1
|
Li X, Zhou J, Han R, Yu F, Liu K, Zhao M, Liu Y, Xue Z, Zhao S. Phosphatase A1 accessory protein PlaS from Serratia marcescens controls cell membrane permeability, fluidity, hydrophobicity, and fatty acid composition in Escherichia coli BL21. Int J Biol Macromol 2023; 253:126776. [PMID: 37699461 DOI: 10.1016/j.ijbiomac.2023.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Phospholipase A1 (PlaA) plays a pivotal role in diverse applications within the food and biochemical medical industries. Herein, we investigate the impact of the accessory protein encoded by plaS from Serratia marcescens on PlaA activity in Escherichia coli. Notably, PlaS demonstrates the ability to enhance PlaA activity while concurrently exhibiting inhibitory effects on the growth of E. coli BL21 (DE3). Our study revolves around probing the inhibitory action of PlaS on E. coli BL21 (DE3). PlaS exhibits a propensity to heighten both the permeability of outer and inner cell membranes, leading to concomitant reductions in membrane fluidity and surface hydrophobicity. This phenomenon is validated through scanning electron microscopy (SEM) analysis, which highlights PlaS's capacity to compromise membrane integrity. Moreover, through a comprehensive comparative transcriptomic sequencing approach, we identify four down-regulated genes (galM, ybhC, ldtC, and kdpB) alongside two up-regulated genes (rbsB and degP). These genes are intricately associated with processes such as cell membrane synthesis and modification, energy metabolism, and transmembrane transport. Our investigation unveils the intricate gene-level mechanisms underpinning PlaS-mediated growth inhibition and membrane disruption. Consequently, our findings serve as a significant reference for the elucidation of membrane protein mechanisms, shedding light on potential avenues for future exploration.
Collapse
Affiliation(s)
- Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Jie Zhou
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Fei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Yan Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China.
| | - Shiguang Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China.
| |
Collapse
|
2
|
Resistance To Poxvirus Lethality Does Not Require the Necroptosis Proteins RIPK3 or MLKL. J Virol 2023; 97:e0194522. [PMID: 36651749 PMCID: PMC9973014 DOI: 10.1128/jvi.01945-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.
Collapse
|
3
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
4
|
Functional Characterization of Non-Ankyrin Repeat Domains of Orientia tsutsugamushi Ank Effectors Reveals Their Importance for Molecular Pathogenesis. Infect Immun 2022; 90:e0062821. [PMID: 35435726 DOI: 10.1128/iai.00628-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is a genetically intractable obligate intracellular bacterium, causes scrub typhus, and has one of the largest known armamentariums of ankyrin repeat-containing effectors (Anks). Most have a C-terminal F-box presumed to interact with the SCF ubiquitin ligase complex primarily based on their ability to bind overexpressed Skp1. Whether all F-box-containing Anks bind endogenous SCF components and the F-box residues essential for such interactions has gone unexplored. Many O. tsutsugamushi Ank F-boxes occur as part of a PRANC (pox protein repeats of ankyrin-C-terminal) domain. Roles of the non-F-box portion of the PRANC and intervening sequence region (ISR) that links the ankyrin repeat and F-box/PRANC domains are unknown. The functional relevance of these effectors' non-ankyrin repeat domains was investigated. The F-box was necessary for Flag-tagged versions of most F-box-containing Anks to precipitate endogenous Skp1, Cul1, and/or Rbx1, while the ISR and PRANC were dispensable. Ank toxicity in yeast was predominantly F-box dependent. Interrogations of Ank1, Ank5, and Ank6 established that L1, P2, E4, I9, and D17 of the F-box consensus are key for binding native SCF components and for Ank1 and Ank6 to inhibit NF-κB. The ISR is also essential for Ank1 and Ank6 to impair NF-κB. Ectopically expressed Ank1 and Ank6 lacking the ISR or having a mutagenized F-box incapable of binding SCF components performed as dominant-negative inhibitors to block O. tsutsugamushi NF-κB modulation. This study advances knowledge of O. tsutsugamushi Ank functional domains and offers an approach for validating their roles in infection.
Collapse
|
5
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
6
|
Wangsanut T, Brann KR, Adcox HE, Carlyon JA. Orientia tsutsugamushi modulates cellular levels of NF-κB inhibitor p105. PLoS Negl Trop Dis 2021; 15:e0009339. [PMID: 33857149 PMCID: PMC8078813 DOI: 10.1371/journal.pntd.0009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection. Scrub typhus is a neglected disease that can be fatal and occurs predominantly in the Asia-Pacific, one of the most densely populated regions of the world. Notably, cases continue to emerge outside this area. The etiologic agent is Orientia tsutsugamushi, a bacterial pathogen that infects certain leukocytes and cells that line blood vessels in animals and humans. The success of O. tsutsugamushi to colonize these cells is at least partially attributable to its ability to counter host immunity. In this study, we demonstrate that O. tsutsugamushi stabilizes p105, a mammalian inhibitor of the transcription factor, NF-κB, which is otherwise key for activating proinflammatory and antimicrobial gene expression. O. tsutsugamushi is the first example of a bacterium that inhibits NF-κB by promoting elevated levels of p105 and impairing its degradation. Our findings provide fundamental information that helps explain how this important pathogen has evolved to stealthily establish infection in host cells.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Katelynn R. Brann
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
7
|
Liu Z, Nailwal H, Rector J, Rahman MM, Sam R, McFadden G, Chan FKM. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 2021; 54:247-258.e7. [PMID: 33444549 DOI: 10.1016/j.immuni.2020.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Himani Nailwal
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonah Rector
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Masmudur M Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Richard Sam
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA; Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
8
|
Novel Class of Viral Ankyrin Proteins Targeting the Host E3 Ubiquitin Ligase Cullin-2. J Virol 2018; 92:JVI.01374-18. [PMID: 30258003 PMCID: PMC6232478 DOI: 10.1128/jvi.01374-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Ankyrin repeat (ANK) domains are among the most abundant motifs in eukaryotic proteins. ANK proteins are rare amongst viruses, with the exception of poxviruses, which presumably acquired them from the host via horizontal gene transfer. The architecture of poxvirus ANK proteins is, however, different from that of their cellular counterparts, and this precludes a direct acquisition event. Here we combine bioinformatics analysis and quantitative proteomics to discover a new class of viral ANK proteins with a domain organization that relates to cellular ANK proteins. These noncanonical viral ANK proteins, termed ANK/BC, interact with host Cullin-2 via a C-terminal BC box resembling that of cellular Cullin-2 substrate adaptors such as the von Hippel-Lindau protein. Mutagenesis of the BC box-like sequence abrogates binding to Cullin-2, whereas fusion of this motif to an ANK-only protein confers Cullin-2 association. We demonstrated that these viral ANK/BC proteins are potent immunomodulatory proteins suppressing the activation of the proinflammatory transcription factors NF-κB and interferon (IFN)-responsive factor 3 (IRF-3) and the production of cytokines and chemokines, including interferon, and that association with Cullin-2 is required for optimal inhibitory activity. ANK/BC proteins exist in several orthopoxviruses and cluster into 2 closely related orthologue groups in a phylogenetic lineage that is separate from that of canonical ANK/F-box proteins. Given the existence of cellular proteins with similar architecture, viral ANK/BC proteins may be closely related to the original ANK gene acquired by an ancestral orthopoxvirus. These findings uncover a novel viral strategy to antagonize innate immunity and shed light on the origin of the poxviral ANK protein family.IMPORTANCE Viruses encode multiple proteins aimed at modulating cellular homeostasis and antagonizing the host antiviral response. Most of these genes were originally acquired from the host and subsequently adapted to benefit the virus. ANK proteins are common in eukaryotes but are unusual amongst viruses, with the exception of poxviruses, where they represent one of the largest protein families. We report here the existence of a new class of viral ANK proteins, termed ANK/BC, that provide new insights into the origin of poxvirus ANK proteins. ANK/BC proteins target the host E3 ubiquitin ligase Cullin-2 via a C-terminal BC box domain and are potent suppressors of the production of inflammatory cytokines, including interferon. The existence of cellular ANK proteins whose architecture is similar suggests the acquisition of a host ANK/BC gene by an ancestral orthopoxvirus and its subsequent duplication and adaptation to widen the repertoire of immune evasion strategies.
Collapse
|
9
|
Nagendraprabhu P, Khatiwada S, Chaulagain S, Delhon G, Rock DL. A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-κB signaling. PLoS Pathog 2017; 13:e1006779. [PMID: 29244863 PMCID: PMC5747488 DOI: 10.1371/journal.ppat.1006779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/29/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Poxviruses have evolved multiple strategies to subvert signaling by Nuclear Factor κB (NF-κB), a crucial regulator of host innate immune responses. Here, we describe an orf virus (ORFV) virion-associated protein, ORFV119, which inhibits NF-κB signaling very early in infection (≤ 30 min post infection). ORFV119 NF-κB inhibitory activity was found unimpaired upon translation inhibition, suggesting that virion ORFV119 alone is responsible for early interference in signaling. A C-terminal LxCxE motif in ORFV119 enabled the protein to interact with the retinoblastoma protein (pRb) a multifunctional protein best known for its tumor suppressor activity. Notably, experiments using a recombinant virus containing an ORFV119 mutation which abrogates its interaction with pRb together with experiments performed in cells lacking or with reduced pRb levels indicate that ORFV119 mediated inhibition of NF-κB signaling is largely pRb dependent. ORFV119 was shown to inhibit IKK complex activation early in infection. Consistent with IKK inhibition, ORFV119 also interacted with TNF receptor associated factor 2 (TRAF2), an adaptor protein recruited to signaling complexes upstream of IKK in infected cells. ORFV119-TRAF2 interaction was enhanced in the presence of pRb, suggesting that ORFV119-pRb complex is required for efficient interaction with TRAF2. Additionally, transient expression of ORFV119 in uninfected cells was sufficient to inhibit TNFα-induced IKK activation and NF-κB signaling, indicating that no other viral proteins are required for the effect. Infection of sheep with ORFV lacking the ORFV119 gene led to attenuated disease phenotype, indicating that ORFV119 contributes to virulence in the natural host. ORFV119 represents the first poxviral protein to interfere with NF-κB signaling through interaction with pRb.
Collapse
Affiliation(s)
- Ponnuraj Nagendraprabhu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Sushil Khatiwada
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Sabal Chaulagain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Gustavo Delhon
- School of Veterinary and Biomedical Sciences, Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail: (GD); (DLR)
| | - Daniel L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
- * E-mail: (GD); (DLR)
| |
Collapse
|
10
|
López-Bueno A, Parras-Moltó M, López-Barrantes O, Belda S, Alejo A. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2. J Gen Virol 2017; 98:1073-1079. [PMID: 28555548 DOI: 10.1099/jgv.0.000759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | - Marcos Parras-Moltó
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | | | - Sylvia Belda
- Unidad de cuidados intensivos pediátricos, Hospital 12 de Octubre, Madrid 28041, Spain
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
11
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
12
|
Mottet K, Bareiss B, Milne CD, Barry M. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination. Virology 2014; 468-470:363-378. [PMID: 25240226 DOI: 10.1016/j.virol.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/19/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Abstract
Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Kelly Mottet
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Bettina Bareiss
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Craig D Milne
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Michele Barry
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
13
|
EVM005: an ectromelia-encoded protein with dual roles in NF-κB inhibition and virulence. PLoS Pathog 2014; 10:e1004326. [PMID: 25122471 PMCID: PMC4133408 DOI: 10.1371/journal.ppat.1004326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 11/19/2022] Open
Abstract
Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo. Poxviruses are large dsDNA viruses that are renowned for regulating cellular pathways and manipulating the host immune response, including the NF-κB pathway. NF-κB inhibition by poxviruses is a growing area of interest and this family of viruses has developed multiple mechanisms to manipulate the pathway. Here, we focus on regulation of the NF-κB pathway by ectromelia virus, the causative agent of mousepox. We demonstrate that ectromelia virus is a potent inhibitor of the NF-κB pathway. Previously, we identified a family of four ectromelia virus genes that contain N-terminal ankyrin repeats and a C-terminal F-box domain that interacts with the cellular SCF ubiquitin ligase. Significantly, expression of the ankyrin/F-box protein, EVM005, inhibited NF-κB, and the F-box domain was critical for NF-κB inhibition and interaction with the SCF complex. Ectromelia virus devoid of EVM005 still inhibited NF-κB, indicating that multiple gene products contribute to NF-κB inhibition. Importantly, mice infected with ectromelia virus lacking EVM005 had a robust immune response, leading to viral clearance during infection. The data present two mechanisms, one in which EVM005 inhibits NF-κB activation through manipulation of the host SCF ubiquitin ligase complex, and an additional, NF-κB-independent mechanism that drives virulence.
Collapse
|
14
|
Lamb SA, Rahman MM, McFadden G. Recombinant myxoma virus lacking all poxvirus ankyrin-repeat proteins stimulates multiple cellular anti-viral pathways and exhibits a severe decrease in virulence. Virology 2014; 464-465:134-145. [PMID: 25068401 DOI: 10.1016/j.virol.2014.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/01/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Abstract
Although the production of single gene knockout viruses is a useful strategy to study viral gene functions, the redundancy of many host interactive genes within a complex viral genome can obscure their collective functions. In this study, a rabbit-specific poxvirus, myxoma virus (MYXV), was genetically altered to disrupt multiple members of the poxviral ankyrin-repeat (ANK-R) protein superfamily, M-T5, M148, M149 and M150. A particularly robust activation of the NF-κB pathway was observed in A549 cells following infection with the complete ANK-R knockout (vMyx-ANKsKO). Also, an increased release of IL-6 was only observed upon infection with vMyx-ANKsKO. In virus-infected rabbit studies, vMyx-ANKsKO was the most extensively attenuated and produced the smallest primary lesion of all ANK-R mutant constructs. This study provides the first insights into the shared functions of the poxviral ANK-R protein superfamily in vitro and in vivo.
Collapse
Affiliation(s)
- Stephanie A Lamb
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville FL 32610, USA
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville FL 32610, USA
| |
Collapse
|
15
|
Lacek K, Bauer B, Bieńkowska-Szewczyk K, Rziha HJ. Orf virus (ORFV) ANK-1 protein mitochondrial localization is mediated by ankyrin repeat motifs. Virus Genes 2014; 49:68-79. [PMID: 24743940 DOI: 10.1007/s11262-014-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Orf virus (ORFV) strain D1701-V, a Parapoxvirus belonging to the family Poxviridae, became attractive as a novel virus vector system that we successfully used for the generation of recombinant vaccines. Therefore, the identification of viral genes involved in host tropisms or immune modulation is of great interest, as for instance the ORFV-encoded ankyrin-repeat (AR) containing proteins. The present study shows for the first time that the ANK-1 designated gene product of ORFV126 is targeted to mitochondria of ORFV-infected and in ANK-1 transiently expressing cells. Taking advantage of ANK-1 EGFP fusion proteins and confocal fluorescence microscopy mutational and deletion analyses indicated the importance of AR8 and AR9, which may contain a novel class of mitochondria-targeting sequence (MTS) in the central to C-terminal part of this AR-containing protein. The fluorescent findings were corroborated by cell fractionation and Western blotting experiments. The presented results open the avenue for more detailed investigations on cellular binding partners and the function of ANK-1 in viral replication or virulence.
Collapse
Affiliation(s)
- Krzysztof Lacek
- Laboratory of Virus Molecular Biology, University of Gdańsk, 80-822, Gdańsk, Poland
| | | | | | | |
Collapse
|
16
|
Ectromelia virus encodes a BTB/kelch protein, EVM150, that inhibits NF-κB signaling. J Virol 2014; 88:4853-65. [PMID: 24522926 DOI: 10.1128/jvi.02923-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The NF-κB signaling pathway plays a critical role in inflammation and innate immunity. Consequently, many viruses have evolved strategies to inhibit NF-κB in order to facilitate replication and evasion of the host immune response. Recently, we determined that ectromelia virus, the causative agent of mousepox, contains a family of four BTB/kelch proteins that interact with cullin-3-based ubiquitin ligases. We demonstrate here that expression of EVM150, one of the four BTB/kelch proteins, inhibited NF-κB activation induced by tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Although EVM150 inhibited NF-κB p65 nuclear translocation, IκBα degradation was observed, indicating that EVM150 functioned downstream of IκBα degradation. Significantly, expression of the BTB-only domain of EVM150 blocked NF-κB activation, demonstrating that EVM150 functioned independently of the kelch domain and its role as an adapter for cullin-3-based ubiquitin ligases. Furthermore, cullin-3 knockdown by small interfering RNA demonstrated that cullin-3-based ubiquitin ligases are dispensable for TNF-α-induced NF-κB activation. Interestingly, nuclear translocation of IRF3 and STAT1 still occurred in the presence of EVM150, indicating that EVM150 prevented NF-κB nuclear translocation specifically. In addition to identifying EVM150 as an inhibitor of the NF-κB pathway, this study provides new insights into the role of BTB/kelch proteins during virus infection. IMPORTANCE With the exception of virulence studies, little work has been done to determine the role of poxviral BTB/kelch proteins during infection. This study, for the first time, has identified a mechanism for the ectromelia virus BTB/kelch protein EVM150. Here, we show that EVM150 is a novel inhibitor of the cellular NF-κB pathway, an important component of the antiviral response. This study adds EVM150 to the growing list of NF-κB inhibitors in poxviruses and provides new insights into the role of BTB/kelch proteins during virus infection.
Collapse
|
17
|
Rubio D, Xu RH, Remakus S, Krouse TE, Truckenmiller ME, Thapa RJ, Balachandran S, Alcamí A, Norbury CC, Sigal LJ. Crosstalk between the type 1 interferon and nuclear factor kappa B pathways confers resistance to a lethal virus infection. Cell Host Microbe 2013; 13:701-10. [PMID: 23768494 DOI: 10.1016/j.chom.2013.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 01/09/2023]
Abstract
Nuclear factor kappa B (NF-κB) and type 1 interferon (T1-IFN) signaling are innate immune mechanisms activated upon viral infection. However, the role of NF-κB and its interplay with T1-IFN in antiviral immunity is poorly understood. We show that NF-κB is essential for resistance to ectromelia virus (ECTV), a mouse orthopoxvirus related to the virus causing human smallpox. Additionally, an ECTV mutant lacking an NF-κB inhibitor activates NF-κB more effectively in vivo, resulting in increased proinflammatory molecule transcription in uninfected cells and organs and decreased viral replication. Unexpectedly, NF-κB activation compensates for genetic defects in the T1-IFN pathway, such as a deficiency in the IRF7 transcription factor, resulting in virus control. Thus, overlap between the T1-IFN and NF-κB pathways allows the host to overcome genetic or pathogen-induced deficiencies in T1-IFN and survive an otherwise lethal poxvirus infection. These findings may also explain why some pathogens target both pathways to cause disease.
Collapse
Affiliation(s)
- Daniel Rubio
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis factor alpha-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1. J Virol 2013; 87:12935-48. [PMID: 24067962 DOI: 10.1128/jvi.01952-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.
Collapse
|
19
|
Rahman MM, Liu J, Chan WM, Rothenburg S, McFadden G. Myxoma virus protein M029 is a dual function immunomodulator that inhibits PKR and also conscripts RHA/DHX9 to promote expanded host tropism and viral replication. PLoS Pathog 2013; 9:e1003465. [PMID: 23853588 PMCID: PMC3701710 DOI: 10.1371/journal.ppat.1003465] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Myxoma virus (MYXV)-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID) and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR) and RNA helicase A (RHA)/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication specifically in myeloid cells. Poxviruses exploit diverse strategies to modulate host anti-viral responses in order to achieve broad cellular tropism and replication. Here we report the findings that Myxoma virus (MYXV), a rabbit-specific poxvirus, expresses a viral protein M029 that possesses dual immunomodulatory functions. M029 binds and inhibits the anti-viral functions of protein kinase R (PKR) and also binds and conscripts the pro-viral activities of another cellular protein, RNA helicase A (RHA/DHX9), a member of the DEXD/H box family of proteins. Engineered M029-minus MYXVs did not cause lethal disease myxomatosis in the European rabbits. M029-minus MYXVs were also unable to replicate in diverse mammalian cell types, but can be rescued by knocking down the expression of PKR. However, this rescue of M029-minus virus replication could then be reversed by RHA/DHX9 knockdown in human myeloid cells. These findings reveal a novel strategy used by a single viral immunomodulatory protein that both inhibits a host anti-viral factor and additionally conscripting a host pro-viral factor to expand viral tropism in a wider range of target mammalian cells.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Winnie M. Chan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Masters, marionettes and modulators: intersection of pathogen virulence factors and mammalian death receptor signaling. Curr Opin Immunol 2013; 25:436-40. [PMID: 23800628 DOI: 10.1016/j.coi.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Abstract
TNF and its receptor, TNFR1, are members of the TNF superfamily and play important roles during infection by orchestrating an inflammatory response. The key role that TNFR1 signaling plays in host defense singles it out as a frequent target of pathogen manipulation. This review describes how the TNFR1 signaling pathway is attacked by pathogen virulence factors and how the different TNFR1 signaling pathways, in particular the death signaling response, have evolved to counteract these pathogen manipulations. We examine recent data showing that other 'Death Receptors' in the TNF superfamily, namely TRAIL-R and Fas, also participate in the immune response to pathogens. Finally we explore how knowledge of the inhibition of these pathways is being translated for clinical applications.
Collapse
|
21
|
Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response. J Virol 2013; 87:5028-40. [PMID: 23427151 DOI: 10.1128/jvi.02738-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state.
Collapse
|
22
|
Genetic screen of a mutant poxvirus library identifies an ankyrin repeat protein involved in blocking induction of avian type I interferon. J Virol 2013; 87:5041-52. [PMID: 23427153 DOI: 10.1128/jvi.02736-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012.
Collapse
|
23
|
Abstract
Viruses are the most abundant and diverse pathogens challenging the host immune system, and as such are a severe threat to human health. To this end, viruses have evolved multiple strategies to evade and subvert the host immune response. Host-pathogen interactions are usually initiated via recognition of pathogen-associated molecular patterns (PAMPs) by host sensors known as pattern recognition receptors (PRRs), which include, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and DNA receptors. Effective sensing of PAMPs rapidly triggers host immune responses, via activation of complex signalling pathways that culminates in the induction of inflammatory responses and the eradication of pathogens. Activation of the nuclear factor-κB (NF-κB) transcription pathway is crucial for the immediate early step of immune activation. This review discusses the recent evidence describing a variety of viral effectors that have been shown to prevent NF-κB signalling. Most of these viral effectors can be broadly classified into three categories based on the site of inhibition within the NF-κB pathway, that is, at the (i) TLRs, (ii) IKK complex or (iii) the transcriptional level.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
24
|
Wang PH, Gu ZH, Wan DH, Zhang MY, Weng SP, Yu XQ, He JG. The shrimp NF-κB pathway is activated by white spot syndrome virus (WSSV) 449 to facilitate the expression of WSSV069 (ie1), WSSV303 and WSSV371. PLoS One 2011; 6:e24773. [PMID: 21931849 PMCID: PMC3171479 DOI: 10.1371/journal.pone.0024773] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/20/2022] Open
Abstract
The Toll-like receptor (TLR)-mediated NF-κB pathway is essential for defending against viruses in insects and mammals. Viruses also develop strategies to utilize this pathway to benefit their infection and replication in mammal hosts. In invertebrates, the TLR-mediated NF-κB pathway has only been well-studied in insects and has been demonstrated to be important in antiviral responses. However, there are few reports of interactions between viruses and the TLR-mediated NF-κB pathway in invertebrate hosts. Here, we studied Litopenaeus vannamei Pelle, which is the central regulator of the Toll pathway, and proposed that a similar TLR/MyD88/Tube/Pelle/TRAF6/NF-κB cascade may exist in shrimp for immune gene regulation. After performing genome-wild analysis of white spot syndrome virus (WSSV) encoded proteins, we found that WSSV449 shows 15.7-19.4% identity to Tube, which is an important component of the insect Toll pathway. We further found that WSSV449 activated promoters of Toll pathway-controlled antimicrobial peptide genes, indicating WSSV449 has a similar function to host Tube in activating the NF-κB pathway. We suspected that WSSV449 activated the Toll-mediated NF-κB pathway for regulating viral gene expression. To test this hypothesis, we analyzed the promoters of viral genes and found 40 promoters that possess NF-κB binding sites. A promoter screen showed that the promoter activities of WSSV069 (ie1), WSSV303 and WSSV371 can be highly induced by the shrimp NF-κB family protein LvDorsal. WSSV449 also induced these three viral promoter activities by activating the NF-κB pathway. To our knowledge, this is the first report of a virus that encodes a protein similar to the Toll pathway component Tube to upregulate gene expression in the invertebrate host.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Zhi-Hua Gu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ding-Hui Wan
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ming-Yan Zhang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Sonnberg S, Fleming SB, Mercer AA. Phylogenetic analysis of the large family of poxvirus ankyrin-repeat proteins reveals orthologue groups within and across chordopoxvirus genera. J Gen Virol 2011; 92:2596-2607. [PMID: 21752962 DOI: 10.1099/vir.0.033654-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ankyrin-repeat (ANK) protein-interaction domains are common in cellular proteins but are relatively rare in viruses. Chordopoxviruses, however, encode a large number of ANK domain-containing ORFs of largely unknown function. Recently, a second protein-interaction domain, an F-box-like motif, was identified in several poxvirus ANK proteins. Cellular F-box proteins recruit substrates to the ubiquitination machinery of the cell, a putative function for ANK/poxviral F-box proteins. Using publicly available genome sequence data we examined all 328 predicted ANK proteins encoded by 27 chordopoxviruses that represented the eight vertebrate poxvirus genera whose members encode ANK proteins. Within these we identified 15 putative ANK protein orthologue groups within orthopoxviruses, five within parapoxviruses, 23 within avipoxviruses and seven across members of the genera Leporipoxvirus, Capripoxvirus, Yatapoxvirus, Suipoxvirus and Cervidpoxvirus. Sequence comparisons showed that members of each of these four clusters of orthologues were not closely related to members of any of the other clusters. Of these ORFs, 67% encoded a C-terminal poxviral F-box-like motif, whose absence could largely be attributed to fragmentation of ORFs. Our findings suggest that the large family of poxvirus ANK proteins arose by extensive gene duplication and divergence that occurred independently in four major genus-based groups after the groups diverged from each other. It seems likely that the ancestor ANK proteins of poxviruses contained both the N-terminal ANK repeats and a C-terminal F-box-like domain, with the latter domain subsequently being lost in a small subset of these proteins.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
26
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF-κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF-κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF-κB signalling circuitry to favour the continued survival of the pathogen.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville, Florida, USA
| | | |
Collapse
|
27
|
Diel DG, Luo S, Delhon G, Peng Y, Flores EF, Rock DL. Orf virus ORFV121 encodes a novel inhibitor of NF-kappaB that contributes to virus virulence. J Virol 2011; 85:2037-49. [PMID: 21177808 PMCID: PMC3067802 DOI: 10.1128/jvi.02236-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/07/2010] [Indexed: 11/20/2022] Open
Abstract
Orf virus (ORFV), the type member of the genus Parapoxvirus of the Poxviridae, has evolved novel strategies (proteins and/or mechanisms of action) to modulate host cell responses regulated by the nuclear factor-κB (NF-κB) signaling pathway. Here, we present data indicating that ORFV ORFV121, a gene unique to parapoxviruses, encodes a novel viral NF-κB inhibitor that binds to and inhibits the phosphorylation and nuclear translocation of NF-κB-p65. The infection of cells with an ORFV121 deletion mutant virus (OV-IA82Δ121) resulted in increased NF-κB-mediated gene transcription, and the expression of ORFV121 in cell cultures significantly suppressed NF-κB-regulated reporter gene expression. ORFV ORFV121 physically interacts with NF-κB-p65 in the cell cytoplasm, thus providing a mechanism for the inhibition of NF-κB-p65 phosphorylation and nuclear translocation. Notably, the deletion of ORFV121 from the viral genome markedly decreased ORFV virulence and disease pathogenesis in sheep, indicating that ORFV121 is a virulence determinant for ORFV in the natural host.
Collapse
Affiliation(s)
- D. G. Diel
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - S. Luo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - G. Delhon
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Y. Peng
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - E. F. Flores
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - D. L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil, Department of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| |
Collapse
|
28
|
Hansen SJ, Rushton J, Dekonenko A, Chand HS, Olson GK, Hutt JA, Pickup D, Lyons CR, Lipscomb MF. Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection. Virology 2011; 412:411-25. [PMID: 21334039 DOI: 10.1016/j.virol.2011.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/03/2010] [Accepted: 01/18/2011] [Indexed: 01/14/2023]
Abstract
Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability. A CPXV infection of DCs did not stimulate cytokine or chemokine secretion directly, but suppressed toll-like receptor (TLR) agonist-induced cytokine secretion and a DC-stimulated mixed leukocyte reaction (MLR). LPS-stimulated NF-κB nuclear translocation and host cytokine gene transcription were suppressed in CPXV-infected MDDCs. Early viral immunomodulatory genes were upregulated in MDDCs, consistent with early DC immunosuppression via synthesis of intracellular viral proteins. We conclude that a nonproductive CPXV infection suppressed DC immune function by synthesizing early intracellular viral proteins that suppressed DC signaling pathways.
Collapse
Affiliation(s)
- Spencer J Hansen
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Diel DG, Luo S, Delhon G, Peng Y, Flores EF, Rock DL. A nuclear inhibitor of NF-kappaB encoded by a poxvirus. J Virol 2011; 85:264-75. [PMID: 20980501 PMCID: PMC3014193 DOI: 10.1128/jvi.01149-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/21/2010] [Indexed: 12/19/2022] Open
Abstract
Poxviruses have evolved various strategies to inhibit cytoplasmic events leading to activation of the nuclear factor κB (NF-κB) signaling pathway, with individual viruses often encoding multiple NF-κB inhibitors. Here, the novel orf virus (ORFV)-encoded protein ORFV002 was shown to inhibit nuclear events regulating NF-κB transcriptional activity. ORFV002 expression in cell cultures significantly decreased wild-type-virus-, tumor necrosis factor alpha (TNF-α)-, and lipopolysaccharide (LPS)-induced NF-κB-mediated gene expression. Expression of ORFV002 in cells, while not affecting phosphorylation or nuclear translocation of NF-κB-p65, markedly decreased TNF-α- and wild-type-virus-induced acetylation of NF-κB-p65, a p300-mediated nuclear modification of NF-κB-p65 that regulates its transactivating activity. ORFV002 was shown to colocalize and interact with NF-κB-p65, and expression of ORFV002 in cell cultures resulted in a reduced interaction of NF-κB-p65 with p300, suggesting that ORFV002 interferes with NF-κB-p65/p300 association. Deletion of ORFV002 from the OV-IA82 genome had no significant effect on ORFV pathogenesis in sheep, indicating that ORFV002 is nonessential for virus virulence in the natural host. This represents the first description of a nuclear inhibitor of NF-κB encoded by a poxvirus.
Collapse
Affiliation(s)
- D. G. Diel
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - S. Luo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - G. Delhon
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Y. Peng
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - E. F. Flores
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - D. L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, Programa de Pós-graduação em Medicina Veterinária, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, Brazil, School of Veterinary and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China
| |
Collapse
|
30
|
Barry M, van Buuren N, Burles K, Mottet K, Wang Q, Teale A. Poxvirus exploitation of the ubiquitin-proteasome system. Viruses 2010; 2:2356-2380. [PMID: 21994622 PMCID: PMC3185573 DOI: 10.3390/v2102356] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Michele Barry
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1 780 492-0702; Fax: +1 780 492-7521
| | | | | | | | | | | |
Collapse
|
31
|
Modulation of the host immune response by cowpox virus. Microbes Infect 2010; 12:900-9. [PMID: 20673807 PMCID: PMC3500136 DOI: 10.1016/j.micinf.2010.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022]
Abstract
Cowpox virus, a zoonotic poxvirus endemic to Eurasia, infects a large number of host species which makes its eradication impossible. The elimination of world-wide smallpox vaccination programs renders the human population increasingly susceptible to infection by orthopoxviruses resulting in a growing number of zoonotic infections including CPXV transmitted from domestic animals to humans. The ability of CPXV to infect a wide range of mammalian host is likely due to the fact that, among the orthopoxviruses, CPXV encodes the most complete set of open reading frames expected to encode immunomodulatory proteins. This renders CPXV particularly interesting for studying poxviral strategies to evade and counteract the host immune responses.
Collapse
|
32
|
A novel inhibitor of the NF-{kappa}B signaling pathway encoded by the parapoxvirus orf virus. J Virol 2010; 84:3962-73. [PMID: 20147406 DOI: 10.1128/jvi.02291-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parapoxvirus orf virus (ORFV) is a pathogen of sheep and goats that has been used as a preventive and therapeutic immunomodulatory agent in several animal species. However, the functions (genes, proteins, and mechanisms of action) evolved by ORFV to modulate and manipulate immune responses are poorly understood. Here, the novel ORFV protein ORFV024 was shown to inhibit activation of the NF-kappaB signaling pathway, an important modulator of early immune responses against viral infections. Infection of primary ovine cells with an ORFV024 deletion mutant virus resulted in a marked increase in expression of NF-kappaB-regulated chemokines and other proinflammatory host genes. Expression of ORFV024 in cell cultures significantly decreased lipopolysaccharide (LPS)- and tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB-responsive reporter gene expression. Further, ORFV024 expression decreased TNF-alpha-induced phosphorylation and nuclear translocation of NF-kappaB-p65, phosphorylation, and degradation of IkappaBalpha, and phosphorylation of IkappaB kinase (IKK) subunits IKKalpha and IKKbeta, indicating that ORFV024 functions by inhibiting activation of IKKs, the bottleneck for most NF-kappaB activating stimuli. Although ORFV024 interferes with activation of the NF-kappaB signaling pathway, its deletion from the OV-IA82 genome had no significant effect on disease severity, progression, and time to resolution in sheep, indicating that ORFV024 is not essential for virus virulence in the natural host. This represents the first description of a NF-kappaB inhibitor encoded by a parapoxvirus.
Collapse
|
33
|
Structure function studies of vaccinia virus host range protein k1 reveal a novel functional surface for ankyrin repeat proteins. J Virol 2010; 84:3331-8. [PMID: 20089642 DOI: 10.1128/jvi.02332-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 A, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.
Collapse
|
34
|
The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells. J Virol 2009; 83:12068-83. [PMID: 19776120 DOI: 10.1128/jvi.00963-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain. Here, we show that each MYXV-encoded ANK repeat protein, including M-T5, interacts directly with the Skp1 component of the host SCF ubiquitin ligase complex, and that the binding of M-T5 to cullin 1 is indirect via binding to Skp1 in the host SCF complex. To understand the significance of these virus-host protein interactions, the various binding domains of M-T5 were mapped. The N-terminal ANK repeats I and II were identified as being important for interaction with Akt, whereas the C-terminal PRANC/F-box-like domain was essential for binding to Skp1. We also report that M-T5 can bind Akt and the host SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we report that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during infection with the wild-type MYXV, but not the M-T5 knockout version of the virus. These results indicate that ANK/PRANC proteins play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for virus replication.
Collapse
|