1
|
Cargnin Faccin F, Cáceres CJ, Gay LC, Seibert B, van Bentem N, Rodriguez LA, Soares Fraiha AL, Cardenas M, Geiger G, Ortiz L, Carnaccini S, Kapczynski DR, Rajao DS, Perez DR. Mass vaccination with reassortment-impaired live H9N2 avian influenza vaccine. NPJ Vaccines 2024; 9:136. [PMID: 39097573 PMCID: PMC11297921 DOI: 10.1038/s41541-024-00923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nick van Bentem
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luis A Rodriguez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ana Luiza Soares Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo, Horizonte, Minas Gerais, Brazil
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Ghorbani A, Ngunjiri JM, Edward C Abundo M, Pantin-Jackwood M, Kenney SP, Lee CW. Development of in ovo-compatible NS1-truncated live attenuated influenza vaccines by modulation of hemagglutinin cleavage and polymerase acidic X frameshifting sites. Vaccine 2023; 41:1848-1858. [PMID: 36669965 DOI: 10.1016/j.vaccine.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Emerging avian influenza viruses pose a high risk to poultry production, necessitating the need for more broadly protective vaccines. Live attenuated influenza vaccines offer excellent protective efficacies but their use in poultry farms is discouraged due to safety concerns related to emergence of reassortant viruses. Vaccination of chicken embryos inside eggs (in ovo) induces early immunity in young chicks while reduces the safety concerns related to the use of live vaccines on farms. However, in ovo vaccination using influenza viruses severely affects the egg hatchability. We previously engineered a high interferon-inducing live attenuated influenza vaccine candidate with an enhanced protective efficacy in chickens. Here, we asked whether we could further modify this high interferon-inducing vaccine candidate to develop an in ovo-compatible live attenuated influenza vaccine. We first showed that the enhanced interferon responses induced by the vaccine is not enough to attenuate the virus in ovo. To reduce the pathogenicity of the virus for chicken embryos, we replaced the hemagglutinin cleavage site of the H7 vaccine virus (PENPKTR/GL) with that of the H6-subtype viruses (PQIETR/GL) and disrupted the ribosomal frameshifting site responsible for viral polymerase acidic X protein expression. In ovo vaccination of chickens with up to 105 median egg infectious dose of the modified vaccine had minimal effects on hatchability while protecting the chickens against a heterologous challenge virus at two weeks of age. This study demonstrates that targeted genetic mutations can be applied to further attenuate and enhance the safety of live attenuated influenza vaccines to develop future in ovo vaccines for poultry.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Michael Edward C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Scott P Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| |
Collapse
|
3
|
Cherepovich BS, Rtishchev AA, Akopova II, Borisova OV, Kost VY, Kutuzova NM, Markushin SG. Comparative study of the biological properties of influenza А virus mutants obtained by site-specific mutagenesis and the live influenza reassortant vaccine variant. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of study was to carry out comparative investigation of biological properties of site-specific mutants of Influenza A virus and variant of live cold-adapted (CA) influenza reassortant vaccine.
Materials and methods. The genetic stability of site-specific mutants (SSM) of the A/WSN/33 (H1N1) strain with ts (temperature sensitive)-mutations in polymerase genes was studied using a stress-test in MadinDarby Canine Kidney (MDCK) culture. A comparative study of immunogenicity of U2 and M26 mutants with the high genetic stability and the CA-reassortant with similar surface proteins was carried out. The increase in the antibody titer was investigated using enzyme-linked immunosorbent assay and the reaction of delayed hemagglutination. Ability of the studied viruses to induce type 1 interferon in A549 cells was determined using real-time polymerase chain reaction (real-time PCR).
Results. It was shown that U2 and M26 mutants, which have 3 ts-mutations or more in polymerase genes have high genetic stability. It was found that U2 and M26 mutants induced a higher antibody titers than the CA reassortant in mice following the intranasal immunization. The ability of site-specific mutants and CA reassortant to induce type 1 interferon was also investigated. Mutants U2 and M26 increased the level of interferon to a greater extent than the CA-reassortant.
Conclusion. The data obtained indicate that SSM U2 and M26 with 3 ts-mutations or more in the genome have a significant level of genetic stability. Mutants U2 and M26 have a higher immunogenicity and a higher ability to induce interferon in comparison with the CA reassortant. These facts allow us to conclude that SSM of the influenza virus with a set of mutations in polymerase genes can be considered as promising candidates for live influenza vaccines.
Collapse
|
4
|
Mo JS, Abente EJ, Cardenas Perez M, Sutton TC, Cowan B, Ferreri LM, Geiger G, Gauger PC, Perez DR, Vincent Baker AL, Rajao DS. Transmission of Human Influenza A Virus in Pigs Selects for Adaptive Mutations on the HA Gene. J Virol 2022; 96:e0148022. [PMID: 36317880 PMCID: PMC9682980 DOI: 10.1128/jvi.01480-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.
Collapse
Affiliation(s)
- Jong-suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Matias Cardenas Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Nogales A, Steel J, Liu WC, Lowen AC, Rodriguez L, Chiem K, Cox A, García-Sastre A, Albrecht RA, Dewhurst S, Martínez-Sobrido L. Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiol Spectr 2022; 10:e0007822. [PMID: 35583364 PMCID: PMC9241597 DOI: 10.1128/spectrum.00078-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses (IAV) remain emerging threats to human public health. Live-attenuated influenza vaccines (LAIV) are one of the most effective prophylactic options to prevent disease caused by influenza infections. However, licensed LAIV remain restricted for use in 2- to 49-year-old healthy and nonpregnant people. Therefore, development of LAIV with increased safety, immunogenicity, and protective efficacy is highly desired. The U.S.-licensed LAIV is based on the master donor virus (MDV) A/Ann Arbor/6/60 H2N2 backbone, which was generated by adaptation of the virus to growth at low temperatures. Introducing the genetic signature of the U.S. MDV into the backbone of other IAV strains resulted in varying levels of attenuation. While the U.S. MDV mutations conferred an attenuated phenotype to other IAV strains, the same amino acid changes did not significantly attenuate the pandemic A/California/04/09 H1N1 (pH1N1) strain. To attenuate pH1N1, we replaced the conserved leucine at position 319 with glutamine (L319Q) in PB1 and analyzed the in vitro and in vivo properties of pH1N1 viruses containing either PB1 L319Q alone or in combination with the U.S. MDV mutations using two animal models of influenza infection and transmission, ferrets and guinea pigs. Our results demonstrated that L319Q substitution in the pH1N1 PB1 alone or in combination with the mutations of the U.S. MDV resulted in reduced pathogenicity (ferrets) and transmission (guinea pigs), and an enhanced temperature sensitive phenotype. These results demonstrate the feasibility of generating an attenuated MDV based on the backbone of a contemporary pH1N1 IAV strain. IMPORTANCE Vaccination represents the most effective strategy to reduce the impact of seasonal IAV infections. Although LAIV are superior in inducing protection and sterilizing immunity, they are not recommended for many individuals who are at high risk for severe disease. Thus, development of safer and more effective LAIV are needed. A concern with the current MDV used to generate the U.S.-licensed LAIV is that it is based on a virus isolated in 1960. Moreover, mutations that confer the temperature-sensitive, cold-adapted, and attenuated phenotype of the U.S. MDV resulted in low level of attenuation in the contemporary pandemic A/California/04/09 H1N1 (pH1N1). Here, we show that introduction of PB1 L319Q substitution, alone or in combination with the U.S. MDV mutations, resulted in pH1N1 attenuation. These findings support the development of a novel LAIV MDV based on a contemporary pH1N1 strain as a medical countermeasure against currently circulating H1N1 IAV.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Cox
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
6
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
7
|
Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China. Viruses 2022; 14:v14040726. [DOI: 10.3390/v14040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China—with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.
Collapse
|
8
|
Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9070800. [PMID: 34358217 PMCID: PMC8310045 DOI: 10.3390/vaccines9070800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.
Collapse
|
9
|
Seibert B, Angel M, Caceres CJ, Sutton T, Kumar A, Ferreri L, Cardenas-Garcia S, Geiger G, Rajao D, Perez DR. Development of a swine RNA polymerase I driven Influenza reverse genetics system for the rescue of type A and B Influenza viruses. J Virol Methods 2021; 288:114011. [PMID: 33152409 PMCID: PMC8103788 DOI: 10.1016/j.jviromet.2020.114011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Influenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins. Given the species-dependency of the pol I promoter and virus-host interactions that influence replication of animal-origin influenza viruses in human-derived cells, we explored the potential of using the swine RNA pol I promoter (spol1) in a bi-directional vector for rescuing type A and B influenza viruses (IAV and IBV, respectively) in swine and human cells. The spol1-based bi-directional plasmid vector led to efficient rescue of IAVs of different origins (human, swine, and avian) as well as IBV in both swine- and human-origin tissue culture cells. In addition, virus rescue was successful using a recombinant bacmid containing all eight segments of a swine origin IAV. In conclusion, the spol1-based reverse genetics system is a new platform to study influenza viruses and produce swine influenza vaccines with increased transfection efficiency.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Matthew Angel
- Cellular Biology Section, Laboratory of Viral Diseases NIAID, NIH, Bethesda, MD, United States
| | - C Joaquin Caceres
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Troy Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ayush Kumar
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Lucas Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Stivalis Cardenas-Garcia
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Ginger Geiger
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Daniela Rajao
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States.
| |
Collapse
|
10
|
Collective interactions augment influenza A virus replication in a host-dependent manner. Nat Microbiol 2020; 5:1158-1169. [PMID: 32632248 PMCID: PMC7484227 DOI: 10.1038/s41564-020-0749-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022]
Abstract
Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Instead, multiple viral genomes are often required in a given cell. Here, we show that the reliance of IAV on multiple infection can form an important species barrier. Namely, we find that avian H9N2 viruses representative of those circulating widely at the poultry-human interface exhibit acute dependence on collective interactions in mammalian systems. This need for multiple infection is greatly reduced in the natural host. Quantification of incomplete viral genomes showed that their complementation accounts for the moderate reliance on multiple infection seen in avian cells but not the added reliance seen in mammalian cells. An additional form of virus-virus interaction is needed in mammals. We find that the PA gene segment is a major driver of this phenotype and that both viral replication and transcription are affected. These data indicate that multiple distinct mechanisms underlie the reliance of IAV on multiple infection and underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.
Collapse
|
11
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
12
|
Smith A, Rodriguez L, El Ghouayel M, Nogales A, Chamberlain JM, Sortino K, Reilly E, Feng C, Topham DJ, Martínez-Sobrido L, Dewhurst S. A Live Attenuated Influenza Vaccine Elicits Enhanced Heterologous Protection When the Internal Genes of the Vaccine Are Matched to Those of the Challenge Virus. J Virol 2020; 94:e01065-19. [PMID: 31748399 PMCID: PMC6997774 DOI: 10.1128/jvi.01065-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains.IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing
- Antibodies, Viral/immunology
- Dogs
- Female
- HEK293 Cells
- Humans
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Andrew Smith
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester, Rochester, New York, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Maya El Ghouayel
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jeffrey M Chamberlain
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Emma Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
13
|
Cardenas-Garcia S, Ferreri L, Wan Z, Carnaccini S, Geiger G, Obadan AO, Hofacre CL, Rajao D, Perez DR. Maternally-Derived Antibodies Protect against Challenge with Highly Pathogenic Avian Influenza Virus of the H7N3 Subtype. Vaccines (Basel) 2019; 7:E163. [PMID: 31671571 PMCID: PMC6963706 DOI: 10.3390/vaccines7040163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
Vaccination of hens against influenza leads to the transfer of protective maternally-derived antibodies (MDA) to hatchlings. However, little is known about the transfer of H7N3 vaccine-induced MDA. Here, we evaluated transfer, duration, and protective effect of MDA in chickens against H7N3 HPAIV. To generate chickens with MDA (MDA (+)), 15-week-old White Leghorn hens were vaccinated and boosted twice with an inactivated H7N3 low pathogenic avian influenza virus vaccine, adjuvanted with Montanide ISA 71 VG. One week after the final boost, eggs were hatched. Eggs from non-vaccinated hens were hatched for chickens without MDA (MDA (-)). Both MDA (+) and MDA (-) hatchlings were monitored weekly for antibody levels. Anti-HA MDA were detected by hemagglutination inhibition assay mostly until day 7 post-hatch. However, anti-nucleoprotein MDA were still detected three weeks post-hatch. Three weeks post-hatch, chickens were challenged with 106 EID50/bird of Mexican-origin H7N3 HPAIV. Interestingly, while 0% of the MDA (-) chickens survived the challenge, 95% of the MDA (+) chickens survived. Furthermore, virus shedding was significantly reduced by day 5 post-challenge in the MDA (+) group. In conclusion, MDA confers partial protection against mortality upon challenge with H7N3 HPAIV, as far as three weeks post-hatch, even in the absence of detectable anti-HA antibodies, and reduce virus shedding after challenge.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Lucas Ferreri
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Zhimin Wan
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Silvia Carnaccini
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Ginger Geiger
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Adebimpe O Obadan
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | | | - Daniela Rajao
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine. J Virol 2018; 92:JVI.01025-18. [PMID: 30135124 PMCID: PMC6189493 DOI: 10.1128/jvi.01025-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza viruses infect 1 billion people worldwide and are associated with ∼500,000 deaths annually. In addition, the never-ending emergence of zoonotic influenza viruses associated with lethal human infections and of pandemic concern calls for the development of better vaccines and/or vaccination strategies against influenza virus. Regardless of the strategy, novel influenza virus vaccines must aim at providing protection against both seasonal influenza A and B viruses. In this study, we tested an alternative quadrivalent live attenuated influenza virus vaccine (QIV) formulation whose individual components have been previously shown to provide protection. We demonstrate in proof-of principle studies in mice that the QIV provides effective protection against lethal challenge with either influenza A or B virus. Influenza virus infections continue to pose a major public health threat worldwide associated with seasonal epidemics and sporadic pandemics. Vaccination is considered the first line of defense against influenza. Live attenuated influenza virus vaccines (LAIVs) may provide superior responses compared to inactivated vaccines because the former can better elicit a combination of humoral and cellular responses by mimicking a natural infection. Unfortunately, during the 2013–2014, 2014–2015, and 2015–2016 seasons, concerns emerged about the effectiveness of the only LAIV approved in the United States that prevented the Advisory Committee on Immunization Practices (ACIP) from recommending its use. Such drawbacks open up the opportunity for alternative LAIV strategies that could overcome such concerns. Previously, we developed a combined strategy of temperature-sensitive mutations in the PB2 and PB1 segments and an epitope tag in the C terminus of PB1 that effectively attenuates influenza A viruses of avian and mammalian origin. More recently, we adopted a similar strategy for influenza B viruses. The resulting attenuated (att) influenza A and B viruses were safe, immunogenic, and protective against lethal influenza virus challenge in a variety of animal models. In this report, we provide evidence of the potential use of our att strategy in a quadrivalent LAIV (QIV) formulation carrying H3N2 and H1N1 influenza A virus subtype viruses and two antigenic lineages of influenza B viruses. In naive DBA/2J mice, two doses of the QIV elicited hemagglutination inhibition (HI) responses with HI titers of ≥40 and effectively protected against lethal challenge with prototypical pandemic H1N1 influenza A and influenza B virus strains. IMPORTANCE Seasonal influenza viruses infect 1 billion people worldwide and are associated with ∼500,000 deaths annually. In addition, the never-ending emergence of zoonotic influenza viruses associated with lethal human infections and of pandemic concern calls for the development of better vaccines and/or vaccination strategies against influenza virus. Regardless of the strategy, novel influenza virus vaccines must aim at providing protection against both seasonal influenza A and B viruses. In this study, we tested an alternative quadrivalent live attenuated influenza virus vaccine (QIV) formulation whose individual components have been previously shown to provide protection. We demonstrate in proof-of principle studies in mice that the QIV provides effective protection against lethal challenge with either influenza A or B virus.
Collapse
|
15
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
16
|
Santos JJS, Obadan AO, Garcia SC, Carnaccini S, Kapczynski DR, Pantin-Jackwood M, Suarez DL, Perez DR. Short- and long-term protective efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus following prime-boost vaccination in turkeys. Vaccine 2017; 35:5637-5643. [PMID: 28886943 PMCID: PMC5659307 DOI: 10.1016/j.vaccine.2017.08.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/26/2023]
Abstract
Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has transmitted through migratory birds and spread throughout the world. In 2014, clade 2.3.4.4 strains entered the U.S. via the Pacific flyway, reassorted with local strains of the North American lineage, and produced novel HPAIV strains of the H5N1, H5N2, and H5N8 subtypes. By 2015, the H5N2 HPAIVs disseminated eastwards within the continental U.S. and Canada and infected commercial poultry, causing the largest animal health outbreak in recent history in the U.S. The outbreak was controlled by traditional mass depopulation methods, but the outbreak was of such magnitude that it led to the consideration of alternative control measures, including vaccination. In this regard, little information is available on the long-term protection of turkeys vaccinated against avian influenza. In this report, a vaccination study was carried out in turkeys using 3 prime-boost approaches with a combination of 2 different vaccines, an alphavirus-based replicon vaccine and an adjuvanted-inactivated reverse genetics vaccine. Vaccine efficacy was assessed at 6 and 16weeks of age following challenge with a prototypic novel clade 2.3.4.4 H5N2 HPAIV. All three vaccines protocols were protective with significantly reduced virus shedding and mortality after challenge at 6weeks of age. In contrast, significant variations were seen in 16-week old turkeys after challenge: priming with the alphavirus-based replicon followed by boost with the adjuvanted-inactivated vaccine conferred the best protection, whereas the alphavirus-based replicon vaccine given twice provided the least protection. Our study highlights the importance of studying not only different vaccine platforms but also vaccination strategies to maximize protection against HPAIV especially with regards to the longevity of vaccine-induced immune response.
Collapse
Affiliation(s)
- Jefferson J S Santos
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Adebimpe O Obadan
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas Garcia
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - David L Suarez
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
17
|
Development of an Alternative Modified Live Influenza B Virus Vaccine. J Virol 2017; 91:JVI.00056-17. [PMID: 28381580 PMCID: PMC5446642 DOI: 10.1128/jvi.00056-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.
Collapse
|
18
|
Kostina LV, Zaberezhnyy AD, Grebennikova TV, Antipova NV, Aliper TI, Nepoklonov EA. Vaccines against avian influenza in poultry. Vopr Virusol 2017; 62:53-60. [PMID: 36494928 DOI: 10.18821/0507-4088-2017-62-2-53-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The review presents the latest data about the types of vaccines against avian influenza that are used in current medical practice or are under development. Inactivated whole virion vaccines, live vector vaccines, as well as experimental vaccines developed using genetic engineering techniques (e.g. subunit vaccines, VLP vaccines, DNA vaccines) were considered. The efficiency of influenza reverse genetic technology for the development of prototype vaccine strains was noted.
Collapse
Affiliation(s)
- L V Kostina
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | - A D Zaberezhnyy
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - T V Grebennikova
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | | | - T I Aliper
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - E A Nepoklonov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor)
| |
Collapse
|
19
|
Wonderlich ER, Swan ZD, Bissel SJ, Hartman AL, Carney JP, O'Malley KJ, Obadan AO, Santos J, Walker R, Sturgeon TJ, Frye LJ, Maiello P, Scanga CA, Bowling JD, Bouwer AL, Duangkhae PA, Wiley CA, Flynn JL, Wang J, Cole KS, Perez DR, Reed DS, Barratt-Boyes SM. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 198:1616-1626. [PMID: 28062701 DOI: 10.4049/jimmunol.1601770] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Zachary D Swan
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Stephanie J Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Jonathan P Carney
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Katherine J O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Adebimpe O Obadan
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Jefferson Santos
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Reagan Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy J Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lonnie J Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jennifer D Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Anthea L Bouwer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Parichat A Duangkhae
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Clayton A Wiley
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jieru Wang
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kelly S Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261; .,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
20
|
Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wang X, Zhu Y, Peng D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2015; 34:350-7. [PMID: 26638027 DOI: 10.1016/j.vaccine.2015.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy. METHODS A series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed. RESULTS The viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses. CONCLUSION A 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens.
Collapse
Affiliation(s)
- Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Weizhou Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Bai Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Ying Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
21
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
22
|
The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses. J Virol 2014; 88:12339-47. [PMID: 25122786 DOI: 10.1128/jvi.02142-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. IMPORTANCE Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our data indicate this is associated with the presence of a PB2 gene segment derived from an avian influenza virus. We show that a reassortant 2009 pandemic H1N1 virus with the ts signature from a licensed LAIV donor virus is ts in vitro and attenuated in vivo when the PB2 gene is derived from a human origin virus but not from an avian virus. Our study provides information that could benefit the rational design of alternative LAIV backbones against animal origin influenza viruses.
Collapse
|
23
|
Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J Virol 2014; 88:10778-91. [PMID: 25008914 DOI: 10.1128/jvi.01440-14] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment.
Collapse
|
24
|
All-in-one bacmids: an efficient reverse genetics strategy for influenza A virus vaccines. J Virol 2014; 88:10013-25. [PMID: 24942589 DOI: 10.1128/jvi.01468-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Vaccination is the first line of defense against influenza virus infection, yet influenza vaccine production methods are slow, antiquated, and expensive as a means to effectively reduce the virus burden during epidemic or pandemic periods. There is a great need for alternative influenza vaccines and vaccination methods with a global scale of impact. We demonstrate here a strategy to generate influenza A virus in vivo by using bacmid DNAs. Compared to the classical reverse genetics system, the "eight-in-one" bacmids (bcmd-RGFlu) showed higher efficiency of virus rescue in various cell types. Using a transfection-based inoculation (TBI) system, intranasal delivery to DBA/2J and BALB/c mice of bcmd-RGFlu plus 293T cells led to the generation of lethal PR8 virus in vivo. A prime-boost intranasal vaccination strategy using TBI in the context of a bcmd-RGFlu carrying a temperature-sensitive H1N1 virus resulted in protection of mice against lethal challenge with the PR8 strain. Taken together, these studies provide proof of principle to highlight the potential of vaccination against influenza virus by using in vivo reverse genetics. IMPORTANCE Vaccination is the first line of defense against influenza virus infections. A major drawback in the preparation of influenza vaccines is that production relies on a heavily time-consuming process of growing the viruses in eggs. We propose a radical change in the way influenza vaccination is approached, in which a recombinant bacmid, a shuttle vector that can be propagated in both Escherichia coli and insect cells, carries an influenza virus infectious clone (bcmd-RGFlu). Using a surrogate cell system, we found that intranasal delivery of bcmd-RGFlu resulted in generation of influenza virus in mice. Furthermore, mice vaccinated with this system were protected against lethal influenza virus challenge. The study serves as a proof of principle of a potentially universal vaccine platform against influenza virus and other pathogens.
Collapse
|
25
|
Specific residues of PB2 and PA influenza virus polymerase subunits confer the ability for RNA polymerase II degradation and virus pathogenicity in mice. J Virol 2014; 88:3455-63. [PMID: 24403580 DOI: 10.1128/jvi.02263-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus transcription requires functional coupling with cellular transcription for the cap-snatching process. Despite this fact, RNA polymerase II (RNAP II) is degraded during infection in a process triggered by the viral polymerase. Reassortant viruses from the A/PR/8/34 (PR8) strain that induce (hvPR8) or do not induce (lvPR8) RNAP II degradation led to the identification of PA and PB2 subunits as responsible for the degradation process. Three changes in the PB2 sequence (I105M, N456D, and I504V) and two in PA (Q193H and I550L) differentiate PA and PB2 of lvPR8 from those of hvPR8. Using recombinant viruses, we observed that changes at position 504 of PB2, together with 550 of PA, confer the ability on lvPR8 for RNAP II degradation and, conversely, abolish hvPR8 degradation capacity. Since hvPR8 is more pathogenic than lvPR8 in mice, we tested the potential contribution of RNAP II degradation in a distant viral strain, the 2009 pandemic A/California/04/09 (CAL) virus, whose PA and PB2 subunits are of avian origin. As in the hvPR8 virus, mutations at positions 504 of PB2 and 550 of PA in CAL virus abolished its RNAP II degradation capacity. Moreover, in an in vivo model, the CAL-infected mice lost more body weight, and 75% lethality was observed in this situation compared with 100% survival in mutant-CAL- or mock-infected animals. These results confirm the involvement of specific PB2 and PA residues in RNAP II degradation, which correlates with pathogenicity in mice of viruses containing human or avian polymerase PB2 and PA subunits. IMPORTANCE The influenza virus polymerase induces the degradation of RNAP II, which probably cooperates to avoid the antiviral response. Here, we have characterized two specific residues located in the PA and PB2 polymerase subunits that mediate this degradation in different influenza viruses. Moreover, a clear correlation between RNAP II degradation and in vivo pathogenicity in mice was observed, indicating that the degradative process constitutes a viral pathogenicity factor.
Collapse
|
26
|
Adams S, Xing Z, Li J, Mendoza K, Perez D, Reed K, Cardona C. The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells. Mol Immunol 2013; 56:358-68. [DOI: 10.1016/j.molimm.2013.05.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
27
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
28
|
Swayne DE, Spackman E, Pantin-Jackwood M. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. ECOHEALTH 2013; 11:94-108. [PMID: 24026475 DOI: 10.1007/s10393-013-0861-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine "failures" have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.
Collapse
Affiliation(s)
- David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA,
| | | | | |
Collapse
|
29
|
Pena L, Sutton T, Chockalingam A, Kumar S, Angel M, Shao H, Chen H, Li W, Perez DR. Influenza viruses with rearranged genomes as live-attenuated vaccines. J Virol 2013; 87:5118-27. [PMID: 23449800 PMCID: PMC3624320 DOI: 10.1128/jvi.02490-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/12/2012] [Indexed: 11/20/2022] Open
Abstract
H5N1 and H9N2 avian influenza virus subtypes top the World Health Organization's list for the greatest pandemic potential. Inactivated H5N1 vaccines induce limited immune responses and, in the case of live-attenuated influenza virus vaccines (LAIV), there are safety concerns regarding the possibility of reassortment between the H5 gene segment and circulating influenza viruses. In order to overcome these drawbacks, we rearranged the genome of an avian H9N2 influenza virus and expressed the entire H5 hemagglutinin open reading frame (ORF) from the segment 8 viral RNA. These vectors had reduced polymerase activities as well as viral replication in vitro and excellent safety profiles in vivo. Immunization with the dual H9-H5 influenza virus resulted in protection against lethal H5N1 challenge in mice and ferrets, and also against a potentially pandemic H9 virus. Our studies demonstrate that rearranging the influenza virus genome has great potential for the development of improved vaccines against influenza virus as well as other pathogens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chickens
- Female
- Ferrets
- Genetic Engineering
- Genome, Viral
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Recombination, Genetic
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Virus Replication
Collapse
Affiliation(s)
- Lindomar Pena
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng D, Yi Y, Chen Z. Development of live-attenuated influenza vaccines against outbreaks of H5N1 influenza. Viruses 2012; 4:3589-605. [PMID: 23223214 PMCID: PMC3528281 DOI: 10.3390/v4123589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
Several global outbreaks of highly pathogenic avian influenza (HPAI) H5N1 virus have increased the urgency of developing effective and safe vaccines against H5N1. Compared with H5N1 inactivated vaccines used widely, H5N1 live-attenuated influenza vaccines (LAIVs) have advantages in vaccine efficacy, dose-saving formula, long-lasting effect, ease of administration and some cross-protective immunity. Furthermore, H5N1 LAIVs induce both humoral and cellular immune responses, especially including improved IgA production at the mucosa. The current trend of H5N1 LAIVs development is toward cold-adapted, temperature-sensitive or replication-defective vaccines, and moreover, H5N1 LAIVs plus mucosal adjuvants are promising candidates. This review provides an update on the advantages and development of H5N1 live-attenuated influenza vaccines.
Collapse
Affiliation(s)
- Dan Zheng
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Yinglei Yi
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Ze Chen
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
- College of Life Sciences, Hunan Normal University, Changsha Yuelushan 410081, Hunan, China
| |
Collapse
|
31
|
Sedova E, Shcherbinin D, Migunov A, Smirnov I, Logunov D, Shmarov M, Tsybalova L, Naroditskiĭ B, Kiselev O, Gintsburg A. Recombinant influenza vaccines. Acta Naturae 2012; 4:17-27. [PMID: 23346377 PMCID: PMC3548171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains.
Collapse
Affiliation(s)
- E.S. Sedova
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| | - D.N. Shcherbinin
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| | - A.I. Migunov
- Research Institute of Influenza, prof. Popov Str., 15/17, Saint
Petersburg, Russia, 197376
| | - Iu.A. Smirnov
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
- Ivanovsky Research Institute of Virology, Gamaleya Str., 16, Moscow,
Russia, 123098
| | - D.Iu. Logunov
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| | - M.M. Shmarov
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| | - L.M. Tsybalova
- Research Institute of Influenza, prof. Popov Str., 15/17, Saint
Petersburg, Russia, 197376
| | - B.S. Naroditskiĭ
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| | - O.I. Kiselev
- Research Institute of Influenza, prof. Popov Str., 15/17, Saint
Petersburg, Russia, 197376
| | - A.L. Gintsburg
- Gamaleya Research Institute of Epidemiology and Microbiology, Gamaleya
Str., 18, Moscow, Russia, 123098
| |
Collapse
|
32
|
Partial and full PCR-based reverse genetics strategy for influenza viruses. PLoS One 2012; 7:e46378. [PMID: 23029501 PMCID: PMC3460856 DOI: 10.1371/journal.pone.0046378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 12/30/2022] Open
Abstract
Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids.
Collapse
|
33
|
Bourret V, Lyall J, Ducatez MF, Guérin JL, Tiley L. Development of an improved polykaryon-based influenza virus rescue system. BMC Biotechnol 2012; 12:69. [PMID: 23009349 PMCID: PMC3558383 DOI: 10.1186/1472-6750-12-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virus rescue from transfected cells is an extremely useful technique that allows defined viral clones to be engineered for the purpose of rational vaccine design or fundamental reverse genetics studies. However, it is often hindered by low primary rescue success rates or yields, especially with field-derived viral strains. APPROACH We investigated the possibility of enhancing influenza virus rescue by eliciting cell fusion to increase the chances of having all necessary plasmids expressed within the same polykaryon. To this end we used the Maedi-Visna Virus envelope protein which has potent fusion activity in cells from a wide range of different species. RESULTS Co-transfecting cells with the eight plasmids necessary to rescue influenza virus plus a plasmid expressing the Maedi-Visna Virus envelope protein resulted in increased rescue efficiency. In addition, partial complements of the 8-plasmid rescue system could be transfected into two separate populations of cells, which upon fusion led to live virus rescue. CONCLUSION The simple modification described here has the potential to improve the efficiency of the virus rescue process and expand the potential applications for reverse genetic studies.
Collapse
Affiliation(s)
- Vincent Bourret
- Cambridge Infectious Disease Consortium, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
34
|
Chursov A, Kopetzky SJ, Leshchiner I, Kondofersky I, Theis FJ, Frishman D, Shneider A. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus. RNA Biol 2012; 9:1266-74. [PMID: 22995831 PMCID: PMC3583857 DOI: 10.4161/rna.22081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.
Collapse
Affiliation(s)
- Andrey Chursov
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Zhang W, Tu J, Zhao Z, Chen H, Jin M. The new temperature-sensitive mutation PA-F35S for developing recombinant avian live attenuated H5N1 influenza vaccine. Virol J 2012; 9:97. [PMID: 22621130 PMCID: PMC3413606 DOI: 10.1186/1743-422x-9-97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 05/23/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza virus (HPAIV) is continuously circulating in many Asian countries and threatening poultry industry and human population. Vaccination is the best strategy to control H5N1 HPAIV infection in poultry and transmission to human population. The aim of this study is to identify new temperature-sensitive (ts) mutations for developing recombinant avian live attenuated H5N1 influenza vaccine. FINDINGS A "6 + 2" recombinant virus C4/W1 that contained NA gene and modified HA gene from virus A/chicken/Hubei/327/2004 (H5N1) (C4), and six internal genes from virus A/duck/Hubei/W1/2004 (H9N2) (W1) was generated using reverse genetics and subsequently passaged in chicken eggs at progressively lower temperatures (32°C, 28°C and 25°C). The resulting virus acquired ts phenotype and one of its amino acid mutations, PA (F35S), was identified as ts mutation. Furthermore, when used as live attenuated vaccine, the recombinant virus with this ts mutation PA (F35S) provided efficient protection for chickens against H5N1 HPAIV infection. CONCLUSIONS These findings highlight the potential of the new ts mutation PA (F35S) in developing recombinant avian live attenuated H5N1 influenza vaccine.
Collapse
Affiliation(s)
- Wenting Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | | | |
Collapse
|
37
|
Nang NT, Song BM, Kang YM, Kim HM, Kim HS, Seo SH. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both highly pathogenic H5N1 and H9N2 influenza viruses. Influenza Other Respir Viruses 2012; 7:120-31. [PMID: 22487301 PMCID: PMC5780756 DOI: 10.1111/j.1750-2659.2012.00363.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity.
Collapse
Affiliation(s)
- Nguyen Tai Nang
- Laboratory of Influenza Research Institute for Influenza Virus Laboratory of Public Health, College of Veterinary Medicine, Chungnam National University, Yuseong Gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine 2012; 30:3691-702. [PMID: 22449422 DOI: 10.1016/j.vaccine.2012.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The licensed live attenuated influenza A vaccine (LAIV) in the United States is created by making a reassortant containing six internal genes from a cold-adapted master donor strain (ca A/AA/6/60) and two surface glycoprotein genes from a circulating/emerging strain (e.g., A/CA/7/09 for the 2009/2010 H1N1 pandemic). Technologies to rapidly create recombinant viruses directly from patient specimens were used to engineer alternative LAIV candidates that have genomes composed entirely of vRNAs from pandemic or seasonal strains. Multiple mutations involved in the temperature-sensitive (ts) phenotype of the ca A/AA/6/60 master donor strain were introduced into a 2009 H1N1 pandemic strain rA/New York/1682/2009 (rNY1682-WT) to create rNY1682-TS1, and additional mutations identified in other ts viruses were added to rNY1682-TS1 to create rNY1682-TS2. Both rNY1682-TS1 and rNY1682-TS2 replicated efficiently at 30°C and 33°C. However, rNY1682-TS1 was partially restricted, and rNY1682-TS2 was completely restricted at 39°C. Additionally, engineering the TS1 or TS2 mutations into a distantly related human seasonal H1N1 influenza A virus also resulted pronounced restriction of replication in vitro. Clinical symptoms and virus replication in the lungs of mice showed that although rNY1682-TS2 and the licensed FluMist(®)-H1N1pdm LAIV that was used to combat the 2009/2010 pandemic were similarly attenuated, the rNY1682-TS2 was more protective upon challenge with a virulent mutant of pandemic H1N1 virus or a heterologous H1N1 (A/PR/8/1934) virus. This study demonstrates that engineering key temperature sensitive mutations (PB1-K391E, D581G, A661T; PB2-P112S, N265S, N556D, Y658H) into the genomes of influenza A viruses attenuates divergent human virus lineages and provides an alternative strategy for the generation of LAIVs.
Collapse
|
39
|
González-Reiche AS, Morales-Betoulle ME, Alvarez D, Betoulle JL, Müller ML, Sosa SM, Perez DR. Influenza a viruses from wild birds in Guatemala belong to the North American lineage. PLoS One 2012; 7:e32873. [PMID: 22427902 PMCID: PMC3302778 DOI: 10.1371/journal.pone.0032873] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
Abstract
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.
Collapse
Affiliation(s)
- Ana S. González-Reiche
- Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
- * E-mail: (ASG); (DRP)
| | - María E. Morales-Betoulle
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Danilo Alvarez
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Jean-Luc Betoulle
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
- Fundación Para el Ecodesarrollo y la Conservación (FUNDAECO), Guatemala City, Guatemala
| | - Maria L. Müller
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Silvia M. Sosa
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail: (ASG); (DRP)
| |
Collapse
|
40
|
A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. INFLUENZA RESEARCH AND TREATMENT 2012; 2011:126794. [PMID: 23074652 PMCID: PMC3447297 DOI: 10.1155/2011/126794] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/24/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022]
Abstract
Using peptide nanoparticle technology, we have designed two novel vaccine constructs representing M2e in monomeric (Mono-M2e) and tetrameric (Tetra-M2e) forms. Groups of specific pathogen free (SPF) chickens were immunized intramuscularly with Mono-M2e or Tetra-M2e with and without an adjuvant. Two weeks after the second boost, chickens were challenged with 107.2 EID50 of H5N2 low pathogenicity avian influenza (LPAI) virus. M2e-specific antibody responses to each of the vaccine constructs were tested by ELISA. Vaccinated chickens exhibited increased M2e-specific IgG responses for each of the constructs as compared to a non-vaccinated group. However, the vaccine construct Tetra-M2e elicited a significantly higher antibody response when it was used with an adjuvant. On the other hand, virus neutralization assays indicated that immune protection is not by way of neutralizing antibodies. The level of protection was evaluated using quantitative real time PCR at 4, 6, and 8 days post-challenge with H5N2 LPAI by measuring virus shedding from trachea and cloaca. The Tetra-M2e with adjuvant offered statistically significant (P < 0.05) protection against subtype H5N2 LPAI by reduction of the AI virus shedding. The results suggest that the self-assembling polypeptide nanoparticle shows promise as a potential platform for a development of a vaccine against AI.
Collapse
|
41
|
Oral administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α alleviates clinical signs caused by respiratory infection with avian influenza virus H9N2. Vet Microbiol 2011; 154:140-51. [DOI: 10.1016/j.vetmic.2011.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 12/13/2022]
|
42
|
Lomakina NF, Boravleva EY, Kropotkina EA, Yamnikova SS, Drygin VV, Gambaryan AS. Attenuation of A/chicken/Kurgan/3/2005 (H5N1) influenza virus using selection in an environment simulating the life cycle of wild duck viruses. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2011. [DOI: 10.3103/s0891416811030025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Single dose of oil-adjuvanted inactivated vaccine protects chickens from lethal infections of highly pathogenic H5N1 influenza virus. Vaccine 2011; 29:2178-86. [DOI: 10.1016/j.vaccine.2010.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/29/2010] [Accepted: 12/05/2010] [Indexed: 11/20/2022]
|
44
|
Ding H, Tsai C, Gutiérrez RA, Zhou F, Buchy P, Deubel V, Zhou P. Superior neutralizing antibody response and protection in mice vaccinated with heterologous DNA prime and virus like particle boost against HPAI H5N1 virus. PLoS One 2011; 6:e16563. [PMID: 21305045 PMCID: PMC3030595 DOI: 10.1371/journal.pone.0016563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although DNA plasmid and virus-like particle (VLP) vaccines have been individually tested against highly pathogenic avian influenza (HPAI) H5N1 viruses, the combination of both vaccines into a heterologous prime-boost strategy against HPAI H5N1 viruses has not been reported before. METHODOLOGY/PRINCIPAL FINDINGS We constructed DNA plasmid encoding H5HA (A/Shenzhen/406H/06, subclade 2.3.4) and generated VLP expressing the same H5HA and N1NA. We then compared neutralizing antibody responses and immune protection elicited with heterologous DNA-VLP, homologous DNA-DNA and VLP-VLP prime-boost strategies against HPAI H5N1 viruses in mice. We demonstrate that DNA-VLP elicits the highest neutralizing antibody titers among the three prime-boost strategies, whereas DNA-DNA elicits higher neutralizing antibody titers than VLP-VLP. We show that although all three prime-boost strategies protect mice from death caused by 10 MLD(50) of homologous and heterologous H5N1 challenge, only DNA-VLP and DNA-DNA protect mice from infection as manifested by no weight loss and no lung pathology. In addition, we show that although DNA-VLP and DNA-DNA protect mice from death caused by 1,000 MLD(50) of homologous H5N1 challenge, only DNA-VLP protects mice from infection. Moreover, we show that after 1,000 MLD(50) of heterologous H5N1 challenge, while all mice in PBS, VLP-VLP and DNA-DNA died, 3 of 6 mice in DNA-VLP actually survived. Finally, we show that DNA-VLP completely protects mice from infection after 1,000 MLD(50) of homologous H5N1 challenge even when the challenge was administrated at 60 days post the boost. CONCLUSIONS/SIGNIFICANCE These results provide strong support for clinical evaluation of heterologous DNA-VLP prime-boost strategy as a public health intervention against a possible H5N1 pandemic.
Collapse
Affiliation(s)
- Heng Ding
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Tsai
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | - Fan Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Paul Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Cai Y, Song H, Ye J, Shao H, Padmanabhan R, Sutton TC, Perez DR. Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses. Virol J 2011; 8:31. [PMID: 21255403 PMCID: PMC3032716 DOI: 10.1186/1743-422x-8-31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/21/2011] [Indexed: 12/04/2022] Open
Abstract
Mass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18-day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 106 EID50 of LAIVs improved hatchability to ≥90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation.
Collapse
Affiliation(s)
- Yibin Cai
- Department of Veterinary Medicine, University of Maryland, College Park, 8075 Greenmead Drive, College Park, MD 20742-3711, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses. J Virol 2010; 85:456-69. [PMID: 20962084 DOI: 10.1128/jvi.01503-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
On 11 June 2009, the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) virus is the predominant influenza virus strain in the human population. It has also crossed the species barriers and infected turkeys and swine in several countries. Thus, the development of a vaccine that is effective in multiple animal species is urgently needed. We have previously demonstrated that the introduction of temperature-sensitive mutations into the PB2 and PB1 genes of an avian H9N2 virus, combined with the insertion of a hemagglutinin (HA) tag in PB1, resulted in an attenuated (att) vaccine backbone for both chickens and mice. Because the new pandemic strain is a triple-reassortant (TR) virus, we chose to introduce the double attenuating modifications into a swine-like TR virus isolate, A/turkey/OH/313053/04 (H3N2) (ty/04), with the goal of producing live attenuated influenza vaccines (LAIV). This genetically modified backbone had impaired polymerase activity and restricted virus growth at elevated temperatures. In vivo characterization of two H1N1 vaccine candidates generated using the ty/04 att backbone demonstrated that this vaccine is highly attenuated in mice, as indicated by the absence of signs of disease, limited replication, and minimum histopathological alterations in the respiratory tract. A single immunization with the ty/04 att-based vaccines conferred complete protection against a lethal H1N1pdm virus infection in mice. More importantly, vaccination of pigs with a ty/04 att-H1N1 vaccine candidate resulted in sterilizing immunity upon an aggressive intratracheal challenge with the 2009 H1N1 pandemic virus. Our studies highlight the safety of the ty/04 att vaccine platform and its potential as a master donor strain for the generation of live attenuated vaccines for humans and livestock.
Collapse
|
47
|
Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype? PLoS Pathog 2010; 6:e1001145. [PMID: 20976194 PMCID: PMC2954835 DOI: 10.1371/journal.ppat.1001145] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/09/2010] [Indexed: 01/15/2023] Open
Abstract
A novel, swine-origin influenza H1N1 virus (H1N1pdm) caused the first pandemic of the 21st century. This pandemic, although efficient in transmission, is mild in virulence. This atypical mild pandemic season has raised concerns regarding the potential of this virus to acquire additional virulence markers either through further adaptation or possibly by immune pressure in the human host. Using the mouse model we generated, within a single round of infection with A/California/04/09/H1N1 (Ca/04), a virus lethal in mice--herein referred to as mouse-adapted Ca/04 (ma-Ca/04). Five amino acid substitutions were found in the genome of ma-Ca/04: 3 in HA (D131E, S186P and A198E), 1 in PA (E298K) and 1 in NP (D101G). Reverse genetics analyses of these mutations indicate that all five mutations from ma-Ca/04 contributed to the lethal phenotype; however, the D131E and S186P mutations--which are also found in the 1918 and seasonal H1N1 viruses-in HA alone were sufficient to confer virulence of Ca/04 in mice. HI assays against H1N1pdm demonstrate that the D131E and S186P mutations caused minor antigenic changes and, likely, affected receptor binding. The rapid selection of ma-Ca/04 in mice suggests that a virus containing this constellation of amino acids might have already been present in Ca/04, likely as minor quasispecies.
Collapse
|
48
|
Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1363-70. [PMID: 20668143 DOI: 10.1128/cvi.00002-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Highly pathogenic avian H5N1 influenza viruses are endemic in poultry in Asia and pose a pandemic threat to humans. Since the deployment of vaccines against a pandemic strain may take several months, adequate antiviral alternatives are needed to minimize the effects and the spread of the disease. Passive immunotherapy is regarded as a viable alternative. Here, we show the development of an IgA monoclonal antibody (DPJY01 MAb) specific to H5 hemagglutinin. The DPJY01 MAb showed a broad hemagglutination inhibition (HI) profile against Asian H5N1 viruses of clades 0, 1.0, 2.1, 2.2, and 2.3 and also against H5 wild bird influenza viruses of the North American and Eurasian lineages. DPJY01 MAb displayed also high neutralization activity in vitro and in vivo. In mice, DPJY01 MAb provided protection via a single dose administered intranasally before or after inoculation with a sublethal dose of H5N1 viruses of clades 1.0 and 2.2. Pretreatment with 50 mg of DPJY01 MAb kg of body weight at either 24, 48, or 72 h before highly pathogenic H5N1 virus (A/Vietnam/1203/2004 [H5N1]) inoculation resulted in complete protection. Treatment with 50 mg/kg at either at 24, 48, or 72 h after H5N1 inoculation provided 100%, 80%, and 60% protection, respectively. These studies highlight the potential use of DPJY01 MAb as an intranasal antiviral treatment for H5N1 influenza virus infections.
Collapse
|
49
|
Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1467-72. [PMID: 20660133 DOI: 10.1128/cvi.00180-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Highly pathogenic avian influenza (HPAI) virus causes one of the most economically devastating poultry diseases. An HPAI vaccine to prevent the disease in commercial and backyard birds must be effective, safe, and inexpensive. Recently, we demonstrated the efficacy of an adenovirus-based H5N1 HPAI vaccine (Ad5.HA) in chickens. To further evaluate the potential of the Ad5.HA vaccine and its cost-effectiveness, studies to determine the minimal effective dose and optimal route of administration in chickens were performed. A dose as low as 10(7) viral particles (vp) of adenovirus-based H5N1 vaccine per chicken was sufficient to generate a robust humoral immune response, which correlated with the previously reported level of protection. Several routes of administration, including intratracheal, conjunctival, subcutaneous, and in ovo routes, were evaluated for optimal vaccine administration. However, only the subcutaneous route of immunization induced a satisfactory level of influenza virus-specific antibodies. Importantly, these studies established that the vaccine-induced immunity was cross-reactive against an H5N1 strain from a different clade, emphasizing the potential of cross-protection. Our results suggest that the Ad5.HA HPAI vaccine is safe and effective, with the potential of cross-clade protection. The ease of manufacturing and cost-effectiveness make Ad5.HA an excellent avian influenza vaccine candidate with the ability to protect poultry from HPAI virus infection. Considering the limitations of the influenza vaccine technology currently used for poultry applications, any effort aimed at overcoming those limitations is highly significant.
Collapse
|
50
|
Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 2010; 84:9217-26. [PMID: 20592069 DOI: 10.1128/jvi.01069-10] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2(-/-) mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-gamma) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.
Collapse
|