1
|
Gu Z, Jiang Q, Abulaiti A, Chen X, Li M, Gao N, Guan G, Zhang T, Yang D, Xi J, Yu G, Liu S, Zhu Z, Gao Z, Zhao J, Huang H, Chen X, Lu F. Hepatitis B virus enhancer 1 activates preS1 and preS2 promoters of integrated HBV DNA impairing HBsAg secretion. JHEP Rep 2024; 6:101144. [PMID: 39253701 PMCID: PMC11381774 DOI: 10.1016/j.jhepr.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
Background & Aims The expression of HBsAg from integrated HBV DNA limits the achievement of functional cure for chronic hepatitis B. Thus, characterising the unique expression and secretion of HBsAg derived from integrated HBV DNA is of clinical significance. Methods A total of 563 treatment-naive patients and 62 functionally cured patients were enrolled, and HBsAg and HBcAg immunohistochemistry of their liver biopsy tissues was conducted followed by semi-quantitative analysis. Then, based on stratified analysis of HBeAg-positive and -negative patients, long-read RNA sequencing analysis, as well as an in vitro HBV integration model, we explored the HBsAg secretion characteristics of integrated HBV DNA and underlying mechanisms. Results In contrast to the significantly lower serum HBsAg levels, no significant decrease of intrahepatic HBsAg protein was observed in HBeAg-negative patients, as compared with HBeAg-positive patients. The results of long-read RNA sequencing of liver tissues from patients with chronic HBV infection and in vitro studies using integrated HBV DNA mimicking dslDNA plasmid revealed that, the lower HBsAg secretion efficiency seen in HBeAg-negative patients might be attributed to an increased proportion of preS1 mRNA derived from integrated HBV DNA instead of covalently closed circular DNA. The latter resulted in an increased L-HBsAg proportion and impaired HBsAg secretion. Enhancer 1 (EnhI) in integrated HBV DNA could retarget preS1 (SP1) and preS2 (SP2) promoters to disrupt their transcriptional activity balance. Conclusions The secretion of HBsAg originating from integrated HBV DNA was impaired. Mechanistically, functional deficiency of core promoter leads to retargeting of EnhI and thus uneven activation of the SP1 over the SP2 promoter, resulting in an increase in the proportion of L-HBsAg. Impact and implications Integrated hepatitis B virus (HBV) DNA can serve as an important reservoir for HBV surface antigen (HBsAg) expression, and this limits the achievement of a functional cure. This study revealed that secretion efficiency is lower for HBsAg derived from integrated HBV DNA than HBsAg derived from covalently closed circular DNA, as determined by the unique sequence features of integrated HBV DNA. This study can broaden our understanding of the role of HBV integration and shed new light on antiviral strategies to facilitate a functional cure. We believe our results are of great general interest to a broad audience, including patients and patient organisations, the medical community, academia, the life science industry and the public.
Collapse
Affiliation(s)
- Zhiqiang Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qianqian Jiang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Abudurexiti Abulaiti
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Mingwei Li
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Danli Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingyuan Xi
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhijun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongxin Huang
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
2
|
Zhang J, Wang Q, Yuan W, Li J, Yuan Q, Zhang J, Xia N, Wang Y, Li J, Tong S. Both middle and large envelope proteins can mediate neutralization of hepatitis B virus infectivity by anti-preS2 antibodies: escape by naturally occurring preS2 deletions. J Virol 2024; 98:e0192923. [PMID: 39078152 PMCID: PMC11334434 DOI: 10.1128/jvi.01929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenqing Yuan
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jing Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Liu L, Wang H, Liu L, Cheng F, Aisa HA, Li C, Meng S. Rupestonic Acid Derivative YZH-106 Promotes Lysosomal Degradation of HBV L- and M-HBsAg via Direct Interaction with PreS2 Domain. Viruses 2024; 16:1151. [PMID: 39066313 PMCID: PMC11281537 DOI: 10.3390/v16071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) is not only the biomarker of hepatitis B virus (HBV) infection and expression activity in hepatocytes, but it also contributes to viral specific T cell exhaustion and HBV persistent infection. Therefore, anti-HBV therapies targeting HBsAg to achieve HBsAg loss are key approaches for an HBV functional cure. In this study, we found that YZH-106, a rupestonic acid derivative, inhibited HBsAg secretion and viral replication. Further investigation demonstrated that YZH-106 promoted the lysosomal degradation of viral L- and M-HBs proteins. A mechanistic study using Biacore and docking analysis revealed that YZH-106 bound directly to the PreS2 domain of L- and M-HBsAg, thereby blocking their entry into the endoplasmic reticulum (ER) and promoting their degradation in cytoplasm. Our work thereby provides the basis for the design of a novel compound therapy to target HBsAg against HBV infection.
Collapse
Affiliation(s)
- Lanlan Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Haoyu Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Tepjanta P, Fujiyama K, Misaki R, Kimkong I. The N-linked glycosylation modifications in the hepatitis B surface protein impact cellular autophagy, HBV replication, and HBV secretion. PLoS One 2024; 19:e0299403. [PMID: 38489292 PMCID: PMC10942060 DOI: 10.1371/journal.pone.0299403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.
Collapse
Affiliation(s)
- Patcharin Tepjanta
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Liu M, Song Y, Li Y, Yang X, Zhuang H, Li J, Wang J. C2729T mutation associated with HBV mother-to-child transmission reduces HBV production via suppressing LHBs expression. Virulence 2023; 14:2189676. [PMID: 36919573 PMCID: PMC10026911 DOI: 10.1080/21505594.2023.2189676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Mother-to-child transmission (MTCT) is still the main route of hepatitis B virus (HBV) infection. However, the virological factors affecting HBV MTCT have not been fully elucidated. In this study, based on a prospective cohort of mother-infant pairs with positive maternal hepatitis B surface antigen (HBsAg), we found that the average nucleotide mutation rate of HBV preS1 promoter (SPI) region in the immunoprophylaxis success group was significantly higher than that in the immunoprophylaxis failure group. Among the nucleotide mutations of the HBV SPI region, the C2729T mutation had the highest frequency. Next, we found that the C2729T mutation promoted HBsAg release but reduced HBV production by suppressing the expression of large hepatitis B surface antigen (LHBs), and overexpressing LHBs could rescue this phenomenon. Based on the fact that the C2729T mutation could alter the binding site of hepatocyte nuclear factor 1 (HNF1) in the HBV SPI region, we uncovered that such an alteration could downregulate the transcriptional activity of SPI by attenuating the binding ability of HNF1 and HBV SPI region. This study suggests that HBV C2729T mutation may contribute to the immunoprophylaxis success of HBV MTCT by reducing HBV production, which supplements the virological factors affecting HBV MTCT.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yarong Song
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yi Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jie Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
6
|
Sun H, Chang L, Yan Y, Ji H, Jiang X, Song S, Xiao Y, Lu Z, Wang L. Naturally occurring pre-S mutations promote occult HBV infection by affecting pre-S2/S promoter activity. Antiviral Res 2022; 208:105448. [DOI: 10.1016/j.antiviral.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
7
|
Lin X, Zheng Y, Li H, Lu J, Ren S, Liu Y, Wang X, Zheng S, Ma L, Cao Z, Chen X. Serum hepatitis B virus large and medium surface proteins as novel tools for predicting HBsAg clearance. Front Immunol 2022; 13:1028921. [PMID: 36211341 PMCID: PMC9537546 DOI: 10.3389/fimmu.2022.1028921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThere is still lack of reliable predictors for hepatitis B surface antigen (HBsAg) clearance. Recent studies have shown that the levels of large (LHBs) and medium hepatitis B surface proteins (MHBs) are closely related to antiviral efficacy. This study aimed to investigate the possibility of LHB and MHB levels to predict HBsAg clearance.MethodsAn inactive HBsAg carriers (IHCs) cohort that had received pegylated interferon (Peg-IFN) treatment was divided into the HBsAg-cleared group (R group) and the HBsAg non-cleared group (NR group) based on whether HBsAg was cleared at 96 weeks. We detected the levels of LHBs and MHBs to evaluate the possibility of predicting HBsAg clearance.ResultsThere were 39 patients in the R group and 21 in the NR group. The total HBsAg, LHB, and MHB levels at baseline and at 12 weeks were significantly lower in the R group than in the NR group (all p< 0.05). Multivariate logistic regression indicated that LHB and MHB levels at baseline and 12 weeks were independent predictors of HBsAg clearance (OR = 0.435, p = 0.016; OR = 0.136, p = 0.003; OR = 0.137, p = 0.033; OR = 0.049, p = 0.043). The area under the curve (AUC) for the baseline and 12-week LHB and MHB levels was 0.827-0.896, which were greater than that of the total HBsAg level at baseline and 12-week (AUC: 0.654-0.755). Compared with the prediction results of a single indicator, the combination of LHB and MHB levels had better value in predicting HBsAg clearance. The AUCs of combination factor 1, constructed from baseline LHB and MHB, and combination factor 2, constructed from 12-week LHB and MHB, were 0.922 and 0.939, respectively, and the sensitivity (82.05%-100.00%) and specificity (85.71%-100.00%) were both high. The combined indicators based on baseline LHBs ≤ 13.99 ng/mL and MHBs ≤ 7.95 ng/mL predicted HBsAg clearance rate of more than 90%.ConclusionBaseline and 12-week LHB and MHB levels can predict HBsAg clearance obtained by Peg-IFN therapy in IHCs, and the predictive value is higher than that of the total HBsAg levels.
Collapse
Affiliation(s)
- Xiao Lin
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yanhong Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hong Li
- Third Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junfeng Lu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yisi Liu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Wang
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lina Ma
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhenhuan Cao
- Third Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenhuan Cao, ; Xinyue Chen,
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenhuan Cao, ; Xinyue Chen,
| |
Collapse
|
8
|
Molecular characteristics of the full-length genome of occult hepatitis B virus from blood donors in China. Sci Rep 2022; 12:8194. [PMID: 35581341 PMCID: PMC9114411 DOI: 10.1038/s41598-022-12288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
The characteristics of a large sample size of the full-length genome of occult hepatitis B virus (HBV) infection (OBI) have not been extensively explored in China. Voluntary blood donors who were HBsAg-negative/HBV NAT-positive (HBsAg−/HBV NAT+) were identified by blood screening and recruited. Blood samples were tested for HBV serologic markers, viral loads, and PCR to identify OBI. HBV full-length genomes were obtained by amplifying two fragments using nested PCR. The characterization of OBI strains was based on sequence analyses compared with HBsAg+ strains obtained from the same donor population. Of the 50 full-length genomes of 172 identified OBI strains, 33 were classified as genotype B (OBIB) and 17 strains as genotype C (OBIC). Significantly higher nucleotide variabilities were observed in the Pre-S2/S promoter region (SP2) and core upstream regulatory sequence (CURS) in OBIB than in their HBsAg+ controls (P < 0.05). Both OBIB and OBIC showed higher amino acid (aa) variabilities in Pol and Pre-S/S regions than their controls (P < 0.05). In addition, 19 novel OBI-related mutations were found spanning the four open reading frames (ORFs) of the HBV genome. Four novel deletions and one novel insertion were also found in OBIC strains. Several novel OBI-related mutations spanning the four ORFs of the virus were identified by characterizing a large sample size of the full-length OBI genome, which may affect the production of HBsAg and contribute to the occult infection of HBV.
Collapse
|
9
|
Xu M, Li C, Ding J, Wu M, Tang Y, Yuan Z, Zhang X. The role of hepatitis B virus surface proteins in regulating the maturation and secretion of complete and incomplete virions. J Gen Virol 2022; 103. [PMID: 35438623 DOI: 10.1099/jgv.0.001733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of various forms of hepatitis B virus (HBV) surface proteins regulates the release of mature virion, but whether they affect the release of other incomplete viral particles, such as naked capsid, is not clear. Here, by stable overexpression of large or middle/small hepatitis B surface proteins (LHBs, M/SHBs) in HepAD38 cells, we evaluated their effects on the release of complete and incomplete viral particles. Overproduction of LHBs inhibited the release of all surface proteins, which increased the ratio of naked capsids/virions. This effect was accompanied by the elevated extracellular HBV RNA. On the other hand, overexpression of M/SHBs greatly improved the secretion of enveloped viral and subviral particles. In situ visualization of viral DNA and LHBs revealed intracellular retention of mature virions when LHBs were overexpressed. These results indicate that the molecular decision on secretion of enveloped or unenveloped viral particles is modulated by the intracellular ratio of large, middle and small surface antigens. This mechanism may be relevant in the progression and resolution of HBV-induced chronic liver disease.
Collapse
Affiliation(s)
- Mingzhu Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Chang Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Yijie Tang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China.,Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
10
|
5' preS1 mutations to prevent large envelope protein expression from hepatitis B virus genotype A or genotype D markedly increase polymerase-envelope fusion protein. J Virol 2022; 96:e0172321. [PMID: 35019714 PMCID: PMC8906437 DOI: 10.1128/jvi.01723-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) large (L) envelope protein is translated from 2.4-kb RNA. It contains preS1, preS2, and S domains and is detected in Western blot as p39 and gp42. The 3.5-kb pregenomic RNA produces core and polymerase (P) proteins. We generated L-minus mutants of a genotype A clone and a genotype D clone from 1.1mer or 1.3mer construct, with the former overproducing pregenomic RNA. Surprisingly, mutating preS1 ATG codon(s) or introducing a nonsense mutation soon afterwards switched secreted p39/gp42 into p41/p44 doublet, with its amount further increased by a nonsense mutation in the core gene. A more downstream preS1 nonsense mutation prevented p41/p44 production. Tunicamycin treatment confirmed p44 as glycosylated form of p41. In this regard splicing of 3.5-kb RNA to generate nt2447-nt2902 junction for genotype D enables translation of p43, with N-terminal 47 residues of P protein fused to C-terminal 371 residues of L protein. Indeed p41/p44 were detectable by an antibody against N-terminus of P protein, and eliminated by a nonsense mutation at 5' P gene or a point mutation to prevent that splicing. Therefore, lost L (and core) protein expression from 1.1mer or 1.3mer construct markedly increased p41/p44 (p43), the P-L fusion protein. Co-transfection with an expression construct for L/M proteins reversed high extracellular p41/p44 associated with L-minus mutants, suggesting that L protein retains p43 in wild-type HBV to promote its intracellular degradation. Considering that p43 lacks N-terminal preS1 sequence critical for receptor binding, its physiological significance during natural infection and therapeutic potential warrant further investigation. IMPORTANCE The large (L) envelope protein of hepatitis B virus (HBV) is translated from 2.4-kb RNA and detected in Western blot as p39 and gp42. Polymerase (P) protein is expressed at a low level from 3.5-kb RNA. The major spliced form of 3.5-kb RNA will produce a fusion protein between the first 47 residues of P protein and a short irrelevant sequence, although also at a low level. Another spliced form has the same P protein sequence fused to L protein missing its first 18 residues. We found that some point mutations to eliminate L and core protein expression from overlength HBV DNA constructs converted p39/gp42 into p41/gp44, which turned out to be that P-L fusion protein. Thus, the P-L fusion protein can be expressed at extremely high level when L protein expression is prevented. The underlying mechanism and functional significance of this variant form of L protein warrant further investigation.
Collapse
|
11
|
Wang H, Liao F, Xie J, Gao W, Wang M, Huang J, Xu R, Liao Q, Shan Z, Zheng Y, Rong X, Li C, Fu Y. E2 Site Mutations in S Protein Strongly Affect Hepatitis B Surface Antigen Detection in the Occult Hepatitis B Virus. Front Microbiol 2021; 12:664833. [PMID: 34867835 PMCID: PMC8635997 DOI: 10.3389/fmicb.2021.664833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
The mechanism of occult hepatitis B infection (OBI) has not yet been fully clarified. Our previous research found that novel OBI-related mutation within S protein, E2G, could cause the hepatitis B surface antigen (HBsAg) secretion impairment, which resulted in intracellular accumulation in OBI of genotype B. Here, to further explore the role of E2 site mutations in the occurrence of OBI, we analyzed these site mutations among 119 OBI strains identified from blood donors. Meanwhile, 109 wild-type HBV strains (HBsAg positive/HBV DNA positive) were used as control group. Furthermore, to verify the E2 site mutations, two conservative 1.3-fold full-gene expression vectors of HBV genotype B and C (pHBV1.3B and pHBV1.3C) were constructed. Then, the E2 mutant plasmids on the basis of pHBV1.3B or pHBV1.3C were constructed and transfected into HepG2 cells, respectively. The extracellular and intracellular HBsAg were analyzed by electrochemical luminescence and cellular immunohistochemistry. The structural characteristics of S proteins with or without E2 mutations were analyzed using relevant bioinformatics software. E2 mutations (E2G/A/V/D) existed in 21.8% (26/119) of OBIs, while no E2 mutations were found in the control group. E2G/A/V/D mutations could strongly affect extracellular and intracellular level of HBsAg (p < 0.05). Notably, unlike E2G in genotype B that could cause HBsAg intracellular accumulation and secretion decrease (p < 0.05), E2G in genotype C could lead to a very significant HBsAg decrease both extracellularly (0.46% vs. pHBV1.3C) and intracellularly (11.2% vs. pHBV1.3C) (p < 0.05). Meanwhile, for E2G/A mutations, the relative intracellular HBsAg (110.7-338.3% vs. extracellular) and its fluorescence intensity (1.5-2.4-fold vs. with genotype-matched pHBV1.3B/C) were significantly higher (p < 0.05). Furthermore, N-terminal signal peptides, with a typical cleavage site for peptidase at positions 27 and 28, were exclusively detected in S proteins with secretion-defective mutants (E2G/A). Our findings suggest that: (1) E2G/A/V/D mutations were confirmed to significantly influence the detection of HBsAg, (2) the underlying mechanism of OBI caused by E2G mutation is quite different between genotype B and genotype C, and (3) E2G/A could produce a N-terminal truncated S protein, which might attribute to the HBsAg secretion impairment in the OBIs.
Collapse
Affiliation(s)
- Hao Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Junmo Xie
- Guangzhou Blood Center, Guangzhou, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Ru Xu
- Guangzhou Blood Center, Guangzhou, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, China
| | | | | | - Xia Rong
- Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
12
|
Lin J, Li J, Xie P, Han Y, Yu D, Chen J, Zhang X. Hepatitis B virus middle surface antigen loss promotes clinical variant persistence in mouse models. Virulence 2021; 12:2868-2882. [PMID: 34738866 PMCID: PMC8632123 DOI: 10.1080/21505594.2021.1999130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) middle surface antigen (MHBs) mutation or deletion occurs in patients with chronic HBV infection. However, the functional role of MHBs in HBV infection is still an enigma. Here, we reported that 7.33% (11/150) isolates of CHB patients had MHBs start codon mutations compared with 0.00% (0/146) in acute hepatitis B (AHB) patients. Interestingly, MHBs loss accounted for 11.88% (126/1061) isolates from NCBI GenBank, compared with 0.09% (1/1061) and 0.00% (0/1061) for HBV large surface antigen (LHBs) loss and HBV small surface antigen (SHBs) loss, respectively. One persistent HBV clone of genotype B (B56, MHBs loss) from a CHB patient was hydrodynamically injected into BALB/c mice. B56 persisted for >70 weeks in BALB/c mice, whereas B56 with restored MHBs (B56M+) was quickly cleared within 28 days. Serum cytokine assays demonstrated that CXCL1, CXCL2, IL-6 and IL-33 were significantly increased during rapid HBV clearance in B56M+ mice. Furthermore, the enhancers and promoters of B56 were proved to be required for B56 persistence in mice. Ablating MHBs expression improved the persistence of a new clone (HBV1.3, genotype B) which was recreated by using enhancers and promoters of B56. These data demonstrated that MHBs deletion can promote the persistence of specific HBV variants in a hydrodynamic mouse model. MHBs re-expression restored a rapid clearance of HBV, which was accompanied by cytokine responses including the elevation of CXCL1, CXCL2, IL-6 and IL-33.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Xie
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lost Small Envelope Protein Expression from Naturally Occurring PreS1 Deletion Mutants of Hepatitis B Virus Is Often Accompanied by Increased HBx and Core Protein Expression as Well as Genome Replication. J Virol 2021; 95:e0066021. [PMID: 33910956 PMCID: PMC8223946 DOI: 10.1128/jvi.00660-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) transcribes coterminal mRNAs of 0.7 to 3.5 kb from the 3.2-kb covalently closed circular DNA, with the 2.1-kb RNA being most abundant. The 0.7-kb RNA produces HBx protein, a transcriptional transactivator, while the 3.5-kb pregenomic RNA (pgRNA) drives core and P protein translation as well as genome replication. The large (L) and small (S) envelope proteins are translated from the 2.4-kb and 2.1-kb RNAs, respectively, with the majority of the S protein being secreted as noninfectious subviral particles and detected as hepatitis B surface antigen (HBsAg). pgRNA transcription could inhibit transcription of subgenomic RNAs. The present study characterized naturally occurring in-frame deletions in the 3' preS1 region, which not only codes for L protein but also serves as the promoter for 2.1-kb RNA. The human hepatoma cell line Huh7 was transiently transfected with subgenomic expression constructs for envelope (and HBx) proteins, dimeric constructs, or constructs mimicking covalently closed circular DNA. The results confirmed lost 2.1-kb RNA transcription and HBsAg production from many deletion mutants, accompanied by increases in other (especially 2.4-kb) RNAs, intracellular HBx and core proteins, and replicative DNA but impaired virion and L protein secretion. The highest intracellular L protein levels were achieved by mutants that had residual S protein expression or retained the matrix domain in L protein. Site-directed mutagenesis of a high replicating deletion mutant suggested that increased HBx protein expression and blocked virion secretion both contributed to the high replication phenotype. Our findings could help explain why such deletions are selected at a late stage of chronic HBV infection and how they contribute to viral pathogenesis. IMPORTANCE Expression of hepatitis B e antigen (HBeAg) and overproduction of HBsAg by wild-type HBV are implicated in the induction of immune tolerance to achieve chronic infection. How HBV survives the subsequent immune clearance phase remains incompletely understood. Our previous characterization of core promoter mutations to reduce HBeAg production revealed the ability of the 3.5-kb pgRNA to diminish transcription of coterminal RNAs of 2.4 kb, 2.1 kb, and 0.7 kb. The later stage of chronic HBV infection often selects for in-frame deletions in the preS region. Here, we found that many 3' preS1 deletions prevented transcription of the 2.1-kb RNA for HBsAg production, which was often accompanied by increases in intracellular 3.5-, 0.7-, and especially 2.4-kb RNAs, HBx and core proteins, and replicative DNA but lost virion secretion. These findings established the biological consequences of preS1 deletions, thus shedding light on why they are selected and how they contribute to hepatocarcinogenesis.
Collapse
|
14
|
Zhang J, Wang Y, Fu S, Yuan Q, Wang Q, Xia N, Wen Y, Li J, Tong S. Role of Small Envelope Protein in Sustaining the Intracellular and Extracellular Levels of Hepatitis B Virus Large and Middle Envelope Proteins. Viruses 2021; 13:613. [PMID: 33918367 PMCID: PMC8065445 DOI: 10.3390/v13040613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins. S protein drives virion and subviral particle secretion, whereas L protein inhibits subviral particle secretion but coordinates virion morphogenesis. We previously found that preventing S protein expression from a subgenomic construct eliminated M protein. The present study further examined impact of S protein on L and M proteins. Mutations were introduced to subgenomic construct of genotype A or 1.1 mer replication construct of genotype A or D, and viral proteins were analyzed from transfected Huh7 cells. Mutating S gene ATG to prevent expression of full-length S protein eliminated M protein, reduced intracellular level of L protein despite its blocked secretion, and generated a truncated S protein through translation initiation from a downstream ATG. Truncated S protein was secretion deficient and could inhibit secretion of L, M, S proteins from wild-type constructs. Providing full-length S protein in trans rescued L protein secretion and increased its intracellular level from mutants of lost S gene ATG. Lost core protein expression reduced all the three envelope proteins. In conclusion, full-length S protein could sustain intracellular and extracellular L and M proteins, while truncated S protein could block subviral particle secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Shuwen Fu
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Qianru Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
15
|
Li J, Li J, Chen S, Yuan Q, Zhang J, Wu J, Jiang Q, Wang Q, Xia NS, Zhang J, Tong S. Naturally occurring 5' preS1 deletions markedly enhance replication and infectivity of HBV genotype B and genotype C. Gut 2021; 70:575-584. [PMID: 32571971 DOI: 10.1136/gutjnl-2019-320096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Deletion of 15-nucleotide or 18-nucleotide (nt) covering preS1 ATG frequently arises during chronic infection with HBV genotypes B and C. Since the second ATG is 33nt downstream, they truncate large (L) envelope protein by 11 residues like wild-type genotype D. This study characterised their functional consequences. METHODS HBV genomes with or without deletion were amplified from a patient with advanced liver fibrosis and assembled into replication competent 1.1mer construct. Deletion, insertion or point mutation was introduced to additional clones of different genotypes. Viral particles concentrated from transfected HepG2 cells were inoculated to sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 (HepG2/NTCP) cells or differentiated HepaRG cells, and HBV RNA, DNA, proteins were monitored. RESULTS From transfected HepG2 cells, the 15-nt and 18-nt deletions increased HBV RNA, replicative DNA and extracellular virions. When same number of viral particles was inoculated to HepG2/NTCP cells, the deletion mutants showed higher infectivity. Conversely, HBV infectivity was diminished by putting back the 18nt into naturally occurring genotype C deletion mutants and by adding 33nt to genotype D. Infectivity of full-length genotype C clones was also enhanced by mutating the first ATG codon of the preS1 region but diminished by mutating the second in-frame ATG. Removing N-terminal 11 residues from preS1 peptide 2-59 of genotype C potentiated inhibition of HBV infection and enhanced binding to HepG2/NTCP cells. CONCLUSIONS The 15-nt and 18-nt deletions somehow increase HBV RNA, replicative DNA and virion production. Shortened L protein is more efficient at mediating HBV infection.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qirong Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA .,Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Pfefferkorn M, Schott T, Böhm S, Deichsel D, Felkel C, Gerlich WH, Glebe D, Wat C, Pavlovic V, Heyne R, Berg T, van Bömmel F. Composition of HBsAg is predictive of HBsAg loss during treatment in patients with HBeAg-positive chronic hepatitis B. J Hepatol 2021; 74:283-292. [PMID: 32931877 DOI: 10.1016/j.jhep.2020.08.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS During treatment of chronic HBV infections, loss or seroconversion of the HBV surface antigen (HBsAg) is considered a functional cure. HBsAg consists of the large (LHBs), middle (MHBs), and small surface protein (SHBs) and their relative proportions correlate strongly with disease stage. Our aim was to assess the association between HBsAg composition and functional cure during treatment. METHODS A total of 83 patients were retrospectively analyzed. HBsAg loss was achieved by 17/64 patients during nucleos(t)ide analogue (NA) treatment and 3/19 patients following treatment with pegylated interferon-alfa2a (PEG-IFN) for 48 weeks. Sixty-three patients without HBsAg loss were matched as controls. LHBs, MHBs and SHBs were quantified in sera collected before and during treatment. RESULTS Before treatment, median MHBs levels were significantly lower in patients with subsequent HBsAg loss than in those without (p = 0.005). During treatment, MHBs and LHBs proportions showed a fast decline in patients with HBsAg loss, but not in patients with HBV e antigen seroconversion only or patients without serologic response. MHBs became undetectable by month 6 of NA treatment in all patients with HBsAg loss, which occurred on average 12.8 ± 8.7 (0-52) months before loss of total HBsAg. Receiver-operating characteristic analyses revealed that the proportion of MHBs was the best early predictor of HBsAg loss before NA treatment (AUC = 0.726, p = 0.019). In patients achieving HBsAg loss with PEG-IFN, the proportions of MHBs and LHBs showed similar kinetics. CONCLUSION Quantification of HBsAg proteins shows promise as a novel tool to predict early treatment response. These assessments may help optimize individual antiviral treatment, increasing the rates of functional cure in chronically HBV-infected patients. LAY SUMMARY The hepatitis B surface antigen (HBsAg) is a key serum marker for viral replication. Loss of HBsAg is considered stable remission, which can be achieved with antiviral treatments. We have investigated whether the ratios of the different components of HBsAg, namely the large (LHBs) and medium (MHBs) HBsAg during different treatments are associated with the occurrence of HBsAg loss. We found that LHBs and MHBs decrease earlier than total HBsAg before HBsAg loss and we propose LHBs and MHBs as promising novel biomarker candidates for predicting cure of HBV infection.
Collapse
Affiliation(s)
- Maria Pfefferkorn
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Tina Schott
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Stephan Böhm
- Ludwig Maximilians-University, Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Munich, Germany
| | - Danilo Deichsel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Christin Felkel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Wolfram H Gerlich
- Justus Liebig University Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Giessen, Germany, German Centre for Infection Research (DZIF)
| | - Dieter Glebe
- Justus Liebig University Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Giessen, Germany, German Centre for Infection Research (DZIF)
| | | | | | - Renate Heyne
- Liver and Study Center Checkpoint, Berlin, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
17
|
Aoki K, Nagasawa T, Ishii Y, Yagi S, Okuma S, Kashiwagi K, Maeda T, Miyazaki T, Yoshizawa S, Tateda K. Clinical validation of quantitative SARS-CoV-2 antigen assays to estimate SARS-CoV-2 viral loads in nasopharyngeal swabs. J Infect Chemother 2020; 27:613-616. [PMID: 33423918 PMCID: PMC7713570 DOI: 10.1016/j.jiac.2020.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Expansion of the testing capacity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue to mitigate the pandemic of coronavirus disease-2019 (COVID-19) caused by this virus. Recently, a sensitive quantitative antigen test (SQT), Lumipulse® SARS-CoV-2 Ag, was developed. It is a fully automated chemiluminescent enzyme immunoassay system for SARS-CoV-2. METHODS In this study, the analytical performance of SQT was examined using clinical specimens from nasopharyngeal swabs using reverse transcription polymerase chain reaction (RT-PCR) as a control. RESULTS Receiver operating characteristic analysis of 24 SARS-CoV-2-positive and 524 -negative patients showed an area under the curve of 0.957 ± 0.063. Using a cut-off value of 1.34 pg/ml, the sensitivity was 91.7%, the specificity was 98.5%, and the overall rate of agreement was 98.2%. In the distribution of negative cases, the 99.5 percentile value was 1.03 pg/ml. There was a high correlation between the viral load calculated using the cycle threshold value of RT-PCR and the concentration of antigen. The tendency for the antigen concentration to decrease with time after disease onset correlated with that of the viral load. CONCLUSIONS Presented results indicate that SQT is highly concordant with RT-PCR and should be useful for the diagnosis of COVID-19 in any clinical setting. Therefore, this fully automated kit will contribute to the expansion of the testing capability for SARS-CoV-2.
Collapse
Affiliation(s)
- Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan.
| | - Shintaro Yagi
- Fujirebio Inc., 51 Komiya-machi, Hachioji, 192-0031, Tokyo, Japan
| | - Sadatsugu Okuma
- Fujirebio Inc., 51 Komiya-machi, Hachioji, 192-0031, Tokyo, Japan
| | - Katsuhito Kashiwagi
- General Medicine and Emergency Center (Internal Medicine), Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Tadashi Maeda
- General Medicine and Emergency Center (Internal Medicine), Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Taito Miyazaki
- General Medicine and Emergency Center (Internal Medicine), Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Sadako Yoshizawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 143-8540, Tokyo, Japan
| |
Collapse
|
18
|
Expression Level of Small Envelope Protein in Addition to Sequence Divergence inside Its Major Hydrophilic Region Contributes to More Efficient Surface Antigen Secretion by Hepatitis B Virus Subgenotype D2 than Subgenotype A2. Viruses 2020; 12:v12090967. [PMID: 32882910 PMCID: PMC7552069 DOI: 10.3390/v12090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) promotes persistent hepatitis B virus (HBV) infection. It primarily corresponds to small (S) envelope protein secreted as subviral particles. We previously found that genotype D clones expressed less S protein than genotype A clones but showed higher extracellular/intracellular ratio of HBsAg suggesting more efficient secretion. The current study aimed to characterize the underlying mechanism(s) by comparing a subgenotype A2 clone (geno5.4) with a subgenotype D2 clone (geno1.2). Five types of full-length or subgenomic constructs were transfected to Huh7 cells at different dosage. HBsAg was quantified by enzyme linked immunosorbent assay while envelope proteins were detected by Western blot. We found that ratio of extracellular/intracellular HBsAg decreased at increasing amounts of DNA transfected. Conflicting findings from two types of subgenomic construct confirmed stronger secretion inhibitory effect of the genotype D-derived large envelope protein. Chimeric constructs followed by site-directed mutagenesis revealed geno1.2 specific V118/T127 and F161/A168 in the S protein as promoting and inhibitory of HBsAg secretion, respectively. In conclusion, more efficient HBsAg secretion by subgenotype D2 than subgenotype A2 is attributed to lower level of S protein expression in addition to V118 and T127 in S protein, although its F161 and A168 sequences rather reduce HBsAg secretion.
Collapse
|
19
|
Hepatitis B Virus Exploits ERGIC-53 in Conjunction with COPII to Exit Cells. Cells 2020; 9:cells9081889. [PMID: 32806600 PMCID: PMC7464876 DOI: 10.3390/cells9081889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Several decades after its discovery, the hepatitis B virus (HBV) still displays one of the most successful pathogens in human populations worldwide. The identification and characterization of interactions between cellular and pathogenic components are essential for the development of antiviral treatments. Due to its small-sized genome, HBV highly depends on cellular functions to produce and export progeny particles. Deploying biochemical-silencing methods and molecular interaction studies in HBV-expressing liver cells, we herein identified the cellular ERGIC-53, a high-mannose-specific lectin, and distinct components of the endoplasmic reticulum (ER) export machinery COPII as crucial factors of viral trafficking and egress. Whereas the COPII subunits Sec24A, Sec23B and Sar1 are needed for both viral and subviral HBV particle exit, ERGIC-53 appears as an exclusive element of viral particle propagation, therefore interacting with the N146-glycan of the HBV envelope in a productive manner. Cell-imaging studies pointed to ER-derived, subcellular compartments where HBV assembly initiates. Moreover, our findings provide evidence that HBV exploits the functions of ERGIC-53 and Sec24A after the envelopment of nucleocapsids at these compartments in conjunction with endosomal sorting complexes required for transport (ESCRT) components. These data reveal novel insights into HBV assembly and trafficking, illustrating therapeutic prospects for intervening with the viral life cycle.
Collapse
|
20
|
Cavallone D, Ricco G, Oliveri F, Colombatto P, Moriconi F, Coco B, Romagnoli V, Salvati A, Surace L, Bonino F, Brunetto MR. Do the circulating Pre-S/S quasispecies influence hepatitis B virus surface antigen levels in the HBeAg negative phase of HBV infection? Aliment Pharmacol Ther 2020; 51:1406-1416. [PMID: 32390175 DOI: 10.1111/apt.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Virus, host factors and their interplay influence Hepatitis B surface Antigen serum levels during Hepatitis B Virus (HBV) infection course and treatment. AIM To study the Pre-S/S circulating quasispecies in a cohort of untreated, HBeAg negative, genotype-D, HBsAg carriers. METHODS We studied 260 carriers: 71 with HBeAg negative infection (ENI; HBV-DNA ≤2000 IU/mL); 42 Grey Zone (GZ; HBV-DNA ≤20 000 IU/mL); 82 chronic hepatitis (CH) and 65 cirrhosis (CI) (HBV-DNA > 20 000 IU/mL). Population sequencing was applied to identify Pre-S/S gene mutations responsible for any amino acid substitution or potential biological/antigenic implications (M-muts) on HBsAg. RESULTS HBsAg serum levels were lower in ENI + GZ than in CH + CI (2.61 [-1.10/4.06] vs 3.62 [2.41/4.92] log10 IU/mL, P < 0.001) and in CI than CH (3.48 [2.41/4.38] vs 3.66 [2.57/4.92] log10 IU/mL, P < 0.001). M-muts were found in 73 (28.1%) cases: 5 (7.0%) ENI, 3 (7.1%) GZ, 26 (31.7%) CH, 39 (60.0%) CI (P < 0.001) and mostly in Pre-S2 (17.6%) than Pre-S1 (5.8%) and Small-S (10.8%; P < 0.001). Overall HBsAg serum levels were higher in carriers with M-muts (3.56 [0.95/4.38] vs 3.17 [-1.10/4.92] log10 IU/mL, P < 0.001), but comparable in carriers with or without M-mut when considering separately ENI + GZ (2.84 [0.95/3.89] vs 2.61 [-1.10/4.06] log10 IU/mL, P = 0.330] and CH + CI (3.57 [2.67/4.38] vs 3.63 [2.41/4.92] log10 IU/mL, P = 0.37). Infection phase (β: 0.422, P < 0.001), age (β: -0.260, P < 0.001), ALT (β: -0.103, P = 0.045), liver stiffness (β: -0.118, P = 0.039) and HBV-DNA (β: 0.384, P < 0.001), but not M-mut were independently associated with HBsAg serum levels. CONCLUSIONS In HBeAg negative, genotype-D, carriers Pre-S/S heterogeneity increases with severity of liver disease, but does not influence HBsAg serum levels, that in low viraemic carriers are associated with an effective control of HBV.
Collapse
Affiliation(s)
- Daniela Cavallone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Gabriele Ricco
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Filippo Oliveri
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Piero Colombatto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Francesco Moriconi
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Barbara Coco
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Veronica Romagnoli
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Antonio Salvati
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Lidia Surace
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy
| | - Ferruccio Bonino
- Biostructure and Bio-imaging Institute of National Research Council of Italy, Naples, Italy
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, Pisa, Italy.,Biostructure and Bio-imaging Institute of National Research Council of Italy, Naples, Italy
| |
Collapse
|
21
|
Liu Y, Wang H, Zhang J, Yang J, Bai L, Zheng B, Zheng T, Wang Y, Li J, Zhang W. SERINC5 Inhibits the Secretion of Complete and Genome-Free Hepatitis B Virions Through Interfering With the Glycosylation of the HBV Envelope. Front Microbiol 2020; 11:697. [PMID: 32431673 PMCID: PMC7216740 DOI: 10.3389/fmicb.2020.00697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Serine incorporator 3 (SERINC3) and SERINC5 were recently identified as host intrinsic factors against human immunodeficiency virus (HIV)-1 and counteracted by HIV-1 Nef. However, whether they inhibit hepatitis B virus (HBV), which is a severe health problem worldwide, is unknown. Here, we demonstrate that SERINC5 potently inhibited HBV virion secretion in the supernatant without affecting intracellular core particle-associated DNA and the total RNA, but SERINC3 and SERINC1 did not. Further investigation discovered that SERINC5 increased the non-glycosylation of LHB, MHB, and SHB proteins of HBV and slightly decreased HBs proteins levels, which led to the decreased HBV secretion. Importantly, SERINC5 co-localized with LHB proteins in the Golgi apparatus, which is important for glycan processing and transport. In addition, we determined the functional domain in SERINC5 required for HBV inhibition, which was completely different from that required for HIV-1 restriction, whereas phosphorylation and glycosylation sites in SERINC5 were dispensable for HBV restriction. Taken together, our results demonstrate that SERINC5 suppresses HBV virion secretion through interfering with the glycosylation of HBV proteins, suggesting that SERINC5 might possess broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.,Department of Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Yingchao Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Zhang L, Chang L, Laperche S, Ji H, Zhao J, Jiang X, Wang L, Candotti D. Occult HBV infection in Chinese blood donors: role of N-glycosylation mutations and amino acid substitutions in S protein transmembrane domains. Emerg Microbes Infect 2020; 8:1337-1346. [PMID: 31516090 PMCID: PMC6758628 DOI: 10.1080/22221751.2019.1663130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Occult hepatitis B virus infection (OBI) is a low-level asymptomatic phase of HBV infection. Evidence of OBI clinical relevance is emerging but the mechanisms of its occurrence remain unclear. In this study, the molecular characteristics of 97 confirmed OBI from Chinese blood donors were analyzed and relevant mutations were identified. Recombinant HBsAg bearing these mutations were expressed in vitro and the antigenicity and HBsAg secretion properties were analyzed. Results showed that 45 (46.4%) genotype B, 50 (51.5%) genotype C, and 2 (2.1%) genotype D sequences were identified. Two groups of mutations in the S gene were significantly associated with OBI. The first group included mutations creating new N-linked glycosylation sites at positions s116, s123, s130, and s131 + s133 or removing the existing one at s146. Mutations TCT123-125NCT/NFT were associated with reduced antigenicity, while TST116-118NST, GTS130-132NTS, and TSM131-133NSS/NYT/NST were associated with varying levels of impaired HBsAg secretion. N146 mutations had no effect on HBsAg production pattern. The second group included substitutions within the S transmembrane domains TMD1-3. Only mutations C85R, L87R, L88R, and C90R within TMD2 were associated with defective HBsAg production. These mutations appear to be rare and mostly strain specific but they may contribute to the multifactorial occurrence of OBI.
Collapse
Affiliation(s)
- Lu Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China
| | - Syria Laperche
- National Institute of Blood Transfusion, DATS, CNR RIT , Paris , France
| | - Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Junpeng Zhao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Daniel Candotti
- National Institute of Blood Transfusion, DATS, CNR RIT , Paris , France
| |
Collapse
|
23
|
Wang Q, Qin Y, Zhang J, Jia L, Fu S, Wang Y, Li J, Tong S. Tracing the evolutionary history of hepadnaviruses in terms of e antigen and middle envelope protein expression or processing. Virus Res 2019; 276:197825. [PMID: 31785305 DOI: 10.1016/j.virusres.2019.197825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) is the prototype of hepadnaviruses, which can be subgrouped into orthohepadnaviruses infecting mammals, avihehepadnaviruses of birds, metahepadnaviruses of fish, and herpetohepadnaviruses of amphibians and reptiles. The middle (M) envelope protein and e antigen are new additions in the evolution of hepadnaviruses. They are alternative translation products of the transcripts for small (S) envelope and core proteins, respectively. For HBV, e antigen is converted from precore/core protein by removal of N-terminal signal peptide followed by furin-mediated cleavage of the basic C-terminus. This study compared old and newly discovered hepadnaviruses for their envelope protein and e antigen expression or processing. The S protein of bat hepatitis B virus (BHBV) and two metahepadnaviruses is probably myristoylated, in addition to two avihepadnaviruses. While most orthohepadnaviruses express a functional M protein with N-linked glycosylation near the amino-terminus, most metahepadnaviruses and herpetohepadnaviruses probably do not. These viruses and one orthohepadnavirus, the shrew hepatitis B virus, lack an open precore region required for e antigen expression. Potential furin cleavage sites (RXXR sequence) can be found in e antigen precursors of orthohepadnaviruses and avihepadnaviruses. Despite much larger precore/core proteins of avihepadnaviruses and their limited sequence homology with those of orthohepadnaviruses, their proximal RXXR motif can be aligned with a distal RXXR motif for orthohepadnaviruses. Thus, furin or another basic endopeptidase is probably the shared enzyme for hepadnaviral e antigen maturation. A precore-derived cysteine residue is involved in forming intramolecular disulfide bond of HBV e antigen to prevent particle formation, and such a cysteine residue is conserved for both orthohepadnaviruses and avihepadnaviruses. All orthohepadnaviruses have an X gene, while all avihepadnaviruses can express the e antigen. M protein expression appears to be the most recent event in the evolution of hepadnaviruses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lucy Jia
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuwen Fu
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Small Interfering RNA Screening for the Small GTPase Rab Proteins Identifies Rab5B as a Major Regulator of Hepatitis B Virus Production. J Virol 2019; 93:JVI.00621-19. [PMID: 31118260 DOI: 10.1128/jvi.00621-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses are considered to use vesicular trafficking in infected cells, but the details of assembly/release pathways of hepatitis B virus (HBV) are still unknown. To identify key regulators of HBV production, we performed short interfering RNA (siRNA) screening for Rab proteins, which are considered to act as molecular switches in vesicular trafficking using HepG2.2.15 cells. Among 62 Rab proteins, the suppression of Rab5B most significantly increased HBV DNA in the culture supernatant. Surprisingly, 5 days after the transfection of Rab5B siRNA, HBV DNA in the supernatant was increased more than 30-fold, reflecting the increase of infectious HBV particles. Northern blotting showed that transcription of 2.4/2.1-kb mRNA coding envelope proteins containing large hepatitis B surface protein (LHBs) was increased. Analysis of hepatocyte nuclear factors (HNFs) showed that transcription of HNF4α, which is known to enhance 2.4-kb mRNA transcription, was regulated by Rab5B. Also, it was revealed that LHBs had accumulated in the endoplasmic reticulum (ER) after Rab5B depletion but not in the multivesicular body (MVB), which is thought to be an organelle utilized for HBV envelope formation. Therefore, it was considered that Rab5B is required for the transport of LHBs from the ER to MVB. Immunofluorescent microscopy showed that HBs proteins, including LHBs, colocalized with HBc in the ER of Rab5B-depleted cells, suggesting that HBV envelopment occurs not only in the MVB but also in the ER. In conclusion, Rab5B is a key regulator of HBV production and could be a target of antiviral therapy.IMPORTANCE HBV infection is a worldwide health problem, but the mechanisms of how HBV utilizes cellular machinery for its life cycle are poorly understood. In particular, it has been unclear how the viral components and virions are transported among the organelles. The HBV budding site has been reported to be the ER or MVB, but it has not been clearly determined. In this study, siRNA-based screening of Rab proteins using HBV-expressing cells showed that Rab5B, one of the Rab5 isoforms, has important roles in late steps of the HBV life cycle. Although Rab5 is known to work on early endosomes, this study showed that Rab5B plays a role in the transport of LHBs between the ER and MVB. Furthermore, it affects the transcription of LHBs. This is the first report on the mechanisms of HBV envelope protein transport among the organelles, and the results provide important insights into the therapeutic control of HBV infection.
Collapse
|
25
|
Vaillant A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect Dis 2019; 5:675-687. [PMID: 30199230 DOI: 10.1021/acsinfecdis.8b00156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid polymers (NAPs) are broad spectrum antiviral agents whose antiviral activity in hepatitis B virus (HBV) infection is derived from their ability to block the release of the hepatitis B virus surface antigen (HBsAg). This pharmacological activity blocks replenishment of HBsAg in the circulation, allowing host mediated clearance. This effect has important clinical significance as the clearance of circulating HBsAg dramatically potentiates the ability of immunotherapies to restore functional control of HBV infection which persists after antiviral therapy is removed. These effects are reproducible in preclinical evaluations and in several clinical trials that have evaluated the activity of the lead NAP, REP 2139, in monotherapy and in combination with immunotherapy in hepatitis B e antigen (HBeAg) negative and HBeAg positive HBV infection and also in HBeAg negative HBV/hepatitis D virus (HDV) coinfection. These antiviral effects of REP 2139 are achieved in the absence of any direct immunostimulatory effect in the liver and also without any discernible direct interaction with viral components. The search for the host protein interaction with NAPs that drives their antiviral effects is ongoing, and the interaction targeted by REP 2139 within infected cells has not yet been elucidated. This article provides an updated review of available data on the effects of REP 2139 in HBV and HDV infection and the ability of REP 2139-based combination therapy to achieve functional control of HBV and HDV infection in patients.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
26
|
Ogura S, Tameda M, Sugimoto K, Ikejiri M, Usui M, Ito M, Takei Y. A substitution in the pre-S1 promoter region is associated with the viral regulation of hepatitis B virus. Virol J 2019; 16:59. [PMID: 31046787 PMCID: PMC6498540 DOI: 10.1186/s12985-019-1169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Much evidence has demonstrated the influence of Hepatitis B virus (HBV) mutations on the clinical course of HBV infection. As large (L) protein plays a crucial role for viral entry, we hypothesized that mutations in the pre-S1 promoter region might affect the expression of L protein and subsequently change the biological characters of virus. Methods Patients infected with genotype C HBV were enrolled for analysis. HBV DNA sequences were inserted into a TA cloning vector and analyzed. To evaluate the effects of mutations in the pre-S1 promoter region, promoter activity and the expression of mRNA and L protein were analyzed using HepG2 cells. Results In total, 35 patients were enrolled and 13 patients (37.1%) had a single base substitution in the pre-S1 promoter region; the most frequent substitution was a G-to-A substitution at the 2765th base (G2765A) in the Sp1 region. The HBV viral load showed a negative correlation with the substitution ratio of the Sp1 region or G2765A (r = − 0.493 and − 0.473, respectively). Among those with a viral load ≤5.0 log IU/ml, patients with the G2765A substitution showed a significantly lower HBV viral load than those with the wild-type sequence. HepG2 cells transfected with the G2765A substitution vector showed reduced luciferase activity of the pre-S1 promoter, as well as reduced expression of pre-S1 mRNA and L protein. Furthermore, the G2765A substitution greatly reduced the L protein expression level of vector-produced virus particles. Conclusion G2765A substitution in the pre-S1 promoter reduced the expression of L protein and resulted in a low viral load and less severe disease in chronic HBV infections.
Collapse
Affiliation(s)
- Suguru Ogura
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masahiko Tameda
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan. .,Department of Central Laboratory, Mie University Hospital, Tsu, Japan.
| | - Makoto Ikejiri
- Department of Central Laboratory, Mie University Hospital, Tsu, Japan
| | - Masanobu Usui
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
27
|
Wang T, Cui D, Chen S, Xu X, Sun C, Dai Y, Cheng J. Analysis of clinical characteristics and S gene sequences in chronic asymptomatic HBV carriers with low-level HBsAg. Clin Res Hepatol Gastroenterol 2019; 43:179-189. [PMID: 30293895 DOI: 10.1016/j.clinre.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND During the natural hepatitis B virus (HBV) infection process, some infected subjects are characterized by a sustained low serum HBV surface antigen (HBsAg) expression level. Most members in this population are chronic asymptomatic HBV carriers (ASCs). To elucidate the mechanism underlying low-level HBsAg expression in ASCs, we sequenced the HBV S gene in these patients to reveal specific sequence characteristics. METHODS Overall, 1308 cases of chronic ASCs were grouped according to their HBsAg serum expression levels (10 IU/mL). The clinical characteristics of the population were analysed in detail. The HBV S gene was sequenced from 276 ASC cases with low-level HBsAg expression. Additionally, 100 of 1032 ASC cases with high-level HBsAg expression were randomly selected for HBV S gene sequencing based on age matching according to the low-level HBsAg group. A comparative analysis was conducted with the HBV S gene sequences from ASCs with low HBsAg expression and the HBV reference S gene sequences from ASCs with high HBsAg expression. RESULTS The population with low-level HBsAg expression displayed the following primary clinical characteristics: mostly chronic asymptomatic HBV carriers, older age (mean age 55.09 years), HBsAg/anti-HBe/anti-HBc (core) positivity as the main serological pattern (97.1%), low HBV DNA replication (1.32 ± 1.60 log10 IU/mL), a low HBV-DNA positive rate (45.65%) and primarily genotype B (82.54%) and serotype adw (84.13%). The comparative analysis of the HBV S gene sequences from ASCs with low-level HBsAg showed significant mutations (including co-mutations) on both sides of the main hydrophilic region (MHR). CONCLUSION Significant mutations in multiple regions and at multiple sites (including co-mutations) on both sides of the MHR may be one cause of the low HBsAg expression level in this population.
Collapse
Affiliation(s)
- Tong Wang
- Faculty of Graduate Studies, Bengbu Medical College, Bengbu 233000, PR China; Department of Clinical Research, The 117th Hospital of PLA, Hangzhou 310013, PR China; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| | - Dawei Cui
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shaoming Chen
- Department of Clinical Research, The 117th Hospital of PLA, Hangzhou 310013, PR China; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xujian Xu
- Department of Biotechnology, The University of Tokyo, Tokyo 1138656, Japan; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| | - Changgui Sun
- Department of Clinical Research, The 117th Hospital of PLA, Hangzhou 310013, PR China; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuzhu Dai
- Department of Clinical Research, The 117th Hospital of PLA, Hangzhou 310013, PR China; Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| | - Jun Cheng
- Department of Clinical Research, The 117th Hospital of PLA, Hangzhou 310013, PR China; Faculty of Graduate Studies, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
28
|
Inuzuka T, Ueda Y, Arasawa S, Takeda H, Matsumoto T, Osaki Y, Uemoto S, Seno H, Marusawa H. Expansion of viral variants associated with immune escape and impaired virion secretion in patients with HBV reactivation after resolved infection. Sci Rep 2018; 8:18070. [PMID: 30584239 PMCID: PMC6305382 DOI: 10.1038/s41598-018-36093-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
HBV reactivation could be induced under immunosuppressive conditions in patients with resolved infection. This study aimed to clarify the viral factors associated with the pathogenesis of HBV reactivation in association with the immunosuppressive status. Whole HBV genome sequences were determined from the sera of 24 patients with HBV reactivation, including 8 cases under strong immunosuppression mediated by hematopoietic stem cell transplantation (HSCT) and 16 cases without HSCT. Ultra-deep sequencing revealed that the prevalence of genotype B and the ratio of non-synonymous to synonymous evolutionary changes in the surface (S) gene were significantly higher in non-HSCT cases than in patients with HSCT. Those non-synonymous variants included immune escape (6/16 cases) and MHC class II-restricted T-cell epitope variants (6/16 cases). Furthermore, reactivated HBV in 11 of 16 (69%) non-HSCT cases possessed substitutions associated with impaired virion secretion, including E2G, L77R, L98V, T118K, and Q129H in the S region, and M1I/V in the PreS2 region. In conclusion, virologic features of reactivated HBV clones differed depending on the intensity of the immunosuppressive condition. HBV reactivation triggered by immunosuppressive conditions, especially those without HSCT, was characterized by the expansion of variants associated with immune escape, MHC class II-restricted T-cell epitope alterations, and/or impaired virion secretion.
Collapse
Affiliation(s)
- Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Hepatitis and Immunology National Center for Global Health and Medicine, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshihide Ueda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichi Arasawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomonori Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukio Osaki
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan.
| |
Collapse
|
29
|
Core gene insertion in hepatitis B virus genotype G functions at both the encoded amino acid sequence and RNA structure levels to stimulate core protein expression. Virology 2018; 526:203-213. [PMID: 30415131 DOI: 10.1016/j.virol.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus genotype G possesses a 36-nucleotide (nt) insertion at the 5' end of core gene, adding 12 residues to core protein. The insertion markedly increased core protein level irrespective of viral genotype, with the effect reproducible using CMV-core gene construct. Here we used such expression constructs and transient transfection experiments in Huh7 cells to identify the structural bases. The insertion is predicted to create a stem-loop structure 14nt downstream of core gene AUG. A + 1 or + 2 frameshift into the 36nt mitigated enhancement of core protein level. Point mutations to disrupt or restore the stem-loop had opposite effects on core protein expression. Shifting the translation initiation site downstream or further upstream of the stem-loop rendered it inhibitory or no longer stimulatory of core protein expression. Therefore, both the reading frame and a properly positioned stem-loop structure contribute to marked increase in core protein expression by the 36-nt insertion.
Collapse
|
30
|
Yang F. Post-translational Modification Control of HBV Biological Processes. Front Microbiol 2018; 9:2661. [PMID: 30443247 PMCID: PMC6222169 DOI: 10.3389/fmicb.2018.02661] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus infection remains a global healthy issue that needs to be urgently solved. Novel strategies for anti-viral therapy are based on exploring the effective diagnostic markers and therapeutic targets of diseases caused by hepatitis B virus (HBV) infection. It is well-established that not only viral proteins themselves but also key factors from the host control the biological processes associated with HBV, including replication, transcription, packaging, and secretion. Protein post-translational modifications (PTMs), such as phosphorylation, acetylation, methylation, and ubiquitination, have been shown to control protein activity, regulate protein stability, promote protein interactions and alter protein subcellular localization, leading to the modulation of crucial signaling pathways and affected cellular processes. This review focuses on the functions and effects of diverse PTMs in regulating important processes in the HBV life cycle. The potential roles of PTMs in the pathogenesis of HBV-associated liver diseases are also discussed.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Wu CC, Chen YS, Cao L, Chen XW, Lu MJ. Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World J Gastroenterol 2018; 24:3488-3499. [PMID: 30131655 PMCID: PMC6102499 DOI: 10.3748/wjg.v24.i31.3488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.
Collapse
MESH Headings
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Disease Progression
- Genome, Viral/genetics
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/prevention & control
- Hepatitis B, Chronic/virology
- Humans
- Liver/immunology
- Liver/pathology
- Liver/virology
- Liver Failure, Acute/immunology
- Liver Failure, Acute/pathology
- Liver Failure, Acute/prevention & control
- Liver Failure, Acute/virology
- Mutation
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Chun-Chen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Ying-Shan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Liang Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, United States
| | - Xin-Wen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Meng-Ji Lu
- Institute of Virology, University Hospital of Essen, Essen 45122, Germany
| |
Collapse
|
32
|
Inoue J, Ninomiya M, Shimosegawa T, McNiven MA. Cellular Membrane Trafficking Machineries Used by the Hepatitis Viruses. Hepatology 2018; 68:751-762. [PMID: 29331069 DOI: 10.1002/hep.29785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
While the life cycles of hepatitis viruses (A, B, C, D, and E) have been modestly characterized, recent intensive studies have provided new insights. Because these viruses "hijack" the membrane trafficking of the host cell machinery during replicative propagation, it is essential to determine and understand these specific cellular pathways. Hepatitis B virus (HBV) and hepatitis C virus are well known as leading causes of liver cirrhosis and hepatocellular carcinoma. While substantial inroads toward treating hepatitis C virus patients have recently been made, patients with HBV continue to require lifelong treatment, which makes a thorough understanding of the HBV life cycle essential. Importantly, these viruses have been observed to "hijack" the secretory and endocytic membrane trafficking machineries of the hepatocyte. These can include the canonical clathrin-mediated endocytic process that internalizes virus through cell surface receptors. While these receptors are encoded by the host genome for normal hepatocellular functions, they also exhibit virus-specific recognition. Further, functions provided by the multivesicular body, which include endosomal sorting complexes required for transport, are now known to envelope a variety of different hepatitis viruses. In this review, we summarize the recent findings regarding the cellular membrane trafficking machineries used by HBV in the context of other hepatitis viruses. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology and Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Bi X, Tong S. Impact of immune escape mutations and N-linked glycosylation on the secretion of hepatitis B virus virions and subviral particles: Role of the small envelope protein. Virology 2018; 518:358-368. [PMID: 29604477 DOI: 10.1016/j.virol.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) expresses three co-terminal envelope proteins: large (L), middle (M), and small (S), with the S protein driving the secretion of both virions and subviral particles. Virion secretion requires N-linked glycosylation at N146 in the S domain but can be impaired by immune escape mutations. An M133T mutation creating a novel glycosylation site at N131could rescue virion secretion of N146Q mutant (loss of original glycosylation site) and immune escape mutants such as G145R. Here we demonstrate that other novel N-linked glycosylation sites could rescue virion secretion of the G145R and N146Q mutants to variable extents. Both G145R and N146Q mutations impaired virion secretion through the S protein. The M133T mutation restored virion secretion through the S protein, and could work in trans. Impaired virion secretion was not necessarily associated with a similar block in the secretion of subviral particles.
Collapse
Affiliation(s)
- Xiaohui Bi
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shuping Tong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Zhao K, Wu C, Yao Y, Cao L, Zhang Z, Yuan Y, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Lu M, Chen X. Ceruloplasmin inhibits the production of extracellular hepatitis B virions by targeting its middle surface protein. J Gen Virol 2017; 98:1410-1421. [PMID: 28678687 DOI: 10.1099/jgv.0.000794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ceruloplasmin (CP) is mainly synthesized by hepatocytes and plays an essential role in iron metabolism. Previous reports have shown that CP levels correlate negatively with disease progression in patients with chronic hepatitis B. However, the function of CP in the hepatitis B virus (HBV) life cycle and the mechanism underlying the above correlation remain unclear. Here, we report that CP can selectively inhibit the production of extracellular HBV virions without altering intracellular viral replication. HBV expression can also downregulate the expression of CP. Knockdown of CP using small interfering RNA significantly increased the level of extracellular HBV virions in both Huh7 and HepG2.2.15 cells, while overexpression of CP decreased this level. Mechanistically, CP could specifically interact with the HBV middle surface protein (MHB). Using an HBV replication-competent clone unable to express MHBs, we demonstrated that the overexpression of CP did not affect the production of extracellular HBV virions in the absence of MHBs. Furthermore, introduction of an MHB expression construct could rescue the impairment in virion production caused by CP. Taken together, our results suggest that CP may be an important host factor that targets MHBs during the envelopment and/or release of virions.
Collapse
Affiliation(s)
- Kaitao Zhao
- University of Chinese Academy of Sciences, Beijing, PR China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yongxuan Yao
- University of Chinese Academy of Sciences, Beijing, PR China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Liang Cao
- University of Chinese Academy of Sciences, Beijing, PR China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Zhenhua Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230022, PR China.,Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, PR China
| | - Yifei Yuan
- University of Chinese Academy of Sciences, Beijing, PR China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yun Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rongjuan Pei
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- University of Chinese Academy of Sciences, Beijing, PR China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
35
|
Hepatitis B Virus-Encoded MicroRNA Controls Viral Replication. J Virol 2017; 91:JVI.01919-16. [PMID: 28148795 DOI: 10.1128/jvi.01919-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding, functional RNAs. Hepatitis B virus (HBV) is an enveloped DNA virus with virions and subviral forms of particles that lack a core. It was not known whether HBV encodes miRNAs. Here, we identified an HBV-encoded miRNA (called HBV-miR-3) by deep sequencing and Northern blotting. HBV-miR-3 is located at nucleotides (nt) 373 to 393 of the HBV genome and was generated from 3.5-kb, 2.4-kb, and 2.1-kb HBV in a classic miRNA biogenesis (Drosha-Dicer-dependent) manner. HBV-miR-3 was highly expressed in hepatoma cell lines with an integrated HBV genome and HBV+ hepatoma tumors. In patients with HBV infection, HBV-miR-3 was released into the circulation by exosomes and HBV virions, and HBV-miR-3 expression had a positive correlation with HBV titers in the sera of patients in the acute phase of HBV infection. More interestingly, we found that HBV-miR-3 represses HBsAg, HBeAg, and replication of HBV. HBV-miR-3 targets the unique site of the HBV 3.5-kb transcript to specifically reduce HBc protein expression, levels of pregenomic RNA (pgRNA), and HBV replication intermediate (HBV-RI) generation but does not affect the HBV DNA polymerase level, thus suppressing HBV virion production (replication). This may explain the low levels of HBV virion generation with abundant subviral particles lacking core during HBV replication, which may contribute to the development of persistent infection in patients. Taken together, our findings shed light on novel mechanisms by which HBV-encoded miRNA controls the process of self-replication by regulating HBV transcript during infection.IMPORTANCE Hepatitis B is a liver infection caused by the hepatitis B virus (HBV) that can become a long-term, chronic infection and lead to cirrhosis or liver cancer. HBV is a small DNA virus that belongs to the hepadnavirus family, with virions and subviral forms of particles that lack a core. MicroRNA (miRNA), a small (∼22-nt) noncoding RNA, was recently found to be an important regulator of gene expression. We found that HBV encodes miRNA (HBV-miR-3). More importantly, we revealed that HBV-miR-3 targets its transcripts to attenuate HBV replication. This may contribute to explaining how HBV infection leads to mild damage in liver cells and the subsequent establishment/maintenance of persistent infection. Our findings highlight a mechanism by which HBV-encoded miRNA controls the process of self-replication by regulating the virus itself during infection and might provide new biomarkers for diagnosis and treatment of hepatitis B.
Collapse
|
36
|
Zhou H, Gewaily D, Ahn SH, Preskill C, Wang Y, Zong L, Zhang J, Han KH, Wands J, Li J, Tong S. Sequence analysis and functional characterization of full-length hepatitis B virus genomes from Korean cirrhotic patients with or without liver cancer. Virus Res 2017; 235:86-95. [PMID: 28373061 DOI: 10.1016/j.virusres.2017.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
Abstract
This study aimed to identify and characterize mutations in the hepatitis B virus (HBV) genome associated with advanced liver diseases. The 3.2-kb HBV genome of the C2 subgenotype was amplified from sera of 18 cirrhotic Korean patients with (10) or without (8) hepatocellular carcinoma (HCC), and two clones per patient were characterized by transient transfection experiments in human hepatoma cells. While A1762T/G1764A core promoter mutations were highly prevalent in both groups, the G1896A precore mutation to abolish hepatitis B e antigen (HBeAg) expression was more common in HCC clones (55% vs. 20%). High replication capacity was mostly found in HCC clones and associated with core promoter mutations, whereas more non-HCC clones harbored a nonfunctional core gene (34% vs. 8%). Large in-frame deletions in the preS region were found in 60% of HCC clones and 38% of non-HCC clones. They removed the first 11 residues of large envelope protein or impaired small envelope protein expression, or deleted a neutralizing epitope in the preS2 domain. Additional point mutations prevented middle envelope protein expression, or caused nonsense mutations in the preS or S region to truncate large and/or small envelope protein. Consequently, many clones were unable to express or secrete hepatitis B surface antigen (HBsAg). In conclusion, mutations associated with the advanced stage of chronic HBV infection are complex and diverse. Host immune pressure most likely selected for mutations in the HBV genome to abolish or reduce HBeAg or HBsAg production, to enhance genome replication, or to escape neutralizing antibodies. Some of these mutations may contribute to liver cirrhosis or HCC development.
Collapse
Affiliation(s)
- Huailiang Zhou
- Key Lab of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai, China.
| | - Dina Gewaily
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA .
| | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Carina Preskill
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA .
| | - Yongxiang Wang
- Key Lab of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai, China.
| | - Li Zong
- Key Lab of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai, China.
| | - Jing Zhang
- Key Lab of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai, China.
| | - Kwang-Hyub Han
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA .
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA .
| | - Shuping Tong
- Key Lab of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai, China; Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA .
| |
Collapse
|
37
|
Jia H, Qin Y, Chen C, Zhang F, Li C, Zong L, Wang Y, Zhang J, Li J, Wen Y, Tong S. The Envelope Gene of Hepatitis B Virus Is Implicated in Both Differential Virion Secretion and Genome Replication Capacities between Genotype B and Genotype C Isolates. Viruses 2017; 9:v9040062. [PMID: 28350327 PMCID: PMC5408668 DOI: 10.3390/v9040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic infection by hepatitis B virus (HBV) genotype C is associated with a prolonged replicative phase and an increased risk of liver cancer, compared with genotype B infection. We previously found lower replication capacity but more efficient virion secretion by genotype C than genotype B isolates. Virion secretion requires interaction between core particles and ENVELOPE proteins. In the present study, chimeric constructs between genotype B and genotype C clones were generated to identify the structural basis for differential virion secretion. In addition to dimeric constructs, we also employed 1.1mer constructs, where the cytomegalovirus (CMV) promoter drove pregenomic RNA transcription. Through transient transfection experiments in Huh7 cells, we found that exchanging the entire envelope gene or just its S region could enhance virion secretion by genotype B clones while diminishing virion secretion by genotype C. Site-directed mutagenesis established the contribution of genotype-specific divergence at codons 108 and 115 in the preS1 region, as well as codon 126 in the S region, to differential virion secretion. Surprisingly, exchanging the envelope gene or just its S region, but not the core gene or 3′ S region, could markedly increase intracellular replicative DNA for genotype C clones but diminish that for genotype B, although the underlying mechanism remains to be clarified.
Collapse
Affiliation(s)
- Haodi Jia
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyang Chen
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Fei Zhang
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Cheng Li
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Li Zong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yongxiang Wang
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA.
| | - Yumei Wen
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shuping Tong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
38
|
Zhang XX, Li MR, Xi HL, Cao Y, Zhang RW, Zhang Y, Xu XY. Dynamic Characteristics of Serum Hepatitis B Surface Antigen in Chinese Chronic Hepatitis B Patients Receiving 7 Years of Entecavir Therapy. Chin Med J (Engl) 2017; 129:929-35. [PMID: 27064037 PMCID: PMC4831527 DOI: 10.4103/0366-6999.179802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The ultimate goal of hepatitis B treatment is hepatitis B surface antigen (HBsAg) seroclearance. Several factors have been suggested to be associated with the rate of HBsAg reduction in antiviral-naive or lamivudine therapy cohorts. However, there are few studies evaluating the factors during long-term entecavir (ETV) therapy. In the present study, we aimed to evaluate the factors to predict the outcome of ETV therapy for 7 years. Methods: A total of 47 chronic hepatitis B (CHB) patients treated with ETV monotherapy were included in this study. Liver biochemistry, hepatitis B virus (HBV) serological markers, serum HBV DNA, and HBsAg titers were tested at baseline, 3 months, 6 months, and yearly from 1 to 7. The associations between factors and HBsAg reduction were assessed using multivariate tests with repeated measure analysis of variance. Results: At baseline, serum HBsAg levels showed a positive correlation with baseline HBV DNA levels (r = 0.625, P < 0.001). The mean HBsAg titers after ETV treatment were significantly lower than the baseline titers (P ranges from 0.025 to 0.000,000,6). The HBsAg reduction rate during the 1st year was greater compared to after 1 year of treatment (P < 0.05). Multivariate test showed that hepatitis B e antigen (HBeAg) seroclearance and/or HBsAg reduction ≥0.5 log10 IU/ml at 6 months had a high negative predictive value (96.77%) for HBsAg seroclearance (P = 0.002, P = 0.012, respectively). Conclusions: The HBsAg reduction rate during the 1st year was greater than that after 1 year of treatment. Further, HBeAg status and HBsAg levels at month 6 are the optimal factors for the early prediction of HBsAg seroclearance after long-term ETV therapy in CHB patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Yuan Xu
- Department of Infectious Disease, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
39
|
Zhang F, Tang X, Garcia T, Lok AS, Wang Y, Jia H, Qin Y, Chen C, Wen Y, Li J, Tong S. Characterization of contrasting features between hepatitis B virus genotype A and genotype D in small envelope protein expression and surface antigen secretion. Virology 2017; 503:52-61. [PMID: 28126637 DOI: 10.1016/j.virol.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) genotypes A and D are prevalent in many parts of the world and show overlapping geographic distributions. We amplified the entire HBV genome from sera of patients with genotypes A and D and generated overlength constructs for transient transfection into Huh7 or HepG2 cells. Genotype D clones were associated with less HBsAg in culture supernatant and even less intracellular HBsAg. They produced less 2.1-kb RNA due to a weaker SPII promoter. Chimeric promoter constructs identified three divergent positions as most critical, and their exchange reversed extracellular HBsAg phenotype. The S protein of genotype D was more efficient at secretion, while its L protein possessed greater inhibitory effect. Swapping the S gene diminished genotypic difference in intracellular S protein but widened the difference in secreted HBsAg. In conclusion, HBV genotypes A and D differ in S protein expression, secretion and modulation by L protein.
Collapse
Affiliation(s)
- Fei Zhang
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoli Tang
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Tamako Garcia
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Yongxiang Wang
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haodi Jia
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaoyang Chen
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Shuping Tong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
40
|
Hu S, Jiang LB, Zou XJ, Yi W, Tian DY. Hepatitis B virus upregulates host expression of α-1,2-mannosidases via the PPARα pathway. World J Gastroenterol 2016; 22:9534-9543. [PMID: 27920474 PMCID: PMC5116597 DOI: 10.3748/wjg.v22.i43.9534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the effects of hepatitis B virus (HBV) on the expression of host α-1,2-mannosidases and determine the underlying mechanisms.
METHODS We measured the expression levels of MAN1A1, MAN1A2, MAN1B1, and MAN1C1 in cell lines HepG2.2.15, HepN10, HepAD38 and HepG2 by Western blot. Viral antigens (HBsAg and HBeAg) in the culture medium were measured using the chemiluminescence method. HBV DNA quantification assays were performed using a commercial real-time PCR kit. Protein levels of human liver tissue α-1,2-mannosidases were also evaluated by Western blot. Plasmids containing seven individual viral genes of HBV (PTT22-HBx, PTT22-HBs, PTT22-preS2, PTT22-preS1, PTT22-HBc, PTT22-HBe, and PTT22-HBp) or control plasmids (PTT22-vector) were transfected into HepG2 cells. MK886 (PPARα) and GW9662 (PPARγ) inhibitors were used to explore the effects of HBV on α-1,2-mannosidase expression after the PPARα and PPARγ pathways were blocked.
RESULTS We showed that the expression of α-1,2-mannosidases was higher in stably transfected HBV cells than in controls. The expression levels of α-1,2-mannosidase were higher in AD38 cells than those in ND10 cells, which were in turn greater than those in G2.2.15 cells, and positively correlated with the expression of HBsAg in all the cell lines. Levels of α-1,2-mannosidase in non-tumorous liver tissues of HBV-related HCC patients were also higher than in the tissues from non-HBV-related HCC patients. Moreover, transfecting HepG2 cells with a component of the HBV viral envelope also increased the expression of α-1,2-mannosidases. However, this envelope protein component could not induce MAN1C1 expression in the presence of a PPARα inhibitor, MK886. We also found that MK886 did not affect the expression of MAN1C1 in AD38 cells without tetracycline in the culture medium. This phenomenon was not observed in the case of GW9662.
CONCLUSION Our results indicate that HBV increases the expression of α-mannosidases both in vitro and in vivo via activation of the PPARα pathway by its envelope protein.
Collapse
|
41
|
Lazar C, Uta M, Petrescu SM, Branza-Nichita N. Novel function of the endoplasmic reticulum degradation-enhancing α-mannosidase-like proteins in the human hepatitis B virus life cycle, mediated by the middle envelope protein. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Catalin Lazar
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Mihaela Uta
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Stefana Maria Petrescu
- Department of Molecular Cell Biology; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| |
Collapse
|
42
|
Hepatitis B surface antigen expression: A pilot study comparing wild type and surface antigen mutant viruses. J Clin Virol 2016. [DOI: 10.1016/j.jcv.2016.08.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor. J Virol 2016; 90:8302-13. [PMID: 27384660 DOI: 10.1128/jvi.01153-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/03/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes. IMPORTANCE Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum-derived HBV could efficiently infect differentiated HepaRG cells independent of polyethylene glycol, which represents a more physiological infection system. Serum-derived HBV has poor infectivity in HepG2 cells reconstituted with sodium taurocholate cotransporting polypeptide (NTCP), the currently accepted HBV receptor. Moreover, HepG2/NTCP cells secreted very little hepatitis B surface antigen after infection with cell culture-derived HBV, which was attributed to NTCP overexpression, genotype D virus, and dimethyl sulfoxide added to culture medium. NTCP could promote HBV RNA transcription, protein expression, and DNA replication in HepG2 cells stably transfected with HBV DNA, while dimethyl sulfoxide could increase NTCP protein level despite transcriptional control by a cytomegalovirus promoter. Therefore, this study revealed several unusual features of NTCP as an HBV receptor and established conditions for efficient serum virus infection in vitro.
Collapse
|
44
|
Chen C, Jia H, Zhang F, Qin Y, Zong L, Yuan Q, Wang Y, Xia N, Li J, Wen Y, Tong S. Functional characterization of hepatitis B virus core promoter mutants revealed transcriptional interference among co-terminal viral mRNAs. J Gen Virol 2016; 97:2668-2676. [PMID: 27558941 DOI: 10.1099/jgv.0.000590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) has a 3.2 kb circular DNA genome. It employs four promoters in conjunction with a single polyadenylation signal to generate 3.5, 2.4, 2.1 and 0.7 kb co-terminal RNAs. The 3.5 kb RNA is subdivided into the precore RNA for e-antigen expression and pregenomic RNA for genome replication. When introduced to a genotype A clone, several core promoter mutations markedly enhanced HBV genome replication, but suppressed e-antigen expression through up-regulation of pregenomic RNA at the expense of precore RNA. In this study, we found such mutations also diminished envelope proteins and hepatitis B surface antigen, products of the 2.1 and 2.4 kb subgenomic RNAs. Indeed, Northern blot analysis revealed overall increase in 3.5 kb RNA, but reduction in all subgenomic RNAs. To validate transcriptional interference, we subcloned 1.1×, 0.7× and 0.6× HBV genome, respectively, to a vector with or without a cytomegalovirus (CMV) promoter at the 5' end, so as to produce the pregenomic RNA, 2.4 kb RNA, and 2.1 kb RNA in large excess or not at all. Parallel transfection of the three pairs of constructs into a human hepatoma cell line confirmed the ability of pregenomic RNA to suppress all subgenomic transcripts and established the ability of the 2.4 and 2.1 kb RNAs to suppress the 0.7 kb RNA. Consistent with our findings, pregenomic RNA of the related duck HBV has been reported to interfere with transcription of the subgenomic RNAs. Transcriptional interference might explain why HBV produces so little 0.7 kb RNA and HBx protein despite a strong X promoter.
Collapse
Affiliation(s)
- Chaoyang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Haodi Jia
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Fei Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Li Zong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, PR China
| | - Jisu Li
- The Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Shuping Tong
- The Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA.,Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
45
|
Chen J, Liu Y, Zhao J, Xu Z, Chen R, Si L, Lu S, Li X, Wang S, Zhang K, Li J, Han J, Xu D. Characterization of Novel Hepatitis B Virus PreS/S-Gene Mutations in a Patient with Occult Hepatitis B Virus Infection. PLoS One 2016; 11:e0155654. [PMID: 27182775 PMCID: PMC4868315 DOI: 10.1371/journal.pone.0155654] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/02/2016] [Indexed: 12/19/2022] Open
Abstract
Objective The impact of hepatitis B virus (HBV) preS/S-gene mutations on occult HBV infection (OBI) is not fully understood. This study characterized multiple novel HBV preS/S-gene mutants obtained from an OBI patient. Methods PreS/S-gene mutants were analyzed by clonal sequencing. Viral replication and expression were analyzed by transfecting HBV genomic recombinants into HepG2 cells. Results Twenty-one preS/S-gene mutants were cloned from four sequential serum samples, including 13 mutants that were not previously documented: (1) sI/T126V+sG145R; (2) preS1 nt 3014−3198 deletion; (3) preS1 nt 3046−3177 deletion; (4) preS1 nt 3046−3177 deletion+s115−116 “INGTST” insertion; (5) preS1 nt 3046−3177 deletion+s115−116 “INGTST” insertion+sG145R; (6) preS1 nt 3115−3123 deletion+sQ129N; (7) preS1 nt 3115−3123 deletion+s126−127 “RPCMNCTI” insertion; (8) s115−116 “INGTST” insertion; (9) s115−116 “INGTST” insertion+sG145R; (10) s126−127 “RPCMNCTI” insertion; (11) preS1 nt 2848−2862 deletion+preS2 initiation codon M→I; (12) s122−123 “KSTGLCK” insertion+sQ129N; and (13) preS2 initiation codon M→I+s131−133TSM→NST. The proportion of preS1 nt 3046−3177 deletion and preS2 initiation codon M→I+s131−133TSM→NST mutants increased in the viral pool with prolonged disease. The 13 novel OBI-related mutants showed a 51.2−99.9% decrease in HBsAg levels compared with that of the wild type. Additional N-glycosylation-associated mutations, sQ129N and s131−133TSM→NST, but not s126−127 “RPCMNCTI,” greatly attenuated anti-HBs binding to HBsAg. Compared with the wild type, replication and surface antigen promoter II activity of the preS1 nt 3046−3177 deletion mutant decreased by 43.3% and 97.0%, respectively. Conclusion PreS/S-gene mutations may play coordinated roles in the presentation of OBI and might be associated with disease progression. This has implications for HBV diagnosis and vaccine improvement.
Collapse
Affiliation(s)
- Jianhong Chen
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Yan Liu
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Jun Zhao
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Zhihui Xu
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Rongjuan Chen
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Lanlan Si
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Shanshan Lu
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Xiaodong Li
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Shuai Wang
- Department of liver disease, General Hospital of Beijing Military Region, Beijing 100700, China
| | - Kai Zhang
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Jin Li
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
| | - Juqiang Han
- Department of liver disease, General Hospital of Beijing Military Region, Beijing 100700, China
- * E-mail: (DX); (JH)
| | - Dongping Xu
- Institute of Infectious Diseases/Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing 100039, China
- * E-mail: (DX); (JH)
| |
Collapse
|
46
|
Zhu HL, Li X, Li J, Zhang ZH. Genetic variation of occult hepatitis B virus infection. World J Gastroenterol 2016; 22:3531-3546. [PMID: 27053845 PMCID: PMC4814639 DOI: 10.3748/wjg.v22.i13.3531] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/13/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B virus infection (OBI), characterized as the persistence of hepatitis B virus (HBV) surface antigen (HBsAg) seronegativity and low viral load in blood or liver, is a special form of HBV infection. OBI may be related mainly to mutations in the HBV genome, although the underlying mechanism of it remains to be clarified. Mutations especially within the immunodominant “α” determinant of S protein are “hot spots” that could contribute to the occurrence of OBI via affecting antigenicity and immunogenicity of HBsAg or replication and secretion of virion. Clinical reports account for a large proportion of previous studies on OBI, while functional analyses, especially those based on full-length HBV genome, are rare.
Collapse
|
47
|
Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability. J Hepatol 2016; 64:S4-S16. [PMID: 27084035 PMCID: PMC4834849 DOI: 10.1016/j.jhep.2016.01.027] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) greatly increases the risk for liver cirrhosis and hepatocellular carcinoma (HCC). HBV isolates worldwide can be divided into ten genotypes. Moreover, the immune clearance phase selects for mutations in different parts of the viral genome. The outcome of HBV infection is shaped by the complex interplay of the mode of transmission, host genetic factors, viral genotype and adaptive mutations, as well as environmental factors. Core promoter mutations and mutations abolishing hepatitis B e antigen (HBeAg) expression have been implicated in acute liver failure, while genotypes B, C, subgenotype A1, core promoter mutations, preS deletions, C-terminal truncation of envelope proteins, and spliced pregenomic RNA are associated with HCC development. Our efforts to treat and prevent HBV infection are hampered by the emergence of drug resistant mutants and vaccine escape mutants. This paper provides an overview of the HBV life cycle, followed by review of HBV genotypes and mutants in terms of their biological properties and clinical significance.
Collapse
Affiliation(s)
- Shuping Tong
- Liver Research Center, Rhode Island Hospital, The Alpert Warren School of Medicine, Brown University, Providence, RI, USA; Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Peter Revill
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, VIC, Australia ()
| |
Collapse
|
48
|
Zong L, Qin Y, Jia H, Zhou H, Chen C, Qiao K, Zhang J, Wang Y, Li J, Tong S. Two-way molecular ligation for efficient conversion of monomeric hepatitis B virus DNA constructs into tandem dimers. J Virol Methods 2016; 233:46-50. [PMID: 27025357 DOI: 10.1016/j.jviromet.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Replication of the 3.2-kb hepatitis B virus (HBV) genome is driven by the covalently closed circular (ccc) DNA in the nucleus, from which four classes of co-terminal RNAs are transcribed. Genome replication requires just the 3.5-kb pregenomic RNA, which is terminally redundant. Cloning the full-length HBV genome into a vector disrupts its continuity, thus preventing genome replication at the step of pregenomic RNA transcription. This can be overcome by converting the monomeric construct into a tandem dimer, yet the need to ligate two molecules of the HBV genome with vector DNA makes it inefficient and even unsuccessful. To overcome this problem we partially digested the monomeric construct with the unique restriction enzyme used for cloning, and dephosphorylated the linearized monomer before its ligation with another copy of the HBV genome. Alternatively, the monomer was linearized at another unique restriction site inside the HBV genome, followed by its dephosphorylation and ligation with another copy of the HBV genome linearized at the same site. These approaches of two-way molecular ligation greatly improved the efficiency of dimer formation with about 50% of the bacterial colonies screened harboring tandem dimers.
Collapse
Affiliation(s)
- Li Zong
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haodi Jia
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huailiang Zhou
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chaoyang Chen
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ke Qiao
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxiang Wang
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Shuping Tong
- Department of Pathobiology and Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital, Brown University, Providence, RI, USA.
| |
Collapse
|
49
|
Subviral Hepatitis B Virus Filaments, like Infectious Viral Particles, Are Released via Multivesicular Bodies. J Virol 2015; 90:3330-41. [PMID: 26719264 DOI: 10.1128/jvi.03109-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies.
Collapse
|
50
|
Pondé RAA. Molecular mechanisms underlying HBsAg negativity in occult HBV infection. Eur J Clin Microbiol Infect Dis 2015; 34:1709-31. [PMID: 26105620 DOI: 10.1007/s10096-015-2422-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
Although genomic detection is considered the gold standard test on HBV infection identification, the HBsAg investigation is still the most frequent clinical laboratory request to diagnose HBV infection in activity. However, the non-detection of HBsAg in the bloodstream of chronic or acutely infected individuals has been a phenomenon often observed in clinical practice, despite the high sensitivity and specificity of screening assays standardized commercially and adopted in routine. The expansion of knowledge about the hepatitis B virus biology (replication/life cycle, genetic variability/mutability/heterogeneity), their biochemical and immunological properties (antigenicity and immunogenicity), in turn, has allowed to elucidate some mechanisms that may explain the occurrence of this phenomenon. Therefore, the negativity for HBsAg during the acute or chronic infection course may become a fragile or at least questionable result. This manuscript discusses some mechanisms that could explain the negativity for HBsAg in a serological profile of individuals with HBV infection in activity, or factors that could compromise its detection in the bloodstream during HBV infection.
Collapse
Affiliation(s)
- R A A Pondé
- Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil,
| |
Collapse
|