tian Feng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lirong Zhang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sha Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Center for Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yunli Guo
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Ting Wang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Cellular OCIAD2 protein is a proviral factor for hepatitis C virus replication. Int J Biol Macromol 2021; 188:147-159. [PMID: 34371038 DOI: 10.1016/j.ijbiomac.2021.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
Hepatitis C virus (HCV) nonstructural protein NS4B is necessary for HCV replication. Our previous research found that NS4B-associated cellular proteins PREB and Surfeit 4 are involved in HCV replication. However, the molecular mechanism of HCV replication is not fully understood. Here we identified cellular ovarian cancer immunoreactive antigen domain containing 2 (OCIAD2) protein as a novel NS4B-associated HCV host cofactor by screening with small interfering RNA. Knockdown of OCIAD2 reduced significantly the HCV replication in a dose-dependent and genotype-independent manner. Further research showed that OCIAD2 was recruited into the HCV RNA replication complex by the interaction with NS4B. Interestingly, HCV replication induced OCIAD2 expression. In turn, overexpression of wild OCIAD2 also promoted virus replication whereas that of OCIAD2 mutant lacking the ability to bind NS4B exerted no effect on HCV replication. We also examined whether OCIAD2 interacted with other proteins participating in the HCV RNA replication complex including viral proteins NS5A, NS5B, and cellular proteins PREB, Surfeit 4. The results showed that OCIAD2 interacted with PREB and NS5A, but not NS5B or Surfeit 4. Our findings provide new insights into the function of OCIAD2 and HCV replication mechanism.
Collapse
|
10
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
11
|
Wan J, Wang T, Xu J, Ouyang T, Wang Q, Zhang Y, Weng S, Li Y, Wang Y, Xin X, Wang X, Li S, Kong L. Novel Japanese encephalitis virus NS1-based vaccine: Truncated NS1 fused with E. coli heat labile enterotoxin B subunit. EBioMedicine 2021; 67:103353. [PMID: 33971403 PMCID: PMC8122160 DOI: 10.1016/j.ebiom.2021.103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Current vaccines against Japanese encephalitis virus (JEV) of flaviviruses have some disadvantages, such as the risk of virulent reversion. Non-structural protein NS1 is conserved among flaviviruses and confers immune protection without the risk of antibody-dependent enhancement (ADE). Therefore, NS1 has become a promising vaccine candidate against flaviviruses. METHODS A NS1-based vaccine (LTB-NS1∆63) with a truncated NS1 protein (NS1∆63) fused to E. coli heat-labile enterotoxin B subunit (LTB) was expressed in E.coli and explored for its ability to induce immune responses. Safety of LTB-NS1∆63 was assessed by determining its toxicity in vitro and in vivo. Protective capability of LTB-NS1∆63 and its-induced antisera was evaluated in the mice challenged with JEV by analyzing mortality and morbidity. FINDINGS LTB-NS1∆63 induced immune responses to a similar level as LTB-NS1, but more robust than NS1∆63 alone, particularly in the context of oral immunization of mice. Oral vaccination of LTB-NS1∆63 led to a higher survival rate than that of NS1∆63 or live-attenuated JEV vaccine SA14-14-2 in the mice receiving lethal JEV challenge. LTB-NS1∆63 protein also significantly decreases the morbidity of JEV-infected mice. In addition, passive transfer of LTB-NS1∆63-induced antisera provides a protection against JEV infection in mice. INTERPRETATION NS1∆63 bears JEV NS1 antigenicity. Besides, LTB-NS1∆63 could serve as a novel protein-based mucosa vaccine targeting JEV and other flaviviruses. FUNDING This work was supported by the National Natural Science Foundation, Jiangxi Province Science and Technology Committee, Education Department of Jiangxi Province.
Collapse
Affiliation(s)
- Jiawu Wan
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jing Xu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tao Ouyang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qianruo Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Shiqi Weng
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
13
|
Takeda H, Takai A, Iguchi E, Mishima M, Arasawa S, Kumagai K, Eso Y, Shimizu T, Takahashi K, Ueda Y, Taura K, Hatano E, Iijima H, Aoyagi H, Aizaki H, Marusawa H, Wakita T, Seno H. Oncogenic transcriptomic profile is sustained in the liver after the eradication of the hepatitis C virus. Carcinogenesis 2021; 42:672-684. [PMID: 33617626 DOI: 10.1093/carcin/bgab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) developing after hepatitis C virus (HCV) eradication is a serious clinical concern. However, molecular basis for the hepatocarcinogenesis after sustained virologic response (SVR) remains unclear. In this study, we aimed to unveil the transcriptomic profile of post-SVR liver tissues and explore the molecules associated with post-SVR carcinogenesis. We analysed 90 RNA sequencing datasets, consisting of non-cancerous liver tissues including 20 post-SVR, 40 HCV-positive and 7 normal livers, along with Huh7 cell line specimens before and after HCV infection and eradication. Comparative analysis demonstrated that cell cycle- and mitochondrial function-associated pathways were altered only in HCV-positive non-cancerous liver tissues, whereas some cancer-related pathways were up-regulated in the non-cancerous liver tissues of both post-SVR and HCV-positive cases. The persistent up-regulation of carcinogenesis-associated gene clusters after viral clearance was reconfirmed through in vitro experiments, of which, CYR61, associated with liver fibrosis and carcinogenesis in several cancer types, was the top enriched gene and co-expressed with cell proliferation-associated gene modules. To evaluate whether this molecule could be a predictor of hepatocarcinogenesis after cure of HCV infection, we also examined 127 sera from independent HCV-positive cohorts treated with direct-acting antivirals (DAAs), including 60 post-SVR-HCC patients, and found that the elevated serum Cyr61 was significantly associated with early carcinogenesis after receiving DAA therapy. In conclusion, some oncogenic transcriptomic profiles are sustained in liver tissues after HCV eradication, which might be a molecular basis for the liver cancer development even after viral clearance. Among them, up-regulated CYR61 could be a possible biomarker for post-SVR-HCC.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichi Arasawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Ueda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. J Virol 2020; 94:JVI.01080-20. [PMID: 32938759 DOI: 10.1128/jvi.01080-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.
Collapse
|