1
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
2
|
Donhauser N, Socher E, Millen S, Heym S, Sticht H, Thoma-Kress AK. Transfer of HTLV-1 p8 and Gag to target T-cells depends on VASP, a novel interaction partner of p8. PLoS Pathog 2020; 16:e1008879. [PMID: 32997728 PMCID: PMC7526893 DOI: 10.1371/journal.ppat.1008879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The Human T-cell leukemia virus type 1 (HTLV-1) orf I-encoded accessory protein p8 is cleaved from its precursor p12, and both proteins contribute to viral persistence. p8 induces cellular protrusions, which are thought to facilitate transfer of p8 to target cells and virus transmission. Host factors interacting with p8 and mediating p8 transfer are unknown. Here, we report that vasodilator-stimulated phosphoprotein (VASP), which promotes actin filament elongation, is a novel interaction partner of p8 and important for p8 and HTLV-1 Gag cell-to-cell transfer. VASP contains an Ena/VASP homology 1 (EVH1) domain that targets the protein to focal adhesions. Bioinformatics identified a short stretch in p8 (amino acids (aa) 24–45) which may mediate interactions with the EVH1 domain of VASP. Co-immunoprecipitations confirmed interactions of VASP:p8 in 293T, Jurkat and HTLV-1-infected MT-2 cells. Co-precipitation of VASP:p8 could be significantly blocked by peptides mimicking aa 26–37 of p8. Mutational studies revealed that the EVH1-domain of VASP is necessary, but not sufficient for the interaction with p8. Further, deletion of the VASP G- and F-actin binding domains significantly diminished co-precipitation of p8. Imaging identified areas of partial co-localization of VASP with p8 at the plasma membrane and in protrusive structures, which was confirmed by proximity ligation assays. Co-culture experiments revealed that p8 is transferred between Jurkat T-cells via VASP-containing conduits. Imaging and flow cytometry revealed that repression of both endogenous and overexpressed VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface and to target Jurkat T-cells. Stable repression of VASP by RNA interference in chronically infected MT-2 cells impaired both p8 and HTLV-1 Gag transfer to target Jurkat T-cells, while virus release was unaffected. Thus, we identified VASP as a novel interaction partner of p8, which is important for transfer of HTLV-1 p8 and Gag to target T-cells. The delta-retrovirus Human T-cell leukemia virus type 1 encodes the accessory protein p8, which is generated by proteolytic cleavage from p12. Earlier work has shown that p8 enhances the formation of cellular conduits between T-cells, is transferred through these conduits to target T-cells and increases HTLV-1 transmission. It was suggested that p8 dampens T-cell responses in target T-cells, thus facilitating HTLV-1 infection. Our work sheds light on the mechanism of p8 transfer to target T-cells. We show that vasodilator-stimulated phosphoprotein (VASP), a novel interaction partner of p8, contributes to transfer of p8 to target T-cells. Mechanistically, VASP is crucial for recruitment of p8 to the cell surface. Since VASP is known to promote elongation of actin filaments by preventing them from capping, interactions of p8 with VASP are an elegant strategy to exploit the host cell machinery for being transported to the cell surface, and as a consequence, to other cells. Given that VASP is also important for cell-to-cell transfer of the HTLV-1 Gag protein, our work proposes that VASP is a new cellular target to counteract HTLV-1 cell-to-cell transmission.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Heym
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
3
|
Sarkis S, Galli V, Moles R, Yurick D, Khoury G, Purcell DFJ, Franchini G, Pise-Masison CA. Role of HTLV-1 orf-I encoded proteins in viral transmission and persistence. Retrovirology 2019; 16:43. [PMID: 31852543 PMCID: PMC6921521 DOI: 10.1186/s12977-019-0502-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTVL-1), first reported in 1980 by Robert Gallo's group, is the etiologic agent of both cancer and inflammatory diseases. Despite approximately 40 years of investigation, the prognosis for afflicted patients remains poor with no effective treatments. The virus persists in the infected host by evading the host immune response and inducing proliferation of infected CD4+ T-cells. Here, we will review the role that viral orf-I protein products play in altering intracellular signaling, protein expression and cell-cell communication in order to escape immune recognition and promote T-cell proliferation. We will also review studies of orf-I mutations found in infected patients and their potential impact on viral load, transmission and persistence. Finally, we will compare the orf-I gene in HTLV-1 subtypes as well as related STLV-1.
Collapse
Affiliation(s)
- Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Georgieva ER. Non-Structural Proteins from Human T-cell Leukemia Virus Type 1 in Cellular Membranes-Mechanisms for Viral Survivability and Proliferation. Int J Mol Sci 2018; 19:ijms19113508. [PMID: 30413005 PMCID: PMC6274929 DOI: 10.3390/ijms19113508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of illnesses, such as adult T-cell leukemia/lymphoma, myelopathy/tropical spastic paraparesis (a neurodegenerative disorder), and other diseases. Therefore, HTLV-1 infection is a serious public health concern. Currently, diseases caused by HTLV-1 cannot be prevented or cured. Hence, there is a pressing need to comprehensively understand the mechanisms of HTLV-1 infection and intervention in host cell physiology. HTLV-1-encoded non-structural proteins that reside and function in the cellular membranes are of particular interest, because they alter cellular components, signaling pathways, and transcriptional mechanisms. Summarized herein is the current knowledge about the functions of the membrane-associated p8I, p12I, and p13II regulatory non-structural proteins. p12I resides in endomembranes and interacts with host proteins on the pathways of signal transduction, thus preventing immune responses to the virus. p8I is a proteolytic product of p12I residing in the plasma membrane, where it contributes to T-cell deactivation and participates in cellular conduits, enhancing virus transmission. p13II associates with the inner mitochondrial membrane, where it is proposed to function as a potassium channel. Potassium influx through p13II in the matrix causes membrane depolarization and triggers processes that lead to either T-cell activation or cell death through apoptosis.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission. Viruses 2016; 8:74. [PMID: 27005656 PMCID: PMC4810264 DOI: 10.3390/v8030074] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/20/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.
Collapse
|
6
|
HTLV-1 subgroups associated with the risk of HAM/TSP are related to viral and host gene expression in peripheral blood mononuclear cells, independent of the transactivation functions of the viral factors. J Neurovirol 2015; 22:416-30. [PMID: 26635027 DOI: 10.1007/s13365-015-0407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/16/2022]
Abstract
Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, the risk of developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) across lifetime differs between ethnic groups. There is an association between HTLV-1 tax gene subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. In this study, we investigated the full-length proviral genome sequences of various HTLV-1-infected cell lines and patient samples. The functional differences in the viral transcriptional regulators Tax and HTLV-1 bZIP factor (HBZ) between each subgroup and the relationships between subgroups and the clinical and laboratory characteristics of HAM/TSP patients were evaluated. The results of these analyses indicated the following: (1) distinct nucleotide substitutions corresponding to each subgroup were associated with nucleotide substitutions in viral structural, regulatory, and accessory genes; (2) the HBZ messenger RNA (mRNA) expression in HTLV-1-infected cells was significantly higher in HAM/TSP patients with subgroup-B than in those with subgroup-A; (3) a positive correlation was observed between the expression of HBZ mRNA and its target Foxp3 mRNA in HAM/TSP patients with subgroup-B, but not in patients with subgroup-A; (4) no clear differences were noted in clinical and laboratory characteristics between HAM/TSP patients with subgroup-A and subgroup-B; and (5) no functional differences were observed in Tax and HBZ between each subgroup based on reporter gene assays. Our results indicate that although different HTLV-1 subgroups are characterized by different patterns of viral and host gene expression in HAM/TSP patients via independent mechanisms of direct transcriptional regulation, these differences do not significantly affect the clinical and laboratory characteristics of HAM/TSP patients.
Collapse
|
7
|
HTLV-1 ORF-I Encoded Proteins and the Regulation of Host Immune Response: Viral Induced Dysregulation of Intracellular Signaling. J Immunol Res 2015; 2015:498054. [PMID: 26557721 PMCID: PMC4628651 DOI: 10.1155/2015/498054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 01/02/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus associated with both proliferative and inflammatory disorders. This virus causes a persistent infection, mainly in CD4+ T lymphocyte. The ability to persist in the host is associated with the virus capacity to evade the immune response and to induce infected T-cell proliferation, once the HTLV-1 maintains the infection mainly by clonal expansion of infected cells. There are several evidences that ORF-I encoded proteins, such as p12 and p8, play an important role in this context. The present study will review the molecular mechanisms that HTLV-1 ORF-I encoded proteins have to induce dysregulation of intracellular signaling, in order to escape from immune response and to increase the infected T-cell proliferation rate. The work will also address the impact of ORF-I mutations on the human
host and perspectives in this study field.
Collapse
|
8
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
9
|
Palmitoylation and p8-mediated human T-cell leukemia virus type 1 transmission. J Virol 2013; 88:2319-22. [PMID: 24284316 DOI: 10.1128/jvi.03444-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orf-I gene of human T-cell leukemia type 1 (HTLV-1) encodes p8 and p12 and has a conserved cysteine at position 39. p8 and p12 form disulfide-linked dimers, and only the monomeric forms of p8 and p12 are palmitoylated. Mutation of cysteine 39 to alanine (C39A) abrogated dimerization and palmitoylation of both proteins. However, the ability of p8 to localize to the cell surface and to increase cell adhesion and viral transmission was not affected by the C39A mutation.
Collapse
|
10
|
Bai XT, Nicot C. Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front Microbiol 2012; 3:400. [PMID: 23248621 PMCID: PMC3518833 DOI: 10.3389/fmicb.2012.00400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 12/29/2022] Open
Abstract
The human T-lymphotropic virus type-1 (HTLV-1) is etiologically linked to adult T cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy. While the role of Tax and Rex in viral replication and pathogenesis has been extensively studied, recent evidence suggests that additional viral proteins are essential for the virus life cycle in vivo. In this review, we will summarize possible molecular mechanisms evoked in the literature to explain how p12, p8, p30, and p13 facilitate persistent viral infection of the host. We will explore several stratagems used by HTLV-1 accessory genes to escape immune surveillance, to establish latency, and to deregulate cell cycle and apoptosis to participate in virus-mediated cellular transformation.
Collapse
Affiliation(s)
- Xue Tao Bai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center Kansas City, KS, USA
| | | |
Collapse
|
11
|
Bidoia C. Human T-lymphotropic virus proteins and post-translational modification pathways. World J Virol 2012; 1:115-30. [PMID: 24175216 PMCID: PMC3782272 DOI: 10.5501/wjv.v1.i4.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023] Open
Abstract
Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins.
Collapse
Affiliation(s)
- Carlo Bidoia
- Carlo Bidoia, Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Lairmore MD, Haines R, Anupam R. Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr Opin Virol 2012; 2:474-81. [PMID: 22819021 DOI: 10.1016/j.coviro.2012.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15-20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3-5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma, or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis. The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as p30, p12, p13 and the antisense-encoded HTLV-1 basic leucine zipper factor (HBZ). While progress has been made in knowledge of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full-length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D Lairmore
- University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | | | | |
Collapse
|
13
|
Olière S, Douville R, Sze A, Belgnaoui SM, Hiscott J. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 2011; 22:197-210. [DOI: 10.1016/j.cytogfr.2011.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 2011; 3:861-85. [PMID: 21994758 PMCID: PMC3185781 DOI: 10.3390/v3060861] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 01/10/2023] Open
Abstract
The 3′ end of the human T-cell leukemia/lymphoma virus type-1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. Here, we review current knowledge of HTLV-1 orf-I and orf-II protein products. Singly spliced mRNA from orf-I encodes p12, which can be proteolytically cleaved to generate p8, while differential splicing of mRNA from orf-II results in production of p13 and p30. These proteins have been demonstrated to modulate transcription, apoptosis, host cell activation and proliferation, virus infectivity and transmission, and host immune responses. Though these proteins are not essential for virus replication in vitro, p8, p12, p13, and p30 have an important role in the establishment and maintenance of HTLV-1 infection in vivo.
Collapse
|
16
|
Human T-lymphotropic type 1 virus p30 inhibits homologous recombination and favors unfaithful DNA repair. Blood 2011; 117:5897-906. [PMID: 21427292 DOI: 10.1182/blood-2010-08-304600] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whereas oncogenic retroviruses are common in animals, human T-lymphotropic virus 1 (HTLV-1) is the only transmissible retrovirus associated with cancer in humans and is etiologically linked to adult T-cell leukemia. The leukemogenesis process is still largely unknown, but relies on extended survival and clonal expansion of infected cells, which in turn accumulate genetic defects. A common feature of human tumor viruses is their ability to stimulate proliferation and survival of infected pretumoral cells and then hide by establishing latency in cells that have acquired a transformed phenotype. Whereas disruption of the DNA repair is one of the major processes responsible for the accumulation of genomic abnormalities and carcinogenesis, the absence of DNA repair also poses the threat of cell-cycle arrest or apoptosis of virus-infected cells. This study describes how the HTLV-1 p30 viral protein inhibits conservative homologous recombination (HR) DNA repair by targeting the MRE11/RAD50/NBS1 complex and favors the error-prone nonhomologous-end-joining (NHEJ) DNA-repair pathway instead. As a result, HTLV-1 p30 may facilitate the accumulation of mutations in the host genome and the cumulative risk of transformation. Our results provide new insights into how human tumor viruses may manipulate cellular DNA-damage responses to promote cancer.
Collapse
|
17
|
A new role for the HTLV-1 p8 protein: increasing intercellular conduits and viral cell-to-cell transmission. Viruses 2011; 3:254-259. [PMID: 21994729 PMCID: PMC3185692 DOI: 10.3390/v3030254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/02/2011] [Accepted: 03/02/2011] [Indexed: 01/16/2023] Open
Abstract
Retroviruses like HIV-1 and HTLV-1 can be transmitted efficiently by direct contact between infected and target cells. For HIV-1, various modes of cell-to-cell transfer have been reported, including virological synapses, polysynapses, filopodial bridges, and nanotube-like structures. So far, only synapses and biofilms have been described for HTLV-1 transmission. Recently, Van Prooyen et al. [1] identified an additional mode of HTLV-1 transmission through cellular conduits induced by the viral accessory protein p8.
Collapse
|
18
|
Anupam R, Datta A, Kesic M, Green-Church K, Shkriabai N, Kvaratskhelia M, Lairmore MD. Human T-lymphotropic virus type 1 p30 interacts with REGgamma and modulates ATM (ataxia telangiectasia mutated) to promote cell survival. J Biol Chem 2011; 286:7661-8. [PMID: 21216954 DOI: 10.1074/jbc.m110.176354] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T cell leukemia/lymphoma and a variety of inflammatory disorders. HTLV-1 encodes a nuclear localizing protein, p30, that selectively alters viral and cellular gene expression, activates G(2)-M cell cycle checkpoints, and is essential for viral spread. Here, we used immunoprecipitation and affinity pulldown of ectopically expressed p30 coupled with mass spectrometry to identify cellular binding partners of p30. Our data indicate that p30 specifically binds to cellular ATM (ataxia telangiectasia mutated) and REGγ (a nuclear 20 S proteasome activator). Under conditions of genotoxic stress, p30 expression was associated with reduced levels of ATM and increased cell survival. Knockdown or overexpression of REGγ paralleled p30 expression, suggesting an unexpected enhancement of p30 expression in the presence of REGγ. Finally, size exclusion chromatography revealed the presence of p30 in a high molecular mass complex along with ATM and REGγ. On the basis of our findings, we propose that HTLV-1 p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F, Lockett S, Gudla P, Venzon D, Franchini G. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci U S A 2010; 107:20738-43. [PMID: 21076035 PMCID: PMC2996430 DOI: 10.1073/pnas.1009635107] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia/lymphoma as well as tropical spastic paraparesis/HTLV-1-associated myelopathy. HTLV-1 is transmitted to T cells through the virological synapse and by extracellular viral assemblies. Here, we uncovered an additional mechanism of virus transmission that is regulated by the HTLV-1-encoded p8 protein. We found that the p8 protein, known to anergize T cells, is also able to increase T-cell contact through lymphocyte function-associated antigen-1 clustering. In addition, p8 augments the number and length of cellular conduits among T cells and is transferred to neighboring T cells through these conduits. p8, by establishing a T-cell network, enhances the envelope-dependent transmission of HTLV-1. Thus, the ability of p8 to simultaneously anergize and cluster T cells, together with its induction of cellular conduits, secures virus propagation while avoiding the host's immune surveillance. This work identifies p8 as a viral target for the development of therapeutic strategies that may limit the expansion of infected cells in HTLV-1 carriers and decrease HTLV-1-associated morbidity.
Collapse
Affiliation(s)
- Nancy Van Prooyen
- Animal Models Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Biology, John Hopkins University, Baltimore, MD 21218
| | - Heather Gold
- Animal Models Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vibeke Andresen
- Animal Models Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Owen Schwartz
- Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathryn Jones
- Basic Research Program, Science Applications International Corporation–Frederick, National Cancer Institute–Frederick, Frederick, MD 21702
| | - Frank Ruscetti
- Laboratory of Experimental Immunology, National Cancer Institute–Frederick, Frederick, MD 21702
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, National Cancer Institute–Frederick, Frederick MD 21702
| | - Prabhakar Gudla
- Image Analysis Laboratory, Research Tech Program, Science Applications International Corporation–Frederick, National Cancer Institute–Frederick, Frederick, MD 21702; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Genoveffa Franchini
- Animal Models Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Baydoun HH, Pancewicz J, Bai X, Nicot C. HTLV-I p30 inhibits multiple S phase entry checkpoints, decreases cyclin E-CDK2 interactions and delays cell cycle progression. Mol Cancer 2010; 9:302. [PMID: 21092281 PMCID: PMC3000403 DOI: 10.1186/1476-4598-9-302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type I (HTLV-I) has efficiently adapted to its host and establishes a persistent infection characterized by low levels of viral gene expression and slow proliferation of HTLV-I infected cells over decades. We have previously found that HTLV-I p30 is a negative regulator of virus expression. RESULTS In this study we show that p30 targets multiple cell cycle checkpoints resulting in a delayed entry into S phase. We found that p30 binds to cyclin E and CDK2 and prevents the formation of active cyclin E-CDK2 complexes. In turn, this decreases the phosphorylation levels of Rb and prevents the release of E2F and its transcriptional activation of genes required for G1/S transition. Our studies also show that HTLV-II p28 does not bind cyclin E and does not affect cell cycle progression. CONCLUSIONS In contrast to HTLV-I, the HTLV-II-related retrovirus is not oncogenic in humans. Here we report that the HTLV-I p30 delays cell cycle progression while its homologue, HTLV-II p28, does not, providing evidence for important differences between these two related retrovirus proteins.
Collapse
Affiliation(s)
- Hicham H Baydoun
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
21
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
22
|
Van Prooyen N, Andresen V, Gold H, Bialuk I, Pise-Masison C, Franchini G. Hijacking the T-cell communication network by the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) p12 and p8 proteins. Mol Aspects Med 2010; 31:333-43. [PMID: 20673780 DOI: 10.1016/j.mam.2010.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 12/14/2022]
Abstract
The non-structural proteins encoded by the orf-I, II, III, and IV genes of the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) genome, are critical for the modulation of cellular gene expression and T-cell proliferation, the escape from cytotoxic T-cells and natural killer cells, and virus expression. In here, we review the main functions of the HTLV-1 orf-I products. The 12kDa product from orf-I (p12) is proteolytically cleaved within the endoplasmic reticulum (ER) to generate the 8kDa protein (p8). At the steady state, both proteins are expressed at similar levels in transfected T-cells. The p12 protein remains in the ER and cis-Golgi, whereas the p8 protein traffics to the cell surface and is recruited to the immunological synapse. The p12 and the p8 proteins have seemingly opposite effects on T-cells; the ER resident p12, modulates T-cell activation and proliferation, whereas p8 induces T-cell anergy. The p8 protein also increases the formation of cellular conduits, is transferred to neighboring T-cells, and increases virus transmission. The requirement for HTLV-1 infectivity of orf-I is demonstrated by the loss of virus infectivity in macaques exposed to an engineered virus, whereby expression of orf-I was ablated. Altogether the current knowledge demonstrates that the concerted activity of p8 and p12 is essential for the persistence of virus infected cells in the host.
Collapse
Affiliation(s)
- Nancy Van Prooyen
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-5065, USA
| | | | | | | | | | | |
Collapse
|