1
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2024:10.1007/s00239-024-10225-5. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Brunel J, Paganini J, Galloux M, Charvet B, Perron H. HERV-W ENV transcription in B cells predicting symptomatic COVID-19 and risk for long COVID can express a full-length protein despite stop codon in mRNA from chromosome X via a ribosome readthrough. Microbes Infect 2024:105431. [PMID: 39419470 DOI: 10.1016/j.micinf.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The human genome comprises 8 % of endogenous retroviruses (HERVs). Though HERVS contribute to physiological functions, copies retained pathogenic potential. The HERV-W ENV protein was shown expressed in patients with worse COVID-19 symptoms and post-COVID syndrome. A significant detection of the mRNA encoding HERV-W ENV from patients with COVID-19 in B cells from RNAseq reads obtained from peripheral blond mononuclear cells. This data stratified with increased COVID-19 symptoms or with post-acute sequelae of COVID-19 (long COVID) after 3 months. The HERV-W ENV-U3R RNA was confirmed to display the best alignment with chromosome X ERVWE2 locus. However, a stop codon precluding its translation was re-addressed after recent understandings of ribosome readthrough mechanisms. Experimental results evidenced that this HERV gene can effectively express a full-length protein in the presence of molecules allowing translation via a readthrough mechanism at the ribosome level. Results not only confirm HERV-W ENV RNA origin in these patients but show for the first time how a defective HERV copy can be translated into a complete protein when specific factors make it possible at the ribosome level. The present proof of concept now requires further studies to identify the factors involved in this newly understood mechanism, following SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Joanna Brunel
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
3
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
4
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Kitsou K, Katzourakis A, Magiorkinis G. Limitations of current high-throughput sequencing technologies lead to biased expression estimates of endogenous retroviral elements. NAR Genom Bioinform 2024; 6:lqae081. [PMID: 38984066 PMCID: PMC11231582 DOI: 10.1093/nargab/lqae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Human endogenous retroviruses (HERVs), the remnants of ancient germline retroviral integrations, comprise almost 8% of the human genome. The elucidation of their biological roles is hampered by our inability to link HERV mRNA and protein production with specific HERV loci. To solve the riddle of the integration-specific RNA expression of HERVs, several bioinformatics approaches have been proposed; however, no single process seems to yield optimal results due to the repetitiveness of HERV integrations. The performance of existing data-bioinformatics pipelines has been evaluated against real world datasets whose true expression profile is unknown, thus the accuracy of widely-used approaches remains unclear. Here, we simulated mRNA production from specific HERV integrations to evaluate second and third generation sequencing technologies along with widely used bioinformatic approaches to estimate the accuracy in describing integration-specific expression. We demonstrate that, while a HERV-family approach offers accurate results, per-integration analyses of HERV expression suffer from substantial expression bias, which is only partially mitigated by algorithms developed for calculating the per-integration HERV expression, and is more pronounced in recent integrations. Hence, this bias could erroneously result into biologically meaningful inferences. Finally, we demonstrate the merits of accurate long-read high-throughput sequencing technologies in the resolution of per-locus HERV expression.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
6
|
Perron H. A tale of a hidden family of genetic immigrants. Microbes Infect 2024:105387. [PMID: 38944111 DOI: 10.1016/j.micinf.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.
Collapse
Affiliation(s)
- Hervé Perron
- GeNeuro, 3 chemin du Pré-Fleuri, 1228 Plan-les-ouates, Geneva, Switzerland; Geneuro-Innovation, 60A, Avenue Rockefeller, 69008 Lyon, France.
| |
Collapse
|
7
|
Chen M, Yang C, Zhai X, Wang C, Liu M, Zhang B, Guo X, Wang Y, Li H, Liu Y, Han J, Wang X, Li J, Jia L, Li L. Comprehensive Identification and Characterization of HML-9 Group in Chimpanzee Genome. Viruses 2024; 16:892. [PMID: 38932184 PMCID: PMC11209481 DOI: 10.3390/v16060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Endogenous retroviruses (ERVs) are related to long terminal repeat (LTR) retrotransposons, comprising gene sequences of exogenous retroviruses integrated into the host genome and inherited according to Mendelian law. They are considered to have contributed greatly to the evolution of host genome structure and function. We previously characterized HERV-K HML-9 in the human genome. However, the biological function of this type of element in the genome of the chimpanzee, which is the closest living relative of humans, largely remains elusive. Therefore, the current study aims to characterize HML-9 in the chimpanzee genome and to compare the results with those in the human genome. Firstly, we report the distribution and genetic structural characterization of the 26 proviral elements and 38 solo LTR elements of HML-9 in the chimpanzee genome. The results showed that the distribution of these elements displayed a non-random integration pattern, and only six elements maintained a relatively complete structure. Then, we analyze their phylogeny and reveal that the identified elements all cluster together with HML-9 references and with those identified in the human genome. The HML-9 integration time was estimated based on the 2-LTR approach, and the results showed that HML-9 elements were integrated into the chimpanzee genome between 14 and 36 million years ago and into the human genome between 18 and 49 mya. In addition, conserved motifs, cis-regulatory regions, and enriched PBS sequence features in the chimpanzee genome were predicted based on bioinformatics. The results show that pathways significantly enriched for ERV LTR-regulated genes found in the chimpanzee genome are closely associated with disease development, including neurological and neurodevelopmental psychiatric disorders. In summary, the identification, characterization, and genomics of HML-9 presented here not only contribute to our understanding of the role of ERVs in primate evolution but also to our understanding of their biofunctional significance.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Caiqin Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chunlei Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Mengying Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xing Guo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yanglan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| |
Collapse
|
8
|
Fukuda K. The role of transposable elements in human evolution and methods for their functional analysis: current status and future perspectives. Genes Genet Syst 2024; 98:289-304. [PMID: 37866889 DOI: 10.1266/ggs.23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA sequences that can insert themselves into various locations within the genome, causing mutations that may provide advantages or disadvantages to individuals and species. The insertion of TEs can result in genetic variation that may affect a wide range of human traits including genetic disorders. Understanding the role of TEs in human biology is crucial for both evolutionary and medical research. This review discusses the involvement of TEs in human traits and disease susceptibility, as well as methods for functional analysis of TEs.
Collapse
Affiliation(s)
- Kei Fukuda
- Integrative Genomics Unit, The University of Melbourne
| |
Collapse
|
9
|
Ramirez P, Sun W, Kazempour Dehkordi S, Zare H, Fongang B, Bieniek KF, Frost B. Nanopore-based DNA long-read sequencing analysis of the aged human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578450. [PMID: 38370753 PMCID: PMC10871260 DOI: 10.1101/2024.02.01.578450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aging disrupts cellular processes such as DNA repair and epigenetic control, leading to a gradual buildup of genomic alterations that can have detrimental effects in post-mitotic cells. Genomic alterations in regions of the genome that are rich in repetitive sequences, often termed "dark loci," are difficult to resolve using traditional sequencing approaches. New long-read technologies offer promising avenues for exploration of previously inaccessible regions of the genome. Using nanopore-based long-read whole-genome sequencing of DNA extracted from aged 18 human brains, we identify previously unreported structural variants and methylation patterns within repetitive DNA, focusing on transposable elements ("jumping genes") as crucial sources of variation, particularly in dark loci. Our analyses reveal potential somatic insertion variants and provides DNA methylation frequencies for many retrotransposon families. We further demonstrate the utility of this technology for the study of these challenging genomic regions in brains affected by Alzheimer's disease and identify significant differences in DNA methylation in pathologically normal brains versus those affected by Alzheimer's disease. Highlighting the power of this approach, we discover specific polymorphic retrotransposons with altered DNA methylation patterns. These retrotransposon loci have the potential to contribute to pathology, warranting further investigation in Alzheimer's disease research. Taken together, our study provides the first long-read DNA sequencing-based analysis of retrotransposon sequences, structural variants, and DNA methylation in the aging brain affected with Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Mantovani F, Kitsou K, Magiorkinis G. HERVs: Expression Control Mechanisms and Interactions in Diseases and Human Immunodeficiency Virus Infection. Genes (Basel) 2024; 15:192. [PMID: 38397182 PMCID: PMC10888493 DOI: 10.3390/genes15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.
Collapse
Affiliation(s)
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (F.M.); (K.K.)
| |
Collapse
|
11
|
Mantovani F, Kitsou K, Paraskevis D, Lagiou P, Magiorkinis G. The interaction of human immunodeficiency virus-1 and human endogenous retroviruses in patients (primary cell cultures) and cell line models. Microbiol Spectr 2023; 11:e0137923. [PMID: 37811936 PMCID: PMC10715072 DOI: 10.1128/spectrum.01379-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE In this work, we demonstrated that human immunodeficiency virus (HIV) infection leads to the modification of the human endogenous retrovirus (HERV) expression. Differential expression of multiple HERVs was found in peripheral blood mononuclear cells derived from HIV-infected patients compared to healthy donors and HIV-infected T cell cultures compared to non-infected. The effect of HIV presence on HERV expression appears to be more restricted in cells of monocytic origin, as only deregulation of HERV-W and HERV-K (HML-6) was found in these cell cultures after their infection with HIV. Multiple factors contribute to this aberrant HERV expression, and its levels appear to be modified in a time-dependent manner. Further studies and the development of optimized in vitro protocols are warranted to elucidate the interactions between HIV and HERVs in detail.
Collapse
Affiliation(s)
- Federica Mantovani
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
DeMarino C, Nath A, Zhuang Z, Doucet-O’Hare TT. Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:548-56. [PMID: 38606283 PMCID: PMC11007738 DOI: 10.20517/evcna.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The role of extracellular vesicles (EVs), including retroviral-like particles (RVLPs), in pathogenic processes is currently a subject of active investigation. Several studies have identified mechanistic links between the increased presence of EVs and the process of senescence. A recent study reveals that the reverse transcribed complementary DNA (cDNA) of a human endogenous retroviral sequence can activate the innate immune system and result in tissue damage and/or the spread of cellular senescence to distant tissues. Several studies have linked EVs to age-related diseases, such as Alzheimer's disease and Parkinson's disease, and have included isolation of EVs from individuals with these diseases. Loss of epigenetic regulation, immune activation, and environmental stimuli can all lead to the expression of endogenous retroviruses and the incorporation of their proteins and transcripts into EVs. In addition, EVs disseminating these endogenous retroviral components have now been shown to act in a paracrine manner in multiple human diseases. Further investigation of the connection between EVs containing endogenous retroviral protein products or nucleotides should be pursued in models of age-related diseases.
Collapse
Affiliation(s)
- Catherine DeMarino
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
14
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Stricker E, Peckham-Gregory EC, Scheurer ME. CancerHERVdb: Human Endogenous Retrovirus (HERV) Expression Database for Human Cancer Accelerates Studies of the Retrovirome and Predictions for HERV-Based Therapies. J Virol 2023; 97:e0005923. [PMID: 37255431 PMCID: PMC10308937 DOI: 10.1128/jvi.00059-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, we sought to create a database summarizing the expression of human endogenous retroviruses (HERVs) in various human cancers. HERVs are suitable therapeutic targets due to their abundance in the human genome, overexpression in various malignancies, and involvement in various cancer pathways. We identified articles on HERVs from PubMed and then prescreened and automatically categorized them using the portable document format (PDF) data extractor (PDE) R package. We discovered 196 primary research articles with HERV expression data from cancer tissues or cancer cell lines. HERV RNA and protein expression was reported in brain, breast, cervical, colorectal, endocrine, gastrointestinal, kidney/renal/pelvis, liver, lung, genital, oral cavity, pharynx, ovary, pancreas, prostate, skin, testicular, urinary/bladder, and uterus cancers, leukemias, lymphomas, and myelomas. Additionally, we discovered reports of HERV RNA-only overexpression in soft tissue cancers including heart, thyroid, bone, and joint cancers. The CancerHERVdb database is hosted in the form of interactive visualizations of the expression data and a summary data table at https://erikstricker.shinyapps.io/cancerHERVdb/. The user can filter the findings according to cancer type, HERV family, HERV gene, or a combination thereof and easily export the results with the corresponding reference list. In our report, we provide examples of potential uses of the CancerHERVdb, such as identification of cancers suitable for off-target treatment with the multiple sclerosis-associated retrovirus (MSRV)-Env-targeting antibody GNbAC1 (now named temelimab) currently in phase 2b clinical trials for multiple sclerosis or the discovery of cancers overexpressing HERV-H long terminal repeat-associating 2 (HHLA2), a newly emerging immune checkpoint. In summary, the CancerHERVdb allows cross-study comparisons, encourages data exploration, and informs about potential off-target effects of HERV-targeting treatments. IMPORTANCE Human endogenous retroviruses (HERVs), which in the past have inserted themselves in various regions of the human genome, are to various degrees activated in virtually every cancer type. While a centralized naming system and resources summarizing HERV levels in cancers are lacking, the CancerHERVdb database provides a consolidated resource for cross-study comparisons, data exploration, and targeted searches of HERV activation. The user can access data extracted from hundreds of articles spanning 25 human cancer categories. Therefore, the CancerHERVdb database can aid in the identification of prognostic and risk markers, drivers of cancer, tumor-specific targets, multicancer spanning signals, and targets for immune therapies. Consequently, the CancerHERVdb database is of direct relevance for clinical as well as basic research.
Collapse
Affiliation(s)
- Erik Stricker
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Houston, Texas, USA
- Baylor College of Medicine, Department of Pediatrics, Houston, Texas, USA
| | | | | |
Collapse
|
16
|
Petrone V, Fanelli M, Giudice M, Toschi N, Conti A, Maracchioni C, Iannetta M, Resta C, Cipriani C, Miele MT, Amati F, Andreoni M, Sarmati L, Rogliani P, Novelli G, Garaci E, Rasi G, Sinibaldi-Vallebona P, Minutolo A, Matteucci C, Balestrieri E, Grelli S. Expression profile of HERVs and inflammatory mediators detected in nasal mucosa as a predictive biomarker of COVID-19 severity. Front Microbiol 2023; 14:1155624. [PMID: 37283924 PMCID: PMC10239953 DOI: 10.3389/fmicb.2023.1155624] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1β, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-β, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1β, IL-6, IFN-α, and IFN-β reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.
Collapse
Affiliation(s)
- Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, United States
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Resta
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuromed IRCCS Institute, Pozzilli, IS, Italy
- University of Nevada, Department of Pharmacology, Reno, NV, United States
| | | | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Camargo-Forero N, Orozco-Arias S, Perez Agudelo JM, Guyot R. HERV-K (HML-2) insertion polymorphisms in the 8q24.13 region and their potential etiological associations with acute myeloid leukemia. Arch Virol 2023; 168:125. [PMID: 36988711 DOI: 10.1007/s00705-023-05747-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023]
Abstract
Human endogenous retroviruses (HERVs) are LTR retrotransposons that are present in the human genome. Among them, members of the HERV-K (HML-2) group are suspected to play a role in the development of different types of cancer, including lung, ovarian, and prostate cancer, as well as leukemia. Acute myeloid leukemia (AML) is an important disease that causes 1% of cancer deaths in the United States and has a survival rate of 28.7%. Here, we describe a method for assessing the statistical association between HERV-K (HML-2) transposable element insertion polymorphisms (or TIPs) and AML, using whole-genome sequencing and read mapping using TIP_finder software. Our results suggest that 101 polymorphisms involving HERV-K (HML-2) elements were correlated with AML, with a percentage between 44.4 to 56.6%, most of which (70) were located in the region from 8q24.13 to 8q24.21. Moreover, it was found that the TRIB1, LRATD2, POU5F1B, MYC, PCAT1, PVT1, and CCDC26 genes could be displaced or fragmented by TIPs. Furthermore, a general method was devised to facilitate analysis of the correlation between transposable element insertions and specific diseases. Finally, although the relationship between HERV-K (HML-2) TIPs and AML remains unclear, the data reported in this study indicate a statistical correlation, as supported by the χ2 test with p-values < 0.05.
Collapse
Affiliation(s)
- Nicolás Camargo-Forero
- School of Biology, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
- Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
| | | | - Romain Guyot
- UMR DIADE, Université de Montpellier, Institut de recherche pour le développement, CIRAD, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| |
Collapse
|
18
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
19
|
Grandi N, Erbì MC, Scognamiglio S, Tramontano E. Human Endogenous Retrovirus (HERV) Transcriptome Is Dynamically Modulated during SARS-CoV-2 Infection and Allows Discrimination of COVID-19 Clinical Stages. Microbiol Spectr 2023; 11:e0251622. [PMID: 36602345 PMCID: PMC9927238 DOI: 10.1128/spectrum.02516-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 infection is known to trigger an important inflammatory response, which has a major role in COVID-19 pathogenesis. In infectious and inflammatory contexts, the modulation of human endogenous retroviruses (HERV) has been broadly reported, being able to further sustain innate immune responses due to the expression of immunogenic viral transcripts, including double-stranded DNA (dsRNA), and eventually, immunogenic proteins. To gain insights on this poorly characterized interplay, we performed a high-throughput expression analysis of ~3,300 specific HERV loci in the peripheral blood mononuclear cells (PBMCs) of 10 healthy controls and 16 individuals being either convalescent after the infection (6) or retesting positive after convalescence (10) (Gene Expression Onmibus [GEO] data set GSE166253). Results showed that the exposure to SARS-CoV-2 infection modulates HERV expression according to the disease stage and reflecting COVID-19 immune signatures. The differential expression analysis between healthy control (HC) and COVID-19 patients allowed us to identify a total of 282 differentially expressed HERV loci (deHERV) in the individuals exposed to SARS-CoV-2 infection, independently from the clinical form. In addition, 278 and 60 deHERV loci that were specifically modulated in individuals convalescent after COVID19 infection (C) and patients that retested positive to SARS-CoV-2 after convalescence (RTP) as individually compared to HC, respectively, as well as 164 deHERV loci between C and RTP patients were identified. The identified HERV loci belonged to 36 different HERV groups, including members of all three classes. The present study provides an exhaustive picture of the HERV transcriptome in PBMCs and its dynamic variation in the presence of COVID-19, revealing specific modulation patterns according to the infection stage that can be relevant to the disease clinical manifestation and outcome. IMPORTANCE We report here the first high-throughput analysis of HERV loci expression along SARS-CoV-2 infection, as performed with peripheral blood mononuclear cells (PBMCs). Such cells are not directly infected by the virus but have a crucial role in the plethora of inflammatory and immune events that constitute a major hallmark of COVID-19 pathogenesis. Results provide a novel and exhaustive picture of HERV expression in PBMCs, revealing specific modulation patterns according to the disease condition and the concomitant immune activation. To our knowledge, this is the first set of deHERVs whose expression is dynamically modulated across COVID-19 stages, confirming a tight interplay between HERV and cellular immunity and revealing specific transcriptional signatures that can have an impact on the disease clinical manifestation and outcome.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Chiara Erbì
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Sante Scognamiglio
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
20
|
Liu X, Liu Z, Wu Z, Ren J, Fan Y, Sun L, Cao G, Niu Y, Zhang B, Ji Q, Jiang X, Wang C, Wang Q, Ji Z, Li L, Esteban CR, Yan K, Li W, Cai Y, Wang S, Zheng A, Zhang YE, Tan S, Cai Y, Song M, Lu F, Tang F, Ji W, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023; 186:287-304.e26. [PMID: 36610399 DOI: 10.1016/j.cell.2022.12.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Aihua Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingao Cai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Scognamiglio S, Grandi N, Pessiu E, Tramontano E. Identification, comprehensive characterization, and comparative genomics of the HERV-K(HML8) integrations in the human genome. Virus Res 2023; 323:198976. [PMID: 36309315 PMCID: PMC10194239 DOI: 10.1016/j.virusres.2022.198976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Around 8% of the human genome is composed by Human Endogenous Retroviruses (HERVs), ancient viral sequences inherited from the primate germ line after their infection by now extinct retroviruses. Given the still underexplored physiological and pathological roles of HERVs, it is fundamental to increase our information about the genomic composition of the different groups, to lay reliable foundation for functional studies. Among HERVs, the most characterized elements belong to the beta-like superfamily HERV-K, comprising 10 groups (HML1-10) with HML2 being the most recent and studied one. Among HMLs, the HML8 group is the only one still lacking a comprehensive genomic description. In the present work, we investigated HML8 sequences' distribution in the human genome (GRCh38/hg38), identifying 23 novel proviruses and characterizing the overall 78 HML8 proviruses in terms of genome structure, phylogeny, and integration pattern. HML8 elements were significantly enriched in human chromosomes 8 and X (p<0.005) while chromosomes 17 and 20 showed fewer integrations than expected (p<0.025 and p<0.005, respectively). Phylogenetic analyses classified HML8 members into 3 clusters, corresponding to the three LTR types MER11A, MER11B and MER11C. Besides different LTR types, common signatures in the internal structure suggested the potential existence of three different ancestral HML8 variants. Accordingly, time of integration estimation coupled with comparative genomics revealed that these three clusters have a different time of integration in the primates' genome, with MER11C elements being significantly younger than MER11A- and MER11B associated proviruses (p<0.005 and p<0.05, respectively). Approximately 30% of the HML8 elements were found co-localized within human genes, sometimes in exonic portions and with the same orientation, deserving further studies for their possible effects on gene expression. Overall, we provide the first detailed picture of the HML8 group distribution and variety among the genome, creating the backbone for the specific analysis of their transcriptional activity in healthy and diseased conditions.
Collapse
Affiliation(s)
- Sante Scognamiglio
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, Monserrato, Cagliari 09042, Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, Monserrato, Cagliari 09042, Italy
| | - Eleonora Pessiu
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, Monserrato, Cagliari 09042, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, Monserrato, Cagliari 09042, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari 09042, Italy.
| |
Collapse
|
22
|
Chabukswar S, Grandi N, Tramontano E. Prolonged activity of HERV-K(HML2) in Old World Monkeys accounts for recent integrations and novel recombinant variants. Front Microbiol 2022; 13:1040792. [PMID: 36532485 PMCID: PMC9751479 DOI: 10.3389/fmicb.2022.1040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Around 8% of the human genome comprises Human Endogenous Retroviruses (HERVs) acquired over primate evolution. Some are specific to primates such as HERV-K, consisting of 10 HML subtypes and including the most recently acquired elements. Particularly, HML2 is the youngest clade, having some human-specific integrations, and while it has been widely described in humans its presence and distribution in non-human primates remain poorly characterized. To investigate HML2 distribution in non-human primates, the present study focused on the characterization of HML2 integrations in Macaca fascicularis and Macaca mulatta which are the most evolutionarily distant species related to humans in the Catarrhini parvorder. We identified overall 208 HML2 proviruses for M. fascicularis (77) and M. mulatta (131). Among them, 46 proviruses are shared by the two species while the others are species specific. Only 12 proviruses were shared with humans, confirming that the major wave of HML2 diffusion in humans occurred after macaques' divergence. Phylogenetic analysis confirmed structural variations between HML2 macaques' species-specific proviruses, and the ones shared between macaques and humans. The HML2 loci were characterized in terms of structure, focusing on potential residual open reading frames (ORFs) for gag, pol, and env genes for the latter being reported to be expressed in human pathological conditions. The analysis identified highly conserved gag and pol genes, while the env genes had a very divergent nature. Of the 208 HML2 proviral sequences present in Macaca species, 81 sequences form a cluster having a MER11A, a characteristic HML8 LTR sequence, insertion in the env region indicating a recombination event that occurred between the HML2 env gene and the HML8 LTR. This recombination event, which was shown to be present only in a subset of macaques' shared sequences and species-specific sequences, highlights a recent viral activity leading to the emergence of an env variant specific to the Old World Monkeys (OWMs). We performed an exhaustive analysis of HML2 in two species of OWMs, in terms of its evolutionary history, structural features, and potential residual coding capacity highlighting recent activity of HML2 in macaques that occurred after its split from the Catarrhini parvorder, leading to the emergence of viral variants, hence providing a better understanding of the endogenization and diffusion of HML2 along primate evolution.
Collapse
|
23
|
Kabiljo R, Bowles H, Marriott H, Jones AR, Bouton CR, Dobson RJ, Quinn JP, Al Khleifat A, Swanson CM, Al-Chalabi A, Iacoangeli A. RetroSnake: A modular pipeline to detect human endogenous retroviruses in genome sequencing data. iScience 2022; 25:105289. [PMID: 36339261 PMCID: PMC9626663 DOI: 10.1016/j.isci.2022.105289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Human endogenous retroviruses (HERVs) integrated into the human genome as a result of ancient exogenous infections and currently comprise ∼8% of our genome. The members of the most recently acquired HERV family, HERV-Ks, still retain the potential to produce viral molecules and have been linked to a wide range of diseases including cancer and neurodegeneration. Although a range of tools for HERV detection in NGS data exist, most of them lack wet lab validation and they do not cover all steps of the analysis. Here, we describe RetroSnake, an end-to-end, modular, computationally efficient, and customizable pipeline for the discovery of HERVs in short-read NGS data. RetroSnake is based on an extensively wet-lab validated protocol, it covers all steps of the analysis from raw data to the generation of annotated results presented as an interactive html file, and it is easy to use by life scientists without substantial computational training. Availability and implementation: The Pipeline and an extensive documentation are available on GitHub.
Collapse
Affiliation(s)
- Renata Kabiljo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Harry Bowles
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Heather Marriott
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Clement R. Bouton
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Richard J.B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
| |
Collapse
|
24
|
Ilse V, Scholz R, Wermann M, Naumann M, Staege MS, Roßner S, Cynis H. Immunogenicity of the Envelope Surface Unit of Human Endogenous Retrovirus K18 in Mice. Int J Mol Sci 2022; 23:ijms23158330. [PMID: 35955468 PMCID: PMC9369184 DOI: 10.3390/ijms23158330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The triggers for the development of multiple sclerosis (MS) have not been fully understood to date. One hypothesis proposes a viral etiology. Interestingly, viral proteins from human endogenous retroviruses (HERVs) may play a role in the pathogenesis of MS. Allelic variants of the HERV-K18 env gene represent a genetic risk factor for MS, and the envelope protein is considered to be an Epstein–Barr virus-trans-activated superantigen. To further specify a possible role for HERV-K18 in MS, the present study examined the immunogenicity of the purified surface unit (SU). HERV-K18(SU) induced envelope-specific plasma IgG in immunized mice and triggered proliferation of T cells isolated from these mice. It did not trigger phenotypic changes in a mouse model of experimental autoimmune encephalomyelitis. Further studies are needed to investigate the underlying mechanisms of HERV-K18 interaction with immune system regulators in more detail.
Collapse
Affiliation(s)
- Victoria Ilse
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Rebekka Scholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Michael Wermann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Marcel Naumann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany;
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
- Correspondence: ; Tel.: +49-345-13142835; Fax: +49-345-13142801
| |
Collapse
|
25
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
27
|
Marchi E, Jones M, Klenerman P, Frater J, Magiorkinis G, Belshaw R. BreakAlign: a Perl program to align chimaeric (split) genomic NGS reads and allow visual confirmation of novel retroviral integrations. BMC Bioinformatics 2022; 23:134. [PMID: 35428171 PMCID: PMC9013057 DOI: 10.1186/s12859-022-04621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Retroviruses replicate by integrating a DNA copy into a host chromosome. Detecting novel retroviral integrations (ones not in the reference genome sequence of the host) from genomic NGS data is bioinformatically challenging and frequently produces many false positives. One common method of confirmation is visual inspection of an alignment of the chimaeric (split) reads that span a putative novel retroviral integration site. We perceived the need for a program that would facilitate this by producing a multiple alignment containing both the viral and host regions that flank an integration. RESULTS BreakAlign is a Perl program that uses blastn to produce such a multiple alignment. In addition to the NGS dataset and a reference viral sequence, the program requires either (a) the ~ 500nt host genome sequence that spans the putative integration or (b) coordinates of this putative integration in an installed copy of the reference human genome (multiple integrations can be processed automatically). BreakAlign is freely available from https://github.com/marchiem/breakalign and is accompanied by example files allowing a test run. CONCLUSION BreakAlign will confirm and facilitate characterisation of both (a) germline integrations of endogenous retroviruses and (b) somatic integrations of exogenous retroviruses such as HIV and HTLV. Although developed for use with genomic short-read NGS (second generation) data and retroviruses, it should also be useful for long-read (third generation) data and any mobile element with at least one conserved flanking region.
Collapse
Affiliation(s)
- Emanuele Marchi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mathew Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Belshaw
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
28
|
Abstract
Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. HERVs, transcribed in early embryos, are epigenetically silenced in somatic cells, except under pathological conditions. HERV-K is thought to protect embryos from exogenous viral infection. However, uncontrolled HERV-K expression in somatic cells has been implicated in several diseases. Here, we show that SOX2, which plays a key role in maintaining the pluripotency of stem cells, is critical for HERV-K LTR5Hs. HERV-K undergoes retrotransposition within producer cells in the absence of Env expression. Furthermore, we identified new HERV-K integration sites in long-term culture of induced pluripotent stem cells that express SOX2. These results suggest that the strict dependence of HERV-K on SOX2 has allowed HERV-K to protect early embryos during evolution while limiting the potentially harmful effects of HERV-K retrotransposition on host genome integrity in these early embryos. IMPORTANCE Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome; however, the physiological role of HERV-K remains unknown. This study found that HERV-K LTR5Hs and LTR5B were transactivated by SOX2, which is essential for maintaining and reestablishing pluripotency. HERV-K can undergo retrotransposition within producer cells without env expression, and new integration sites may affect cell proliferation. In induced pluripotent stem cells (iPSCs), genomic impairment due to HERV-K retrotransposition has been identified, but it is a rare event. Considering the retention of SOX2-responsive elements in the HERV-K long terminal repeat (LTR) for over 20 million years, we conclude that HERV-K may play important physiological roles in SOX2-expressing cells.
Collapse
|
29
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:ph14060495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
|
31
|
Grandi N, Pisano MP, Pessiu E, Scognamiglio S, Tramontano E. HERV-K(HML7) Integrations in the Human Genome: Comprehensive Characterization and Comparative Analysis in Non-Human Primates. BIOLOGY 2021; 10:biology10050439. [PMID: 34069102 PMCID: PMC8156875 DOI: 10.3390/biology10050439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary The human genome is not human at all, but it includes a multitude of sequences inherited from ancient viral infections that affected primates’ germ line. These elements can be seen as the fossils of now-extinct retroviruses, and are called Human Endogenous Retroviruses (HERVs). View as “junk DNA” for a long time, HERVs constitute 4 times the amount of DNA needed to produce all cellular proteins, and growing evidence indicates their crucial role in primate brain evolution, placenta development, and innate immunity shaping. HERVs are also intensively studied for a pathological role, even if the incomplete knowledge about their exact number and genomic position has thus far prevented any causal association. Among possible relevant HERVs, the HERV-K supergroup is of particular interest, including some of the oldest (HML5) as well as youngest (HML2) integrations. Among HERV-Ks, the HML7 group still lack a detailed description, and the present work thus aimed to identify and characterize all HML7 elements in the human genome. Results showed that the HML7 group includes 23 elements and an additional 160 “scars” of past infection that invaded in primates mostly between 20 and 30 million years ago, providing an exhaustive background to study their impact on human pathophysiology. Abstract Endogenous Retroviruses (ERVs) are ancient relics of infections that affected the primate germ line and constitute about 8% of our genome. Growing evidence indicates that ERVs had a major role in vertebrate evolution, being occasionally domesticated by the host physiology. In addition, human ERV (HERV) expression is highly investigated for a possible pathological role, even if no clear associations have been reported yet. In fact, on the one side, the study of HERV expression in high-throughput data is a powerful and promising tool to assess their actual dysregulation in diseased conditions; but, on the other side, the poor knowledge about the various HERV group genomic diversity and individual members somehow prevented the association between specific HERV loci and a given molecular mechanism of pathogenesis. The present study is focused on the HERV-K(HML7) group that—differently from the other HERV-K members—still remains poorly characterized. Starting from an initial identification performed with the software RetroTector, we collected 23 HML7 proviral insertions and about 160 HML7 solitary LTRs that were analyzed in terms of genomic distribution, revealing a significant enrichment in chromosome X and the frequent localization within human gene introns as well as in pericentromeric and centromeric regions. Phylogenetic analyses showed that HML7 members form a monophyletic group, which based on age estimation and comparative localization in non-human primates had its major diffusion between 20 and 30 million years ago. Structural characterization revealed that besides 3 complete HML7 proviruses, the other group members shared a highly defective structure that, however, still presents recognizable functional domains, making it worth further investigation in the human population to assess the presence of residual coding potential.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; (M.P.P.); (E.P.); (S.S.); (E.T.)
- Correspondence:
| | - Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; (M.P.P.); (E.P.); (S.S.); (E.T.)
| | - Eleonora Pessiu
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; (M.P.P.); (E.P.); (S.S.); (E.T.)
| | - Sante Scognamiglio
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; (M.P.P.); (E.P.); (S.S.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; (M.P.P.); (E.P.); (S.S.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
32
|
Dervan E, Bhattacharyya DD, McAuliffe JD, Khan FH, Glynn SA. Ancient Adversary - HERV-K (HML-2) in Cancer. Front Oncol 2021; 11:658489. [PMID: 34055625 PMCID: PMC8155577 DOI: 10.3389/fonc.2021.658489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.
Collapse
Affiliation(s)
- Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Dibyangana D Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Jake D McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faizan H Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
33
|
Jansz N, Faulkner GJ. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol 2021; 22:147. [PMID: 33971937 PMCID: PMC8108463 DOI: 10.1186/s13059-021-02357-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) are emerging as promising therapeutic targets in cancer. As remnants of ancient retroviral infections, ERV-derived regulatory elements coordinate expression from gene networks, including those underpinning embryogenesis and immune cell function. ERV activation can promote an interferon response, a phenomenon termed viral mimicry. Although ERV expression is associated with cancer, and provisionally with autoimmune and neurodegenerative diseases, ERV-mediated inflammation is being explored as a way to sensitize tumors to immunotherapy. Here we review ERV co-option in development and innate immunity, the aberrant contribution of ERVs to tumorigenesis, and the wider biomedical potential of therapies directed at ERVs.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
34
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
35
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
36
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
37
|
Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics 2020; 21:535. [PMID: 32912141 PMCID: PMC7488140 DOI: 10.1186/s12864-020-06962-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5-7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
Collapse
Affiliation(s)
- Maria V Suntsova
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia
| | - Anton A Buzdin
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia. .,Omicsway Corp, Walnut, CA, USA. .,Moscow Institute of Physics and Technology (National Research University), 141700, Moscow, Russia.
| |
Collapse
|
38
|
Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med 2020; 12:67. [PMID: 32731881 PMCID: PMC7393826 DOI: 10.1186/s13073-020-00762-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Many genetic/genomic disorders are caused by genomic rearrangements. Standard methods can often characterize these variations only partly, e.g., copy number changes or breakpoints. It is important to fully understand the order and orientation of rearranged fragments, with precise breakpoints, to know the pathogenicity of the rearrangements. METHODS We performed whole-genome-coverage nanopore sequencing of long DNA reads from four patients with chromosomal translocations. We identified rearrangements relative to a reference human genome, subtracted rearrangements shared by any of 33 control individuals, and determined the order and orientation of rearranged fragments, with our newly developed analysis pipeline. RESULTS We describe the full characterization of complex chromosomal rearrangements, by filtering out genomic rearrangements seen in controls without the same disease, reducing the number of loci per patient from a few thousand to a few dozen. Breakpoint detection was very accurate; we usually see ~ 0 ± 1 base difference from Sanger sequencing-confirmed breakpoints. For one patient with two reciprocal chromosomal translocations, we find that the translocation points have complex rearrangements of multiple DNA fragments involving 5 chromosomes, which we could order and orient by an automatic algorithm, thereby fully reconstructing the rearrangement. A rearrangement is more than the sum of its parts: some properties, such as sequence loss, can be inferred only after reconstructing the whole rearrangement. In this patient, the rearrangements were evidently caused by shattering of the chromosomes into multiple fragments, which rejoined in a different order and orientation with loss of some fragments. CONCLUSIONS We developed an effective analytic pipeline to find chromosomal aberration in congenital diseases by filtering benign changes, only from long read sequencing. Our algorithm for reconstruction of complex rearrangements is useful to interpret rearrangements with many breakpoints, e.g., chromothripsis. Our approach promises to fully characterize many congenital germline rearrangements, provided they do not involve poorly understood loci such as centromeric repeats.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazutaka Katoh
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
39
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Xue B, Sechi LA, Kelvin DJ. Human Endogenous Retrovirus K (HML-2) in Health and Disease. Front Microbiol 2020; 11:1690. [PMID: 32765477 PMCID: PMC7380069 DOI: 10.3389/fmicb.2020.01690] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from exogenous retrovirus infections in the evolution of primates and account for about 8% of the human genome. They were considered as silent passengers within our genomes for a long time, however, reactivation of HERVs has been associated with tumors and autoimmune diseases, especially the HERV-K (HML-2) family, the most recent integration groups with the least number of mutations and the most biologically active to encode functional retroviral proteins and produce retrovirus-like particles. Increasing studies are committed to determining the potential role of HERV-K (HML-2) in pathogenicity. Although there is still no evidence for HERV-K (HML-2) as a direct cause of diseases, aberrant expression profiles of the HERV-K (HML-2) transcripts and their regulatory function to their proximal host-genes were identified in different diseases. In this review, we summarized the advances between HERV-K (HML-2) and diseases to provide basis for further studies on the causal relationship between HERV-K (HML-2) and diseases. We recommended more attention to polymorphic integrated HERV-K (HML-2) loci which could be genetic causative factors and be associated with inter-individual differences in tumorigenesis and autoimmune diseases.
Collapse
Affiliation(s)
- Bei Xue
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
| | - David J. Kelvin
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
41
|
Chen X, Li D. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Bioinformatics 2020; 35:3913-3922. [PMID: 30895294 DOI: 10.1093/bioinformatics/btz205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Approximately 8% of the human genome is derived from endogenous retroviruses (ERVs). In recent years, an increasing number of human diseases have been found to be associated with ERVs. However, it remains challenging to accurately detect the full spectrum of polymorphic (unfixed) ERVs using whole-genome sequencing (WGS) data. RESULTS We designed a new tool, ERVcaller, to detect and genotype transposable element (TE) insertions, including ERVs, in the human genome. We evaluated ERVcaller using both simulated and real benchmark WGS datasets. Compared to existing tools, ERVcaller consistently obtained both the highest sensitivity and precision for detecting simulated ERV and other TE insertions derived from real polymorphic TE sequences. For the WGS data from the 1000 Genomes Project, ERVcaller detected the largest number of TE insertions per sample based on consensus TE loci. By analyzing the experimentally verified TE insertions, ERVcaller had 94.0% TE detection sensitivity and 96.6% genotyping accuracy. Polymerase chain reaction and Sanger sequencing in a small sample set verified 86.7% of examined insertion statuses and 100% of examined genotypes. In conclusion, ERVcaller is capable of detecting and genotyping TE insertions using WGS data with both high sensitivity and precision. This tool can be applied broadly to other species. AVAILABILITY AND IMPLEMENTATION http://www.uvm.edu/genomics/software/ERVcaller.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA.,Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT, USA.,Department of Computer Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
42
|
Pisano MP, Grandi N, Tramontano E. High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses 2020; 12:E633. [PMID: 32545287 PMCID: PMC7354619 DOI: 10.3390/v12060633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Cagliari, Italy
| |
Collapse
|
43
|
Xue B, Zeng T, Jia L, Yang D, Lin SL, Sechi LA, Kelvin DJ. Identification of the distribution of human endogenous retroviruses K (HML-2) by PCR-based target enrichment sequencing. Retrovirology 2020; 17:10. [PMID: 32375827 PMCID: PMC7201656 DOI: 10.1186/s12977-020-00519-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/23/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs), suspected to be transposition-defective, may reshape the transcriptional network of the human genome by regulatory elements distributed in their long terminal repeats (LTRs). HERV-K (HML-2), the most preserved group with the least number of accumulated of mutations, has been associated with aberrant gene expression in tumorigenesis and autoimmune diseases. Because of the high sequence similarity between different HERV-Ks, current methods have limitations in providing genome-wide mapping specific for individual HERV-K (HML-2) members, a major barrier in delineating HERV-K (HML-2) function. RESULTS In an attempt to obtain detailed distribution information of HERV-K (HML-2), we utilized a PCR-based target enrichment sequencing protocol for HERV-K (HML-2) (PTESHK) loci, which not only maps the presence of reference loci, but also identifies non-reference loci, enabling determination of the genome-wide distribution of HERV-K (HML-2) loci. Here we report on the genomic data obtained from three individuals. We identified a total of 978 loci using this method, including 30 new reference loci and 5 non-reference loci. Among the 3 individuals in our study, 14 polymorphic HERV-K (HML-2) loci were identified, and solo-LTR330 and N6p21.32 were identified as polymorphic for the first time. CONCLUSIONS Interestingly, PTESHK provides an approach for the identification of the genome-wide distribution of HERV-K (HML-2) and can be used for the identification of polymorphic loci. Since polymorphic HERV-K (HML-2) integrations are suspected to be related to various diseases, PTESHK can supplement other emerging techniques in accessing polymorphic HERV-K (HML-2) elements in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Bei Xue
- Division of Immunology, Shantou University Medical College, Shantou, China
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
- Canadian Center for Vaccinology, Dalhousie University, Halifax, Canada
| | - Tiansheng Zeng
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lisha Jia
- Division of Immunology, Shantou University Medical College, Shantou, China
| | - Dongsheng Yang
- Division of Immunology, Shantou University Medical College, Shantou, China
| | - Stanley L Lin
- Division of Immunology, Shantou University Medical College, Shantou, China
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - David J Kelvin
- Division of Immunology, Shantou University Medical College, Shantou, China.
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
- Canadian Center for Vaccinology, Dalhousie University, Halifax, Canada.
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
44
|
Dembny P, Newman AG, Singh M, Hinz M, Szczepek M, Krüger C, Adalbert R, Dzaye O, Trimbuch T, Wallach T, Kleinau G, Derkow K, Richard BC, Schipke C, Scheidereit C, Stachelscheid H, Golenbock D, Peters O, Coleman M, Heppner FL, Scheerer P, Tarabykin V, Ruprecht K, Izsvák Z, Mayer J, Lehnardt S. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 2020; 5:131093. [PMID: 32271161 DOI: 10.1172/jci.insight.131093] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
Although human endogenous retroviruses (HERVs) represent a substantial proportion of the human genome and some HERVs, such as HERV-K(HML-2), are reported to be involved in neurological disorders, little is known about their biological function. We report that RNA from an HERV-K(HML-2) envelope gene region binds to and activates human Toll-like receptor (TLR) 8, as well as murine Tlr7, expressed in neurons and microglia, thereby causing neurodegeneration. HERV-K(HML-2) RNA introduced into the cerebrospinal fluid (CSF) of either C57BL/6 wild-type mice or APPPS1 mice, a mouse model for Alzheimer's disease (AD), resulted in neurodegeneration and microglia accumulation. Tlr7-deficient mice were protected against neurodegenerative effects but were resensitized toward HERV-K(HML-2) RNA when neurons ectopically expressed murine Tlr7 or human TLR8. Transcriptome data sets of human AD brain samples revealed a distinct correlation of upregulated HERV-K(HML-2) and TLR8 RNA expression. HERV-K(HML-2) RNA was detectable more frequently in CSF from individuals with AD compared with controls. Our data establish HERV-K(HML-2) RNA as an endogenous ligand for species-specific TLRs 7/8 and imply a functional contribution of human endogenous retroviral transcripts to neurodegenerative processes, such as AD.
Collapse
Affiliation(s)
- Paul Dembny
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Manvendra Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Hinz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michal Szczepek
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Omar Dzaye
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Radiology.,Department of Neuroradiology
| | | | - Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Gunnar Kleinau
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Katja Derkow
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Carola Schipke
- Department of Psychiatry and Psychotherapy, and.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Claus Scheidereit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Harald Stachelscheid
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Douglas Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, and.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Michael Coleman
- Babraham Institute and John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Frank L Heppner
- NeuroCure Cluster of Excellence.,Department of Neuropathology.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Patrick Scheerer
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Mayer
- Institute of Human Genetics, Universität des Saarlandes, Hamburg, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| |
Collapse
|
45
|
Kaplan MH, Contreras-Galindo R, Jiagge E, Merajver SD, Newman L, Bigman G, Dosik MH, Palapattu GS, Siddiqui J, Chinnaiyan AM, Adebamowo S, Adebamowo C. Is the HERV-K HML-2 Xq21.33, an endogenous retrovirus mutated by gene conversion of chromosome X in a subset of African populations, associated with human breast cancer? Infect Agent Cancer 2020; 15:19. [PMID: 32165916 PMCID: PMC7060579 DOI: 10.1186/s13027-020-00284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
The human endogenous retroviruses HERV-K HML-2 have been considered a possible cause of human breast cancer (BrC). A HERV-K HML-2 fully intact provirus Xq21.33 was recently identified in some West African people. We used PCR technology to search for the Xq21.33 provirus in DNA from Nigerian women with BrC and controls. to see if Xq21.33 plays any role in predisposing to BrC. This provirus was detected in 27 of 216 (12.5%) women with BrC and in 22 of 219 (10.0%) controls. These results were not statistically significant. The prevalence of provirus in premenopausal control women 44 years or younger [18/157 (11.46%)} vs women with BrC [12/117 (10.26%)] showed no statistical difference. The prevalence of virus in postmenopausal control women > 45 yrs. was 7.4% (4/54) vs 15.31% (15/98) in postmenopausal women with BrC. These changes were not statistically significant at <.05, but the actual p value of <.0.079, suggests that Xq21.33 might play some role in predisposing to BrC in postmenopausal women. Provirus was present in Ghanaian women (6/87), in 1/6 Pygmy populations and in African American men (4/45) and women (6/68), but not in any Caucasian women (0/109). Two BrC cell lines (HCC 70 and DT22) from African American women had Xq21.33. Env regions of the virus which differed by 2-3 SNPs did not alter the protein sequence of the virus. SNP at 5730 and 8529 were seen in all persons with provirus, while 54% had an additional SNP at 7596.Two Nigerian women and 2 Ghanaian women had additional unusual SNPs. Homozygosity was seen in (5/27) BrC and (2/22) control women. The genetic variation and homozygosity patterns suggested that there was gene conversion of this X chromosome associated virus. The suggestive finding in this preliminary data of possible increased prevalence of Xq21.33 provirus in post-menopausal Nigerian women with BrC should be clarified by a more statistically powered study sample to see if postmenopausal African and/or African American women carriers of Xq21.33 might show increased risk of BrC. The implication of finding such a link would be the development of antiretroviral drugs that might aid in preventing BrC in Xq21.33+ women.
Collapse
Affiliation(s)
- Mark H. Kaplan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Evelyn Jiagge
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Mi USA
| | - Sofia D. Merajver
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lisa Newman
- Weill Cornell Medicine, New York, NY 10021 USA
| | - Galya Bigman
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Michael H. Dosik
- Department of Internal Medicine, Renaissance School of Medicine at Stony Brook Medical, Stony Brook, NY 11794 USA
| | | | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Sally Adebamowo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Clement Adebamowo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
46
|
Tatkiewicz W, Dickie J, Bedford F, Jones A, Atkin M, Kiernan M, Maze EA, Agit B, Farnham G, Kanapin A, Belshaw R. Characterising a human endogenous retrovirus(HERV)-derived tumour-associated antigen: enriched RNA-Seq analysis of HERV-K(HML-2) in mantle cell lymphoma cell lines. Mob DNA 2020; 11:9. [PMID: 32055257 PMCID: PMC7007669 DOI: 10.1186/s13100-020-0204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The cell-surface attachment protein (Env) of the HERV-K(HML-2) lineage of endogenous retroviruses is a potentially attractive tumour-associated antigen for anti-cancer immunotherapy. The human genome contains around 100 integrated copies (called proviruses or loci) of the HERV-K(HML-2) virus and we argue that it is important for therapy development to know which and how many of these contribute to protein expression, and how this varies across tissues. We measured relative provirus expression in HERV-K(HML-2), using enriched RNA-Seq analysis with both short- and long-read sequencing, in three Mantle Cell Lymphoma cell lines (JVM2, Granta519 and REC1). We also confirmed expression of the Env protein in two of our cell lines using Western blotting, and analysed provirus expression data from all other relevant published studies. RESULTS Firstly, in both our and other reanalysed studies, approximately 10% of the transcripts mapping to HERV-K(HML-2) came from Env-encoding proviruses. Secondly, in one cell line the majority of the protein expression appears to come from one provirus (12q14.1). Thirdly, we find a strong tissue-specific pattern of provirus expression. CONCLUSIONS A possible dependency of Env expression on a single provirus, combined with the earlier observation that this provirus is not present in all individuals and a general pattern of tissue-specific expression among proviruses, has serious implications for future HERV-K(HML-2)-targeted immunotherapy. Further research into HERV-K(HML-2) as a possible tumour-associated antigen in blood cancers requires a more targeted, proteome-based, screening protocol that will consider these polymorphisms within HERV-K(HML-2). We include a plan (and necessary alignments) for such work.
Collapse
Affiliation(s)
- Witold Tatkiewicz
- Peninsula Medical School, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - James Dickie
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Franchesca Bedford
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Alexander Jones
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Mark Atkin
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Michele Kiernan
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Emmanuel Atangana Maze
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Bora Agit
- Peninsula Medical School, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Garry Farnham
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Alexander Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
- Current address: Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Robert Belshaw
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
47
|
Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol 2020; 18:6. [PMID: 31964400 PMCID: PMC6971995 DOI: 10.1186/s12958-020-0564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.
Collapse
Affiliation(s)
- Chao Lou
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| | - John L. Goodier
- 0000 0001 2171 9311grid.21107.35McKusick-Nathans Deartment of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Qiang
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
48
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
49
|
Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. Front Neurol 2019; 10:894. [PMID: 31481926 PMCID: PMC6710400 DOI: 10.3389/fneur.2019.00894] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TE) are mobile DNA elements that can replicate and insert themselves into different locations within the host genome. Their propensity to self-propagate has a myriad of consequences and yet their biological significance is not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at repression and may contribute to somatic mosaicism. Retrotransposons are emerging as potent regulatory elements within the human genome. In the diseased state, there is mounting evidence that endogenous retroelements play a role in etiopathogenesis of inflammatory diseases, with a disposition for both autoimmune and neurological disorders. We postulate that active mobile genetic elements contribute more to human disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Aurian Saleh
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Angela Macia
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
50
|
Ellsworth DL, Turner CE, Ellsworth RE. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and the Role of Nontraditional Genetic Elements. JOURNAL OF ONCOLOGY 2019; 2019:4382606. [PMID: 31379942 PMCID: PMC6652078 DOI: 10.1155/2019/4382606] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
Triple negative breast cancer (TNBC), representing 10-15% of breast tumors diagnosed each year, is a clinically defined subtype of breast cancer associated with poor prognosis. The higher incidence of TNBC in certain populations such as young women and/or women of African ancestry and a unique pathological phenotype shared between TNBC and BRCA1-deficient tumors suggest that TNBC may be inherited through germline mutations. In this article, we describe genes and genetic elements, beyond BRCA1 and BRCA2, which have been associated with increased risk of TNBC. Multigene panel testing has identified high- and moderate-penetrance cancer predisposition genes associated with increased risk for TNBC. Development of large-scale genome-wide SNP assays coupled with genome-wide association studies (GWAS) has led to the discovery of low-penetrance TNBC-associated loci. Next-generation sequencing has identified variants in noncoding RNAs, viral integration sites, and genes in underexplored regions of the human genome that may contribute to the genetic underpinnings of TNBC. Advances in our understanding of the genetics of TNBC are driving improvements in risk assessment and patient management.
Collapse
Affiliation(s)
| | - Clesson E. Turner
- Murtha Cancer Center/Research Program, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Rachel E. Ellsworth
- Murtha Cancer Center/Research Program, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|