1
|
Augestad EH, Holmboe Olesen C, Grønberg C, Soerensen A, Velázquez-Moctezuma R, Fanalista M, Bukh J, Wang K, Gourdon P, Prentoe J. The hepatitis C virus envelope protein complex is a dimer of heterodimers. Nature 2024; 633:704-709. [PMID: 39232163 DOI: 10.1038/s41586-024-07783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Fifty-eight million individuals worldwide are affected by chronic hepatitis C virus (HCV) infection, a primary driver of liver cancer for which no vaccine is available1. The HCV envelope proteins E1 and E2 form a heterodimer (E1/E2), which is the target for neutralizing antibodies2. However, the higher-order organization of these E1/E2 heterodimers, as well as that of any Hepacivirus envelope protein complex, remains unknown. Here we determined the cryo-electron microscopy structure of two E1/E2 heterodimers in a homodimeric arrangement. We reveal how the homodimer is established at the molecular level and provide insights into neutralizing antibody evasion and membrane fusion by HCV, as orchestrated by E2 motifs such as hypervariable region 1 and antigenic site 412, as well as the organization of the transmembrane helices, including two internal to E1. This study addresses long-standing questions on the higher-order oligomeric arrangement of Hepacivirus envelope proteins and provides a critical framework in the design of novel HCV vaccine antigens.
Collapse
Affiliation(s)
- Elias Honerød Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Soerensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Fanalista
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Pontus Gourdon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Gammeltoft KA, Zhou Y, Ryberg LA, Pham LV, Binderup A, Hernandez CRD, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir. Viruses 2023; 15:1970. [PMID: 37766376 PMCID: PMC10536901 DOI: 10.3390/v15091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration-response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration-response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness.
Collapse
Affiliation(s)
- Karen Anbro Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Alzua GP, Pihl AF, Offersgaard A, Velázquez-Moctezuma R, Duarte Hernandez CR, Augestad EH, Fahnøe U, Mathiesen CK, Krarup H, Law M, Prentoe J, Bukh J, Gottwein JM. Identification of novel neutralizing determinants for protection against HCV. Hepatology 2023; 77:982-996. [PMID: 36056620 PMCID: PMC9936975 DOI: 10.1002/hep.32772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS HCV evasion of neutralizing antibodies (nAb) results in viral persistence and poses challenges to the development of an urgently needed vaccine. N-linked glycosylation of viral envelope proteins is a key mechanism for such evasion. To facilitate rational vaccine design, we aimed to identify determinants of protection of conserved neutralizing epitopes. APPROACH AND RESULTS Using a reverse evolutionary approach, we passaged genotype 1a, 1b, 2a, 3a, and 4a HCV with envelope proteins (E1 and E2) derived from chronically infected patients without selective pressure by nAb in cell culture. Compared with the original viruses, HCV recombinants, engineered to harbor substitutions identified in polyclonal cell culture-passaged viruses, showed highly increased fitness and exposure of conserved neutralizing epitopes in antigenic regions 3 and 4, associated with protection from chronic infection. Further reverse genetic studies of acquired E1/E2 substitutions identified positions 418 and 532 in the N1 and N6 glycosylation motifs, localizing to adjacent E2 areas, as key regulators of changes of the E1/E2 conformational state, which governed viral sensitivity to nAb. These effects were independent of predicted glycan occupancy. CONCLUSIONS We show how N-linked glycosylation motifs can trigger dramatic changes in HCV sensitivity to nAb, independent of glycan occupancy. These findings aid in the understanding of HCV nAb evasion and rational vaccine design, as they can be exploited to stabilize the structurally flexible envelope proteins in an open conformation, exposing important neutralizing epitopes. Finally, this work resulted in a panel of highly fit cell culture infectious HCV recombinants.
Collapse
Affiliation(s)
- Garazi P Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anne F Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Carlos R Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Elias H Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Christian K Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Henrik Krarup
- Department of Molecular Diagnostics , Aalborg University Hospital , Aalborg , Denmark.,Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Mansun Law
- Department of Immunology and Microbiology , The Scripps Research Institute , La Jolla , California , USA
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
4
|
Pihl AF, Feng S, Offersgaard A, Alzua GP, Augestad EH, Mathiesen CK, Jensen TB, Krarup H, Law M, Prentoe J, Christensen JP, Bukh J, Gottwein JM. Inactivated whole hepatitis C virus vaccine employing a licensed adjuvant elicits cross-genotype neutralizing antibodies in mice. J Hepatol 2022; 76:1051-1061. [PMID: 34990750 DOI: 10.1016/j.jhep.2021.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 μg/ml (mean of 36 μg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.
Collapse
Affiliation(s)
- Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Garazi Peña Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias Honerød Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian Kjaerulff Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tanja Bertelsen Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
High-Titer Hepatitis C Virus Production in a Scalable Single-Use High Cell Density Bioreactor. Vaccines (Basel) 2022; 10:vaccines10020249. [PMID: 35214707 PMCID: PMC8880717 DOI: 10.3390/vaccines10020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.
Collapse
|
6
|
Zhou Y, Gammeltoft KA, Galli A, Offersgaard A, Fahnøe U, Ramirez S, Bukh J, Gottwein JM. Efficacy of Ion-Channel Inhibitors Amantadine, Memantine and Rimantadine for the Treatment of SARS-CoV-2 In Vitro. Viruses 2021; 13:v13102082. [PMID: 34696509 PMCID: PMC8537953 DOI: 10.3390/v13102082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
We report the in vitro efficacy of ion-channel inhibitors amantadine, memantine and rimantadine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In VeroE6 cells, rimantadine was most potent followed by memantine and amantadine (50% effective concentrations: 36, 80 and 116 µM, respectively). Rimantadine also showed the highest selectivity index, followed by amantadine and memantine (17.3, 12.2 and 7.6, respectively). Similar results were observed in human hepatoma Huh7.5 and lung carcinoma A549-hACE2 cells. Inhibitors interacted in a similar antagonistic manner with remdesivir and had a similar barrier to viral escape. Rimantadine acted mainly at the viral post-entry level and partially at the viral entry level. Based on these results, rimantadine showed the most promise for treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Karen A. Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Judith M. Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (Y.Z.); (K.A.G.); (A.G.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
7
|
Ma CD, Imamura M, Talley DC, Rolt A, Xu X, Wang AQ, Le D, Uchida T, Osawa M, Teraoka Y, Li K, Hu X, Park SB, Chalasani N, Irvin PH, Dulcey AE, Southall N, Marugan JJ, Hu Z, Chayama K, Frankowski KJ, Liang TJ. Fluoxazolevir inhibits hepatitis C virus infection in humanized chimeric mice by blocking viral membrane fusion. Nat Microbiol 2020; 5:1532-1541. [PMID: 32868923 PMCID: PMC7677215 DOI: 10.1038/s41564-020-0781-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Fluoxazolevir is an aryloxazole-based entry inhibitor of hepatitis C virus (HCV). We show that fluoxazolevir inhibits fusion of HCV with hepatic cells by binding HCV envelope protein 1 to prevent fusion. Nine of ten fluoxazolevir resistance-associated substitutions are in envelope protein 1, and four are in a putative fusion peptide. Pharmacokinetic studies in mice, rats and dogs revealed that fluoxazolevir localizes to the liver. A 4-week intraperitoneal regimen of fluoxazolevir in humanized chimeric mice infected with HCV genotypes 1b, 2a or 3 resulted in a 2-log reduction in viraemia, without evidence of drug resistance. In comparison, daclatasvir, an approved HCV drug, suppressed more than 3 log of viraemia but is associated with the emergence of resistance-associated substitutions in mice. Combination therapy using fluoxazolevir and daclatasvir cleared HCV genotypes 1b and 3 in mice. Fluoxazolevir combined with glecaprevir and pibrentasvir was also effective in clearing multidrug-resistant HCV replication in mice. Fluoxazolevir may be promising as the next generation of combination drug cocktails for HCV treatment.
Collapse
Affiliation(s)
- Christopher D Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Daniel C Talley
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Amy Q Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Mitsutaka Osawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Kelin Li
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nishanth Chalasani
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parker H Irvin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andres E Dulcey
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan J Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Kevin J Frankowski
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Tsanyang Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
9
|
Virus Adaptation and Selection Following Challenge of Animals Vaccinated against Classical Swine Fever Virus. Viruses 2019; 11:v11100932. [PMID: 31658773 PMCID: PMC6833067 DOI: 10.3390/v11100932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Vaccines against classical swine fever have proven very effective in protecting pigs from this deadly disease. However, little is known about how vaccination impacts the selective pressures acting on the classical swine fever virus (CSFV). Here we use high-throughput sequencing of viral genomes to investigate evolutionary changes in virus populations following the challenge of naïve and vaccinated pigs with the highly virulent CSFV strain “Koslov”. The challenge inoculum contained an ensemble of closely related viral sequences, with three major haplotypes being present, termed A, B, and C. After the challenge, the viral haplotype A was preferentially located within the tonsils of naïve animals but was highly prevalent in the sera of all vaccinated animals. We find that the viral population structure in naïve pigs after infection is very similar to that in the original inoculum. In contrast, the viral population in vaccinated pigs, which only underwent transient low-level viremia, displayed several distinct changes including the emergence of 16 unique non-synonymous single nucleotide polymorphisms (SNPs) that were not detectable in the challenge inoculum. Further analysis showed a significant loss of heterogeneity and an increasing positive selection acting on the virus populations in the vaccinated pigs. We conclude that vaccination imposes a strong selective pressure on viruses that subsequently replicate within the vaccinated animal.
Collapse
|
10
|
Jensen SB, Fahnøe U, Pham LV, Serre SBN, Tang Q, Ghanem L, Pedersen MS, Ramirez S, Humes D, Pihl AF, Filskov J, Sølund CS, Dietz J, Fourati S, Pawlotsky J, Sarrazin C, Weis N, Schønning K, Krarup H, Bukh J, Gottwein JM. Evolutionary Pathways to Persistence of Highly Fit and Resistant Hepatitis C Virus Protease Inhibitor Escape Variants. Hepatology 2019; 70:771-787. [PMID: 30964552 PMCID: PMC6772116 DOI: 10.1002/hep.30647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance-associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1-4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156-RASs were not maintained. For genotypes 1 and 2, persistence of 156-RASs depended on genome-wide substitution networks, co-selected under continued PI treatment and identified by next-generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156-RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre-existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156-RASs, we observed genome-wide selection of substitutions under treatment. Conclusion: Comprehensive PI resistance profiling for HCV genotypes 1-6 revealed 156-RASs as key determinants of high-level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1-3 156-variants, which might pose a threat to clinically relevant combination treatments.
Collapse
Affiliation(s)
- Sanne Brun Jensen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stéphanie Brigitte Nelly Serre
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Qi Tang
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lubna Ghanem
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Schou Pedersen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical MicrobiologyCopenhagen University HospitalHvidovreDenmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daryl Humes
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Filskov
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesCopenhagen University HospitalHvidovreDenmark
| | - Julia Dietz
- Department of Internal Medicine 1University Hospital Frankfurt, and German Center for Infection Research, External Partner SiteFrankfurtGermany
| | - Slim Fourati
- National Reference Center for Viral Hepatitis B, C and D, Department of VirologyHenri Mondor Hospital, University of Paris‐Est, and INSERM U955CréteilFrance
| | - Jean‐Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and D, Department of VirologyHenri Mondor Hospital, University of Paris‐Est, and INSERM U955CréteilFrance
| | - Christoph Sarrazin
- Department of Internal Medicine 1University Hospital Frankfurt, and German Center for Infection Research, External Partner SiteFrankfurtGermany
- Medizinische Klinik II, St. Josefs‐HospitalWiesbadenGermany
| | - Nina Weis
- Department of Infectious DiseasesCopenhagen University HospitalHvidovreDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristian Schønning
- Department of Clinical MicrobiologyCopenhagen University HospitalHvidovreDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Krarup
- Department of Molecular DiagnosticsAalborg University HospitalAalborgDenmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Pihl AF, Offersgaard AF, Mathiesen CK, Prentoe J, Fahnøe U, Krarup H, Bukh J, Gottwein JM. High density Huh7.5 cell hollow fiber bioreactor culture for high-yield production of hepatitis C virus and studies of antivirals. Sci Rep 2018; 8:17505. [PMID: 30504788 PMCID: PMC6269495 DOI: 10.1038/s41598-018-35010-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection poses a serious global public health burden. Despite the recent development of effective treatments there is a large unmet need for a prophylactic vaccine. Further, antiviral resistance might compromise treatment efficiency in the future. HCV cell culture systems are typically based on Huh7 and derived hepatoma cell lines cultured in monolayers. However, efficient high cell density culture systems for high-yield HCV production and studies of antivirals are lacking. We established a system based on Huh7.5 cells cultured in a hollow fiber bioreactor in the presence or absence of bovine serum. Using an adapted chimeric genotype 5a virus, we achieved peak HCV infectivity and RNA titers of 7.6 log10 FFU/mL and 10.4 log10 IU/mL, respectively. Bioreactor derived HCV showed high genetic stability, as well as buoyant density, sensitivity to neutralizing antibodies AR3A and AR4A, and dependency on HCV co-receptors CD81 and SR-BI comparable to that of HCV produced in monolayer cell cultures. Using the bioreactor platform, treatment with the NS5A inhibitor daclatasvir resulted in HCV escape mediated by the NS5A resistance substitution Y93H. In conclusion, we established an efficient high cell density HCV culture system with implications for studies of antivirals and vaccine development.
Collapse
Affiliation(s)
- Anne F Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna F Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian K Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Shen F, Li Y, Wang Y, Sozzi V, Revill PA, Liu J, Gao L, Yang G, Lu M, Sutter K, Dittmer U, Chen J, Yuan Z. Hepatitis B virus sensitivity to interferon-α in hepatocytes is more associated with cellular interferon response than with viral genotype. Hepatology 2018; 67:1237-1252. [PMID: 29059468 DOI: 10.1002/hep.29609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Interferon-α (IFN-α) is used to treat chronic hepatitis B virus (HBV) infection, but only 20%-40% of patients respond well. Clinical observations have suggested that HBV genotype is associated with the response to IFN therapy; however, its role in viral responsiveness to IFN in HBV-infected hepatocytes remains unclear. Here, we produced infectious virions of HBV genotypes A to D to infect three well-recognized cell-culture-based HBV infection systems, including primary human hepatocytes (PHH), differentiated HepaRG (dHepaRG), and HepG2-NTCP cells to quantitatively compare the antiviral effect of IFN-α on HBV across genotypes and cell models. The efficacy of IFN-α against HBV in hepatocytes was generally similar across genotypes A2, B5, C2, and D3; however, it was significantly different among the infection models given that the half maximal inhibitory concentration value of IFN-α for inhibition of viral DNA replication in PHH (<20 U/mL) and dHepaRG cells were much lower than that in HepG2-NTCP cells (>500 U/mL). Notably, even in PHH, IFN-α did not reduce HBV covalently closed circular DNA at the concentrations for which viral antigens and DNA replication intermediates were strongly reduced. The three cell-culture models exhibited differential cellular response to IFN-α. The genes reported to be associated with responsiveness to IFN-α in patients were robustly induced in PHH while weakly induced in HepG2-NTCP cells upon IFN-α treatment. Reduction or promotion of IFN response in PHH or HepG2-NTCP cells significantly attenuated or improved the inhibitory capacity of IFN-α on HBV replication, respectively. CONCLUSION In the cell-culture-based HBV infection models, the sensitivity of HBV to IFN-α in hepatocytes is determined more by the cell-intrinsic IFN response than by viral genotype, and improvement of the IFN response in HepG2-NTCP cells promotes the efficacy of IFN-α against HBV. (Hepatology 2018;67:1237-1252).
Collapse
Affiliation(s)
- Fang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Roche Innovation Center Shanghai, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| | - Guang Yang
- Roche Innovation Center Shanghai, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Caudai C, Materazzi A, Saladini F, Di Giambenedetto S, Torti C, Ricciardi B, Rossetti B, Almi P, De Luca A, Zazzi M. Natural NS5A inhibitor resistance associated substitutions in hepatitis C virus genotype 1 infected patients from Italy. Clin Microbiol Infect 2017; 24:308.e5-308.e8. [PMID: 28811242 DOI: 10.1016/j.cmi.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Genetic variability in NS5A is associated with different levels of resistance to the currently licensed NS5A inhibitors. The aim of this study was to detect NS5A inhibitor resistance associated substitutions (RASs) in hepatitis C virus (HCV) genotype 1 (GT1) patients who are naive to direct-acting HCV antivirals. METHODS Amplification, Sanger sequencing and phylogenetic analysis of the HCV NS5A region were performed on plasma obtained from 122 consecutive patients with HCV chronic infection attending four different clinics in Italy. RESULTS NS5A inhibitor RASs were detected in 14/61 (23.0%) HCV GT1b and 3/61 (4.9%) HCV GT1a infected patients (p 0.007). The pan-genotypic RAS Y93H was detected in 1 (1.6%) GT1a and 4 (6.6%) GT1b patients. GT1a sequences clustered into two different clades with RASs detected in 1/34 (2.9%) clade I and 2/27 (7.4%) clade II sequences. CONCLUSIONS Although the impact of naturally occurring NS5A RASs might be limited with upcoming pan-genotypic treatment regimens, this information is still useful to map naturally occurring HCV variants in different geographic areas in the context of current HCV therapy.
Collapse
Affiliation(s)
- C Caudai
- Microbiology and Virology Unit, Siena University Hospital, Siena, Italy.
| | - A Materazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - F Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - S Di Giambenedetto
- Infectious Diseases Clinic, Catholic University of Sacred Heart, Rome, Italy
| | - C Torti
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - B Ricciardi
- Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy
| | - B Rossetti
- Infectious Diseases Clinic, Catholic University of Sacred Heart, Rome, Italy; Infectious Diseases Unit, Siena University Hospital, Italy
| | - P Almi
- Unit of Infectious Diseases and Hepatology, Siena University Hospital, Siena, Italy
| | - A De Luca
- Infectious Diseases Unit, Siena University Hospital, Italy
| | - M Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Naturally Occurring Fc-Dependent Antibody From HIV-Seronegative Individuals Promotes HIV-Induced IFN-α Production. Sci Rep 2016; 6:37493. [PMID: 27881846 PMCID: PMC5121582 DOI: 10.1038/srep37493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
A majority of adults without HIV infection and with a low risk of HIV-exposure have plasma IgG antibodies that enhance the rate and magnitude of HIV-induced interferon alpha (IFN-α) production. Fc-dependent IgG-HIV complexes induce IFN-α rapidly and in high titers in response to HIV concentrations that are too low to otherwise stimulate an effective IFN-α response. IFN-α promoting antibody (IPA) counters HIV-specific inhibition of IFN-α production, and compensates for the inherent delay in IFN-α production common to HIV infection and other viruses. Naturally occurring IPA has the potential to initiate a potent IFN-α response early in the course of HIV mucosal invasion in time to terminate infection prior to the creation of a pool of persistently infected cells. The current study adds IPA as a mediator of an Fc-dependent antiviral state capable of preventing HIV infection.
Collapse
|
15
|
Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle. Antimicrob Agents Chemother 2016; 60:3563-78. [PMID: 27021330 DOI: 10.1128/aac.02929-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research.
Collapse
|
16
|
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12:217. [PMID: 26666318 PMCID: PMC4678629 DOI: 10.1186/s12985-015-0450-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
18
|
Adaptive Mutations Enhance Assembly and Cell-to-Cell Transmission of a High-Titer Hepatitis C Virus Genotype 5a Core-NS2 JFH1-Based Recombinant. J Virol 2015; 89:7758-75. [PMID: 25995244 DOI: 10.1128/jvi.00039-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Recombinant hepatitis C virus (HCV) clones propagated in human hepatoma cell cultures yield relatively low infectivity titers. Here, we adapted the JFH1-based Core-NS2 recombinant SA13/JFH1C3405G,A3696G (termed SA13/JFH1orig), of the poorly characterized genotype 5a, to Huh7.5 cells, yielding a virus with greatly improved spread kinetics and an infectivity titer of 6.7 log10 focus-forming units (FFU)/ml. We identified several putative adaptive amino acid changes. In head-to-head infections at fixed multiplicities of infection, one SA13/JFH1orig mutant termed SA13/JFH1Core-NS5B, containing 13 amino acid changes (R114W and V187A [Core]; V235L [E1]; T385P [E2]; L782V [p7]; Y900C [NS2]; N2034D, E2238G, V2252A, L2266P, and I2340T [NS5A]; A2500S and V2841A [NS5B]), displayed fitness comparable to that of the polyclonal high-titer adapted virus. Single-cycle virus production assays in CD81-deficient Huh7-derived cells demonstrated that these changes did not affect replication but increased HCV assembly and specific infectivity as early as 24 h posttransfection. Infectious coculture assays in Huh7.5 cells showed a significant increase in cell-to-cell transmission for SA13/JFH1Core-NS5B viruses as well as viruses with only p7 and nonstructural protein mutations. Interestingly, the E2 hypervariable region 1 (HVR1) mutation T385P caused (i) increased sensitivity to neutralizing patient IgG and human monoclonal antibodies AR3A and AR4A and (ii) increased accessibility of the CD81 binding site without affecting the usage of CD81 and SR-BI. We finally demonstrated that SA13/JFH1orig and SA13/JFH1Core-NS5B, with and without the E2 mutation T385P, displayed similar biophysical properties following iodixanol gradient ultracentrifugation. This study has implications for investigations requiring high virus concentrations, such as studies of HCV particle composition and development of whole-virus vaccine antigens. IMPORTANCE Hepatitis C virus (HCV) is a major global health care burden, affecting more than 150 million people worldwide. These individuals are at high risk of developing severe end-stage liver diseases. No vaccine exists. While it is possible to produce HCV particles resembling isolates of all HCV genotypes in human hepatoma cells (HCVcc), production efficacy varies. Thus, for several important studies, including vaccine development, in vitro systems enabling high-titer production of diverse HCV strains would be advantageous. Our study offers important functional data on how cell culture-adaptive mutations identified in genotype 5a JFH1-based HCVcc permit high-titer culture by affecting HCV genesis through increasing virus assembly and HCV fitness by enhancing the virus specific infectivity and cell-to-cell transmission ability, without influencing the biophysical particle properties. High-titer HCVcc like the one described in this study may be pivotal in future vaccine-related studies where large quantities of infectious HCV particles are necessary.
Collapse
|
19
|
Zhou Y, Zhang Y, Moorman JP, Yao ZQ, Jia ZS. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis. Immunology 2014; 143:319-30. [PMID: 24965611 DOI: 10.1111/imm.12349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | |
Collapse
|
20
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
21
|
Rausell A, Telenti A. Genomics of host–pathogen interactions. Curr Opin Immunol 2014; 30:32-8. [DOI: 10.1016/j.coi.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 01/04/2023]
|
22
|
Mathiesen CK, Jensen TB, Prentoe J, Krarup H, Nicosia A, Law M, Bukh J, Gottwein JM. Production and characterization of high-titer serum-free cell culture grown hepatitis C virus particles of genotype 1-6. Virology 2014; 458-459:190-208. [PMID: 24928051 DOI: 10.1016/j.virol.2014.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Recently, cell culture systems producing hepatitis C virus particles (HCVcc) were developed. Establishment of serum-free culture conditions is expected to facilitate development of a whole-virus inactivated HCV vaccine. We describe generation of genotype 1-6 serum-free HCVcc (sf-HCVcc) from Huh7.5 hepatoma cells cultured in adenovirus expression medium. Compared to HCVcc, sf-HCVcc showed 0.6-2.1 log10 higher infectivity titers (4.7-6.2 log10 Focus Forming Units/mL), possibly due to increased release and specific infectivity of sf-HCVcc. In contrast to HCVcc, sf-HCVcc had a homogeneous single-peak density profile. Entry of sf-HCVcc depended on HCV co-receptors CD81, LDLr, and SR-BI, and clathrin-mediated endocytosis. HCVcc and sf-HCVcc were neutralized similarly by chronic-phase patient sera and by human monoclonal antibodies targeting conformational epitopes. Thus, we developed serum-free culture systems producing high-titer single-density sf-HCVcc, showing similar biological properties as HCVcc. This methodology has the potential to advance HCV vaccine development and to facilitate biophysical studies of HCV.
Collapse
Affiliation(s)
- Christian K Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tanja B Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Henrik Krarup
- Department of Clinical Biochemistry, Section of Molecular Diagnostics, Aalborg University Hospital, Fredrik Bajers Vej 5, 9220 Aalborg, Denmark
| | - Alfredo Nicosia
- CEINGE, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, 80131, Naples, Italy; Okairos, viale Citta' d' Europa 279, 00144, Rome, Italy
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
23
|
Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus. J Virol 2013; 88:1725-39. [PMID: 24257605 DOI: 10.1128/jvi.02017-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypervariable region 1 (HVR1) of envelope protein 2 (E2) of hepatitis C virus (HCV) serves important yet undefined roles in the viral life cycle. We previously showed that the viability of HVR1-deleted JFH1-based recombinants with Core-NS2 of H77 (H77(ΔHVR1), genotype 1a) and S52 (S52(ΔHVR1), genotype 3a) in Huh7.5 cells was rescued by E2 substitutions N476D/S733F and an E1 substitution, A369V, respectively; HVR1-deleted J6 (J6(ΔHVR1), genotype 2a) was fully viable. In single-cycle production assays, where HCV RNA was transfected into entry-deficient Huh7-derived S29 cells with low CD81 expression, we found no effect of HVR1 deletion on replication or particle release for H77 and S52. HCV pseudoparticle assays in Huh7.5 cells showed that HVR1 deletion decreased entry by 20- to 100-fold for H77, J6, and S52; N476D/S733F restored entry for H77(ΔHVR1), while A369V further impaired S52(ΔHVR1) entry. We investigated receptor usage by antibody blocking and receptor silencing in Huh7.5 cells, followed by inoculation of parental and HVR1-deleted HCV recombinants. Compared to parental viruses, scavenger receptor class B type I (SR-BI) dependency was decreased for H77(ΔHVR1/N476D/S733F), H77(N476D/S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1-deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served ApoE-independent but HVR1-dependent functions in HCV entry.
Collapse
|