1
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
2
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
3
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
4
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Reyes-Cruz EY, Limón-Flores AY, González-Mireles AF, Rodríguez-Serrato MA, López-Monteon A, Ramos-Ligonio A. Effect of immunosuppression by UV-B radiation on components of the innate immune response in skin lesions with Leishmania mexicana: Effect of UVB on the innate immune response in cutaneous infection by L. mexicana. Acta Trop 2022; 226:106272. [PMID: 34896324 DOI: 10.1016/j.actatropica.2021.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis in humans, factors such as poverty, poor housing, inadequate domestic hygiene, malnutrition, mobility, and occupational exposure are risk factors associated with the condition, however, there are few studies focused on determining the immune mechanism involved in the resolution of cutaneous leishmaniasis caused by the species Leishmania mexicana, as well as possible environmental factors such as solar radiation, which could contribute to its establishment. through mechanisms immunosuppressants, of which to date is unknown. In this study, the effect of UV-B light was evaluated as a risk factor affecting components of the innate immune response 3 days after infection with L. mexicana. A delayed-type hypersensitivity reaction (DTH) was used to evaluate immunosuppression induced by UV-B light. Through a histological analysis, the skin lesions of the mice (Hematoxylin & Eosin) were evaluated, the presence of mast cells and their level of degranulation (toluidine blue staining), the presence of IL-10+ and MOMA2+ cells were analyzed by immunohistochemistry and finally, the cytokine profile was evaluated by qPCR in the skin lesions tissue. An alteration in the architecture of the tissue was observed, as well as a greater number of mast cells, both complete and degranulated, as well as an increase in IL-10+ and MOMA2+ cells in the skin lesions of the mice that were irradiated and subsequently infected, when compared with the lesions of infected mice (P> 0.0001), immunomodulation was also observed in the profile of cytokines expressed between both groups analyzed. This is the first study to demonstrate the effects of UV-B radiation on components of the innate immune response at short times of infection by L. mexicana.
Collapse
|
6
|
Rodríguez-Serrato MA, Gonzalez-Mireles AF, Limón-Flores AY, Salinas-Carmona MC. Immunosuppression by UVB radiation exacerbates Leishmania mexicana skin lesions in mice. Acta Trop 2021; 222:106041. [PMID: 34252383 DOI: 10.1016/j.actatropica.2021.106041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis in humans. The disease is caused by several species, such as Leishmania mexicana, a protozoa parasite. Several major risk factors are associated with this disease, including poverty, poor housing, inadequate domestic hygiene, malnutrition, mobility, and occupational exposure. Solar radiation (UVB) has not been considered a risk factor because there is no scientific evidence demonstrating a correlation with increased susceptibility to cutaneous leishmaniasis. In this study, the shaved skin of the back of C57BL/6 mice was irradiated with 24.2 mJ/cm2 of UVB. A delayed-type hypersensitivity (DTH) reaction was used to assess UV-induced immune suppression. Skin lesions were quantitated, and parasite burden and the presence of anti-Leishmania mexicana antibodies in serum and germinal centers in draining lymph nodes were determined. We found an increased in the lesion size and parasitic load in UVB-irradiated mice compared to the WT mice and B lymphocyte activation in draining lymph nodes and increased IgG1 production. Our results show an important role of UVB-induced suppression in cutaneous leishmaniasis through local production of IL-10 and systemic IgG1antibodies. This is the first study that demonstrates the effects of UVB radiation on cutaneous leishmaniasis by Leishmania mexicana.
Collapse
|
7
|
First Report of Phodopus sungorus Papillomavirus Type 1 Infection in Roborovski Hamsters ( Phodopus roborovskii). Viruses 2021; 13:v13050739. [PMID: 33922632 PMCID: PMC8145573 DOI: 10.3390/v13050739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Papillomaviruses (PVs) are considered highly species-specific with cospeciation as the main driving force in their evolution. However, a recent increase in the available PV genome sequences has revealed inconsistencies in virus–host phylogenies, which could be explained by adaptive radiation, recombination, host-switching events and a broad PV host range. Unfortunately, with a relatively low number of animal PVs characterized, understanding these incongruities remains elusive. To improve knowledge of biology and the spread of animal PV, we collected 60 swabs of the anogenital and head and neck regions from a healthy colony of 30 Roborovski hamsters (Phodopus roborovskii) and detected PVs in 44/60 (73.3%) hamster samples. This is the first report of PV infection in Roborovski hamsters. Moreover, Phodopus sungorus papillomavirus type 1 (PsuPV1), previously characterized in Siberian hamsters (Phodopus sungorus), was the only PV detected in Roborovski hamsters. In addition, after a detailed literature search, review and summary of published evidence and construction of a tanglegram linking the cladograms of PVs and their hosts, our findings were discussed in the context of available knowledge on PVs described in at least two different host species.
Collapse
|
8
|
Dorfer S, Strasser K, Schröckenfuchs G, Bonelli M, Bauer W, Kittler H, Cataisson C, Fischer MB, Lichtenberger BM, Handisurya A. Mus musculus papillomavirus 1 is a key driver of skin cancer development upon immunosuppression. Am J Transplant 2021; 21:525-539. [PMID: 33063442 PMCID: PMC7894140 DOI: 10.1111/ajt.16358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
Epidemiological and experimental data implicate cutaneous human papillomavirus infection as co-factor in the development of cutaneous squamous cell carcinomas (cSCCs), particularly in immunocompromised organ transplant recipients (OTRs). Herein, we established and characterized a skin cancer model, in which Mus musculus papillomavirus 1 (MmuPV1) infection caused cSCCs in cyclosporine A (CsA)-treated mice, even in the absence of UV light. Development of cSCCs and their precursors were observed in 70% of MmuPV1-infected, CsA-treated mice on back as well as on tail skin. Immunosuppression by systemic CsA, but not UV-B irradiation, was a prerequisite, as immunocompetent or UV-B-irradiated mice did not develop skin malignancies after infection. In the virus-driven cSCCs the MmuPV1-E6/E7 oncogenes were abundantly expressed, and transcriptional activity and productive infection demonstrated. MmuPV1 infection induced the expression of phosphorylated H2AX, but not degradation of proapoptotic BAK in the cSCCs. Transfer of primary cells, established from a MmuPV1-induced cSCC from back skin, into athymic nude mice gave rise to secondary cSCCs, which lacked viral DNA, demonstrating that maintenance of the malignant phenotype was virus independent. This papillomavirus-induced skin cancer model opens future investigations into viral involvement, pathogenesis, and cancer surveillance, aiming at understanding and controlling the high incidence of skin cancer in OTRs.
Collapse
Affiliation(s)
- Sonja Dorfer
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | | | - Michael Bonelli
- Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Wolfgang Bauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Harald Kittler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Christophe Cataisson
- Laboratory of Cancer Biology and GeneticsNational Institutes of HealthNational Cancer InstituteBethesdaMDUSA
| | - Michael B. Fischer
- Department of Transfusion MedicineMedical University of ViennaViennaAustria
| | | | | |
Collapse
|
9
|
Motavalli Khiavi F, Nasimi M, Rahimi H. Merkel Cell Polyomavirus Gene Expression and Mutational Analysis of Large Tumor Antigen in Non-Merkel Cell Carcinoma Tumors of Iranian Patients. Public Health Genomics 2020; 23:210-217. [PMID: 32966997 DOI: 10.1159/000510254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The presence of Merkel cell polyomavirus (MCPyV) was identified in Merkel cell carcinoma (MCC). However, there was sparse information on the link of other common nonmelanoma skin cancers - basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) - to MCPyV infection. The current study describes the phylogenetic information of MCPyV isolated from Iranian non-MCC (nonmelanoma skin cancers) focusing on tumorigenesis of mutations in large tumor (LT) antigen (LT-Ag) fragment. METHODS Sixty patients with BCC and 20 patients with SCC were included in this study (48 males and 32 females; average age 65 years). The MCPyV-DNA copy number in positive samples was measured by quantitative real-time PCR. Then, mutational analysis of the MCPyV LT gene was carried out by direct sequencing. RESULTS While MCPyV DNA was detected in 6 (10%) of 60 BCC samples, no viral genome was found in SCCs. There was no distinct association of MCPyV positivity with gender, age, or type of tumor (BCC or SCC) (p value >0.05). Quantitative real-time PCR revealed that the median number of viral DNA copies per cell was 0.7 in 6 MCPyV-positive BCC samples. Furthermore, full-length LT-Ag sequencing of positive samples indicated no stop codon or frameshift mutations compared to reference sequences. CONCLUSION Considering the important role of the LT-Ag in the pathogenicity of MCPyV, non-synonymous mutations compared with the reference proteins triggered relevant amino acid substitutions. Overall, the results showed no tumor-associated mutations in the LT-Ag sequence of MCPyVs from positive samples.
Collapse
Affiliation(s)
- Farhad Motavalli Khiavi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.,Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Nasimi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| | - Hamzeh Rahimi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
11
|
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 220 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood.From patients with the rare genetic disorder epidermodysplasia verruciformis (EV) and animal models, evidence is accumulating that cutaneous PV of genus β synergize with ultraviolet (UV) radiation in the development of cutaneous squamous cell carcinoma (cSCC). In 2009, the International Agency for Research on Cancer (IARC) classified the genus β-HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. Epidemiological and biological studies indicate that genus β-PV infection may also play a role in UV-mediated skin carcinogenesis in non-EV patients. However, they rather act at early stages of carcinogenesis and become dispensable for the maintenance of the malignant phenotype, compatible with a "hit-and-run" mechanism.This chapter will give an overview on genus β-PV infections and discuss similarities and differences of cutaneous and genus α mucosal high-risk HPV in epithelial carcinogenesis.
Collapse
|
12
|
Starrett GJ, Buck CB. The case for BK polyomavirus as a cause of bladder cancer. Curr Opin Virol 2019; 39:8-15. [PMID: 31336246 PMCID: PMC6901737 DOI: 10.1016/j.coviro.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
In 2014, the International Agency for Research on Cancer judged Merkel cell polyomavirus (MCPyV) to be a probable human carcinogen. BK polyomavirus (BKPyV, a distant cousin of MCPyV) was ruled a possible carcinogen. In this review, we argue that it has recently become reasonable to view both of these viruses as known human carcinogens. In particular, several complementary lines of evidence support a causal role for BKPyV in the development of bladder carcinomas affecting organ transplant patients. The expansion of inexpensive deep sequencing has opened new approaches to investigating the important question of whether BKPyV causes urinary tract cancers in the general population.
Collapse
Affiliation(s)
- Gabriel J Starrett
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States.
| | - Christopher B Buck
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States
| |
Collapse
|
13
|
Rollison DE, Viarisio D, Amorrortu RP, Gheit T, Tommasino M. An Emerging Issue in Oncogenic Virology: the Role of Beta Human Papillomavirus Types in the Development of Cutaneous Squamous Cell Carcinoma. J Virol 2019; 93:e01003-18. [PMID: 30700603 PMCID: PMC6430537 DOI: 10.1128/jvi.01003-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence suggests that beta human papillomaviruses (HPVs), together with ultraviolet radiation, contribute to the development of cutaneous squamous cell carcinoma. Beta HPVs appear to be not the main drivers of carcinogenesis but rather facilitators of the accumulation of ultraviolet-induced DNA mutations. Beta HPVs are promoters of skin carcinogenesis, although they are dispensable for the maintenance of the malignant phenotype. Therefore, beta HPV represents a target for skin cancer prevention, especially in high-risk populations.
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Daniele Viarisio
- Infection and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
14
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Podgórska M, Ołdak M, Marthaler A, Fingerle A, Walch-Rückheim B, Lohse S, Müller CSL, Vogt T, Ustav M, Wnorowski A, Malejczyk M, Majewski S, Smola S. Chronic Inflammatory Microenvironment in Epidermodysplasia Verruciformis Skin Lesions: Role of the Synergism Between HPV8 E2 and C/EBPβ to Induce Pro-Inflammatory S100A8/A9 Proteins. Front Microbiol 2018; 9:392. [PMID: 29563902 PMCID: PMC5845987 DOI: 10.3389/fmicb.2018.00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
Persistent genus β-HPV (human papillomavirus) infection is a major co-factor for non-melanoma skin cancer in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). Malignant EV lesions are particularly associated with HPV type 5 or 8. There is clinical and molecular evidence that HPV8 actively suppresses epithelial immunosurveillance by interfering with the recruitment of Langerhans cells, which may favor viral persistence. Mechanisms how persistent HPV8 infection promotes the carcinogenic process are, however, less well understood. In various tumor types chronic inflammation has a central role in tumor progression. The calprotectin complex consisting of S100A8 and S100A9 proteins has recently been identified as key driver of chronic and tumor promoting inflammation in skin carcinogenesis. It induces chemotaxis of neutrophil granulocytes and modulates inflammatory as well as immune responses. In this study, we demonstrate that skin lesions of EV-patients are massively infiltrated by inflammatory cells, including CD15+ granulocytes. At the same time we observed a very strong expression of S100A8 and S100A9 proteins in lesional keratinocytes, which was mostly confined to the suprabasal layers of the epidermis. Both proteins were hardly detected in non-lesional skin. Further experiments revealed that the HPV8 oncoproteins E6 and E7 were not involved in S100A8/A9 up-regulation. They rather suppressed differentiation-induced S100A8/A9 expression. In contrast, the viral transcription factor E2 strongly enhanced PMA-mediated S100A8/A9 up-regulation in primary human keratinocytes. Similarly, a tremendous up-regulation of both S100 proteins was observed, when minute amounts of the PMA-inducible CCAAT/enhancer binding protein β (C/EBPβ), which is expressed at low levels in the suprabasal layers of the epidermis, were co-expressed together with HPV8 E2. This confirmed our previous observation that C/EBPβ interacts and functionally synergizes with the HPV8 E2 protein in differentiation-dependent gene expression. Potent synergistic up-regulation of S100A8/A9 was seen at transcriptional and protein levels. S100A8/A9 containing supernatants from keratinocytes co-expressing HPV8 E2 and C/EBPβ significantly induced chemotaxis of granulocytes in migration assays supporting the relevance of our finding. In conclusion, our data suggest that the HPV8 E2 protein actively contributes to the recruitment of myeloid cells into EV skin lesions, which may support chronic inflammation and progression to skin cancer.
Collapse
Affiliation(s)
- Marta Podgórska
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany.,Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Anna Marthaler
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Cornelia S L Müller
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Artur Wnorowski
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Magdalena Malejczyk
- Diagnostic Laboratory of STDs, Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
16
|
Viarisio D, Müller-Decker K, Accardi R, Robitaille A, Dürst M, Beer K, Jansen L, Flechtenmacher C, Bozza M, Harbottle R, Voegele C, Ardin M, Zavadil J, Caldeira S, Gissmann L, Tommasino M. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice. PLoS Pathog 2018; 14:e1006783. [PMID: 29324843 PMCID: PMC5764406 DOI: 10.1371/journal.ppat.1006783] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation. Many epidemiological and biological findings support the hypothesis that beta HPV types cooperate with UV radiation in the induction of NMSC, the most common form of human cancer. We have previously shown that K14 HPV38 E6/E7 Tg mice, when exposed to long-term UV radiation, developed NMSC, whereas WT animals subjected to identical treatments did not develop any type of skin lesions. Here, we show that the high skin cancer susceptibility of these Tg animals tightly correlates with their tendency to accumulate UV-induced mutations in genes that are frequently mutated in human NMSC. Importantly, deletion of the HPV38 E6 and E7 genes in existing skin lesions did not affect the further growth of the cancer cells. Together, these findings support the model that beta HPV infection is a co-factor in skin carcinogenesis, facilitating the accumulation of the UV-induced DNA mutations.
Collapse
Affiliation(s)
| | | | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Alexis Robitaille
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Katrin Beer
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Lars Jansen
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | | - Catherine Voegele
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Maude Ardin
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Lutz Gissmann
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Department of Botany and Microbiology (honorary member), King Saud University, Riyadh, Saudi Arabia
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
- * E-mail:
| |
Collapse
|
17
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
18
|
Wendel SO, Wallace NA. Loss of Genome Fidelity: Beta HPVs and the DNA Damage Response. Front Microbiol 2017; 8:2250. [PMID: 29187845 PMCID: PMC5694782 DOI: 10.3389/fmicb.2017.02250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
While the role of genus alpha human papillomaviruses in the tumorigenesis and tumor maintenance of anogenital and oropharyngeal cancers is well-established, the role of genus beta human papilloviruses (β-HPVs) in non-melanoma skin cancers (NMSCs) is less certain. Persistent β-HPV infections cause NMSCs in sun-exposed skin of people with a rare genetic disorder, epidermodysplasia verruciformis. However, β-HPV infections in people without epidermodysplasia verruciformis are typically transient. Further, β-HPV gene expression is not necessary for tumor maintenance in the general population as on average there is fewer than one copy of the β-HPV genome per cell in NMSC tumor biopsies. Cell culture, epidemiological, and mouse model experiments support a role for β-HPV infections in the initiation of NMSCs through a "hit and run" mechanism. The virus is hypothesized to act as a cofactor, augmenting the genome destabilizing effects of UV. Supporting this idea, two β-HPV proteins (β-HPV E6 and E7) disrupt the cellular response to UV exposure and other genome destabilizing events by abrogating DNA repair and deregulating cell cycle progression. The aberrant damage response increases the likelihood of oncogenic mutations capable of driving tumorigenesis independent of a sustained β-HPV infection or continued viral protein expression. This review summarizes what is currently known about the deleterious effects of β-HPV on genome maintenance in the context of the virus's putative role in NMSC initiation.
Collapse
|
19
|
Sominsky S, Shterzer N, Jackman A, Shapiro B, Yaniv A, Sherman L. E6 proteins of α and β cutaneous HPV types differ in their ability to potentiate Wnt signaling. Virology 2017; 509:11-22. [DOI: 10.1016/j.virol.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
|
20
|
Abstract
The beta genus comprises more than 50 beta human papillomavirus (HPV) types that are suspected to be involved, together with ultraviolet (UV) irradiation, in the development of non-melanoma skin cancer (NMSC), the most common form of human cancer. Two members of the genus beta, HPV5 and HPV8, were first identified in patients with a genetic disorder, epidermodysplasia verruciformis (EV), that confers high susceptibility to beta HPV infection and NMSC development. The fact that organ transplant recipients (OTRs) with an impaired immune system have an elevated risk of NMSC raised the hypothesis that beta HPV types may also be involved in skin carcinogenesis in non-EV patients. Epidemiological studies have shown that serological and viral DNA markers are weakly, but significantly, associated with history of NMSC in OTRs and the general population. Functional studies on mucosal high-risk (HR) HPV types have clearly demonstrated that the products of two early genes, E6 and E7, are the main viral oncoproteins, which are able to deregulate events closely linked to transformation, such as cell cycle progression and apoptosis. Studies on a small number of beta HPV types have shown that their E6 and E7 oncoproteins also have the ability to interfere with the regulation of key pathways/events associated with cellular transformation. However, the initial functional data indicate that the molecular mechanisms leading to cellular transformation are different from those of mucosal HR HPV types. Beta HPV types may act only at early stages of carcinogenesis, by potentiating the deleterious effects of other carcinogens, such as UV radiation.
Collapse
|
21
|
Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol 2015; 238:166-79. [DOI: 10.1002/path.4656] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Affiliation(s)
- John Doorbar
- Department of Pathology; University of Cambridge; Tennis Court Road Cambridge UK
| |
Collapse
|
22
|
Abstract
Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.
Collapse
Affiliation(s)
- Nicholas A Wallace
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| |
Collapse
|
23
|
Zur Hausen H, de Villiers EM. Reprint of: cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2015; 42:207-22. [PMID: 25843727 DOI: 10.1053/j.seminoncol.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
24
|
Abstract
Human papillomaviruses (HPVs) infect the squamous epithelium and can induce benign and malignant lesions. To date, more than 200 different HPV types have been identified and classified into five genera, α, β, γ, μ, and ν. While high-risk α mucosal HPVs have a well-established role in cervical carcinoma and a significant percentage of other anogenital tract and oral carcinomas, the biology of the cutaneous β HPVs and their contribution to non-melanoma skin cancer (NMSC) has been less studied. Although the association of β HPV infection with NMSC in patients with a rare, genetically determined condition, epidermodysplasia verruciformis has been well established, the role of β HPV infection with NMSC in the normal population remains controversial. In stark contrast to α HPV-associated cancers, the presence of the β HPV genome does not appear to be mandatory for the maintenance of the malignant phenotype. Moreover, the mechanism of action of the β HPV E6 and E7 oncoproteins differs from the β HPV oncoproteins.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA.
| |
Collapse
|
25
|
Abstract
The incidence of nonmelanoma skin cancer (NMSC) continues to rise, partly because of aging, the frequency of early childhood sunburns, and sporadic extreme recreational sun exposure. A nonsurgical approach to selected cutaneous malignancy could possibly reduce the cost as well as morbidity of surgical treatment for NMSC. There has been growing interest in isolating compounds that could suppress or reverse the biochemical changes necessary for cutaneous malignancies to progress by pharmacologic intervention. By targeting diverse pathways recognized as important in the pathogenesis of nonmelanoma skin cancers, a combination approach with multiple agents or addition of chemopreventative agents to topical sunscreens may offer the potential for novel and synergistic therapies in treating nonmelanoma skin cancer. This preliminary information will expand to include more therapeutic options for NMSC in the future.
Collapse
Affiliation(s)
- Prasan R Bhandari
- Department of Pharmacology, Shri Dharmasthala Manjunatheshwara College of Medical Sciences and Hospital, Sattur, Dharwad, Karnataka, India
| | - Varadraj V Pai
- Department of Dermatology, Shri Dharmasthala Manjunatheshwara College of Medical Sciences and Hospital, Sattur, Dharwad, Karnataka, India
| |
Collapse
|
26
|
zur Hausen H, de Villiers EM. Cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2014; 41:860-75. [PMID: 25499643 DOI: 10.1053/j.seminoncol.2014.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
27
|
Shterzer N, Heyman D, Shapiro B, Yaniv A, Jackman A, Serour F, Chaouat M, Gonen P, Tommasino M, Sherman L. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes. Virology 2014; 468-470:647-659. [PMID: 25443667 DOI: 10.1016/j.virol.2014.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dariya Heyman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Beny Shapiro
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abraham Yaniv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Jackman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francis Serour
- Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon, Israel
| | - Malka Chaouat
- Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem, Israel
| | - Pinhas Gonen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Levana Sherman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
28
|
|
29
|
Horton JS, Stokes AJ. The transmembrane channel-like protein family and human papillomaviruses: Insights into epidermodysplasia verruciformis and progression to squamous cell carcinoma. Oncoimmunology 2014; 3:e28288. [PMID: 24800179 PMCID: PMC4006860 DOI: 10.4161/onci.28288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 (TMC6 / EVER1) and 8 (TMC8 / EVER2) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells.
Collapse
Affiliation(s)
- Jaime S Horton
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA
| | - Alexander J Stokes
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA ; Chaminade University; Honolulu, HI USA
| |
Collapse
|
30
|
Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2013; 26:13-21. [PMID: 24316445 DOI: 10.1016/j.semcancer.2013.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/17/2023]
Abstract
Human papillomaviruses (HPVs) are a family of small double-stranded DNA viruses that have a tropism for the epithelia of the genital and upper respiratory tracts and for the skin. Approximately 150 HPV types have been discovered so far, which are classified into several genera based on their DNA sequence. Approximately 15 high-risk mucosal HPV types are clearly associated with cervical cancer; HPV16 and HPV18 are the most carcinogenic since they are responsible for approximately 50% and 20% of all cervical cancers worldwide, respectively. It is now also clear that these viruses are linked to a subset of other genital cancers, as well as head and neck cancers. Due to their high level of carcinogenic activity, HPV16 and HPV18 are the most studied HPV types so far. Biological studies have highlighted the key roles in cellular transformation of the products of two viral early genes, E6 and E7. Many of the mechanisms of E6 and E7 in subverting the regulation of fundamental cellular events have been fully characterized, contributing not only to our knowledge of how the oncogenic viruses promote cancer development but also to our understanding of basic cell biology. Despite HPV research resulting in extraordinary achievements in the last four decades, significantly improving the screening and prophylaxis of HPV-induced lesions, additional research is necessary to characterize the biology and epidemiology of the vast number of HPV types that have been poorly investigated so far, with a final aim of clarifying their potential roles in other human diseases.
Collapse
Affiliation(s)
- Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer - World Health Organization, 150 Cours Albert-Thomas, 69372 Lyon cedex 08, France.
| |
Collapse
|
31
|
Holloway A, Storey A. A conserved C-terminal sequence of high-risk cutaneous beta-human papillomavirus E6 proteins alters localization and signalling of β1-integrin to promote cell migration. J Gen Virol 2013; 95:123-134. [PMID: 24154967 DOI: 10.1099/vir.0.057695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beta-human papillomaviruses (β-HPV) infect cutaneous epithelia, and accumulating evidence suggests that the virus may act as a co-factor with UV-induced DNA damage in the development and progression of non-melanoma skin cancer, although the molecular mechanisms involved are poorly understood. The E6 protein of cutaneous β-HPV types encodes functions consistent with a role in tumorigenesis, and E6 expression can result in papilloma formation in transgenic animals. The E6 proteins of high-risk α-HPV types, which are associated with the development of anogenital cancers, have a conserved 4 aa motif at their extreme C terminus that binds to specific PDZ domain-containing proteins to promote cell invasion. Likewise, the high-risk β-HPVs HPV5 and HPV8 E6 proteins also share a conserved C-terminal motif, but this is markedly different from that of α-HPV types, implying functional differences. Using binding and functional studies, we have shown that β-HPV E6 proteins target β1-integrin using this C-terminal motif. E6 expression reduced membrane localization of β1-integrin, but increased overall levels of β1-integrin protein and its downstream effector focal adhesion kinase in human keratinocytes. Altered β1-integrin localization due to E6 expression was associated with actin cytoskeleton rearrangement and increased cell migration that was abolished by point mutations in the C-terminal motif of E6. We concluded that modulation of β1-integrin signalling by E6 proteins may contribute towards the pathogenicity of these β-HPV types.
Collapse
Affiliation(s)
- Amy Holloway
- Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Alan Storey
- Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
32
|
Oncoprotein E7 from beta human papillomavirus 38 induces formation of an inhibitory complex for a subset of p53-regulated promoters. J Virol 2013; 87:12139-50. [PMID: 24006445 DOI: 10.1128/jvi.01047-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our previous studies on cutaneous beta human papillomavirus 38 (HPV38) E6 and E7 oncoproteins highlighted a novel activity of IκB kinase beta (IKKβ) in the nucleus of human keratinocytes, where it phosphorylates and stabilizes ΔNp73α, an antagonist of p53/p73 functions. Here, we further characterize the role of the IKKβ nuclear form. We show that IKKβ nuclear translocation and ΔNp73α accumulation are mediated mainly by HPV38 E7 oncoprotein. Chromatin immunoprecipitation (ChIP)/Re-ChIP experiments showed that ΔNp73α and IKKβ are part, together with two epigenetic enzymes DNA methyltransferase 1 (DNMT1) and the enhancer of zeste homolog 2 (EZH2), of a transcriptional regulatory complex that inhibits the expression of some p53-regulated genes, such as PIG3. Recruitment to the PIG3 promoter of EZH2 and DNMT1 resulted in trimethylation of histone 3 on lysine 27 and in DNA methylation, respectively, both events associated with gene expression silencing. Decreases in the intracellular levels of HPV38 E7 or ΔNp73α strongly affected the recruitment of the inhibitory transcriptional complex to the PIG3 promoter, with consequent restoration of p53-regulated gene expression. Finally, the ΔNp73α/IKKβ/DNMT1/EZH2 complex appears to bind a subset of p53-regulated promoters. In fact, the complex is efficiently recruited to several promoters of genes encoding proteins involved in DNA repair and apoptosis, whereas it does not influence the expression of the prosurvival factor Survivin. In summary, our data show that HPV38 via E7 protein promotes the formation of a multiprotein complex that negatively regulates the expression of several p53-regulated genes.
Collapse
|
33
|
Viarisio D, Decker KM, Aengeneyndt B, Flechtenmacher C, Gissmann L, Tommasino M. Human papillomavirus type 38 E6 and E7 act as tumour promoters during chemically induced skin carcinogenesis. J Gen Virol 2012; 94:749-752. [PMID: 23223623 DOI: 10.1099/vir.0.048991-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many findings support a possible involvement of a subgroup of human papillomaviruses (HPVs), called cutaneous beta HPV types, in the development of non-melanoma skin cancer. The skin of transgenic (Tg) mice expressing viral oncoproteins E6 and E7 from different cutaneous beta HPV types, including HPV38, showed an increased susceptibility to UV-induced and/or chemically induced skin carcinogenesis compared with wild-type animals. In this study, we show that beta HPV38 E6 and E7 oncoproteins act as promoter and progression factors in multi-stage skin carcinogenesis, strongly cooperating with the initiator and DNA damage agent 7,12-dimethylbenz[a]anthracene. In contrast, exposure of HPV38 E6/E7 Tg mice to the promoter 12-O-tetradecanoylphorbol-13-acetate did not significantly result in the development of skin lesions. These findings further support the role of beta HPV types in skin carcinogenesis, providing additional insight into their precise contribution to the multi-step process.
Collapse
Affiliation(s)
| | | | | | | | - Lutz Gissmann
- Department of Botany and Microbiology (honorary member), King Saud University, Riyadh, Saudi Arabia.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
34
|
Antonsson A, Waterboer T, Bouwes Bavinck JN, Abeni D, de Koning M, Euvrard S, Feltkamp MCW, Green AC, Harwood CA, Naldi L, Nindl I, Pfister HJ, Proby CM, Quint WG, Stockfleth E, Weissenborn SJ, Pawlita M, Neale RE. Longitudinal study of seroprevalence and serostability of 34 human papillomavirus types in European organ transplant recipients. Virology 2012; 436:91-9. [PMID: 23174506 DOI: 10.1016/j.virol.2012.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/26/2012] [Accepted: 10/29/2012] [Indexed: 01/22/2023]
Abstract
Organ transplant recipients (OTR) are at increased risk of cutaneous squamous cell carcinoma, which may be related to reactivation of human papillomavirus (HPV) infections. Measurement of change in HPV antibodies after transplantation would help to explore this hypothesis. We measured antibodies to 34 HPV types on up to six occasions over 18 months in 441 OTRs from five European countries. At baseline (mean 24 days after transplantation), 80% of all OTRs were seropositive to at least one HPV type. The beta HPV genus had the highest seroprevalence (45%). For most HPV genera baseline seroprevalence peaked between 40 and 59 years old. Most OTRs retained their serostatus over time and antibody levels were stable. Seroprevalence in immunosuppressed OTRs is stable in the 18 months immediately after transplantation. Thus there is no short-term evidence that immunosuppression leads to new or reactivated skin infection with HPV sufficient to induce antibodies.
Collapse
Affiliation(s)
- Annika Antonsson
- Department of Population Health, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nonmelanoma skin cancer (NMSC) represents the most common form of cancer in Caucasians, with continuing increase in incidence worldwide. Basal cell carcinoma (BCC) accounts for 75% of cases of NMSC, and squamous cell carcinoma (SCC) accounts for the remaining majority of NMSC cases. Whilst metastasis from BCC is extremely rare, metastasis from high-risk SCC may be fatal. In this article, we review the aetiology, diagnosis and management of NMSC.
Collapse
Affiliation(s)
- Venura Samarasinghe
- Dermatology Centre, Salford Royal Hospital, NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | | |
Collapse
|
36
|
Interferon-β induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity. PLoS One 2012; 7:e36909. [PMID: 22615843 PMCID: PMC3353995 DOI: 10.1371/journal.pone.0036909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.
Collapse
|
37
|
Differential regulation of cutaneous oncoprotein HPVE6 by wtp53, mutant p53R248W and ΔNp63α is HPV type dependent. PLoS One 2012; 7:e35540. [PMID: 22530045 PMCID: PMC3329482 DOI: 10.1371/journal.pone.0035540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
UV exposure and p53 mutations are major factors in non-melanoma skin cancer, whereas a role for HPV infections has not been defined. Previous data demonstrated the wtp53-mediated degradation of cutaneous HPV20E6 by caspase-3. ΔNp63α and hot-spot mutant p53R248W conveyed a protective effect on HPV20E6 under these conditions. We demonstrate a differential regulation by wtp53 of the E6 genes of cutaneous types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60 and HPV77. Caspase- or proteasome-mediated down-regulation was HPV type dependent. Mutant p53R248W up-regulated expression of all these E6 proteins as did ΔNp63α except for HPV38E6 which was down-regulated by the latter. None of these cellular proteins affected HPV41E6 expression. Ectopic expression of both mutp53R248W and ΔNp63α in the normal NIKS keratinocyte cell line harbouring endogenous p53 and p63however led to a down-regulation of HPV20E6. We demonstrate that HPV20E6 expression in these cells is modulated by additional, yet unidentified, cellular protein(s), which are not necessarily involved in apoptosis or autophagy. We further demonstrate proliferation of HPV20E6-expressing keratinocytes. Levels of proteins involved in cell cycle control, cyclin-D1, cdk6 and p16INK4a, phosphorylated pRB, as well as c-Jun and p-c-Jun, were all increased in these cells. HPV20E6 did not compete for the interaction between p16INK4a with cyclin-D1 or cdk6. Phosphorylation of pRB in the HPV20E6 expressing cells seems to be sufficient to override the cytokenetic block induced by the p16INK4a/pRB pathway. The present study demonstrates the diverse influence of p53 family members on individual cutaneous HPVE6 proteins. HPV20E6 expression also resulted in varying protein levels of factors involved in proliferation and differentiation.
Collapse
|
38
|
Viarisio D, Mueller-Decker K, Kloz U, Aengeneyndt B, Kopp-Schneider A, Gröne HJ, Gheit T, Flechtenmacher C, Gissmann L, Tommasino M. E6 and E7 from beta HPV38 cooperate with ultraviolet light in the development of actinic keratosis-like lesions and squamous cell carcinoma in mice. PLoS Pathog 2011; 7:e1002125. [PMID: 21779166 PMCID: PMC3136451 DOI: 10.1371/journal.ppat.1002125] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/03/2011] [Indexed: 12/29/2022] Open
Abstract
Cutaneous beta human papillomavirus (HPV) types appear to be involved in the development of non-melanoma skin cancer (NMSC); however, it is not entirely clear whether they play a direct role. We have previously shown that E6 and E7 oncoproteins from the beta HPV type 38 display transforming activities in several experimental models. To evaluate the possible contribution of HPV38 in a proliferative tissue compartment during carcinogenesis, we generated a new transgenic mouse model (Tg) where HPV38 E6 and E7 are expressed in the undifferentiated basal layer of epithelia under the control of the Keratin 14 (K14) promoter. Viral oncogene expression led to increased cellular proliferation in the epidermis of the Tg animals in comparison to the wild-type littermates. Although no spontaneous formation of tumours was observed during the lifespan of the K14 HPV38 E6/E7-Tg mice, they were highly susceptible to 7,12-dimethylbenz(a)anthracene (DMBA)/12-0-tetradecanoylphorbol-13-acetate (TPA) two-stage chemical carcinogenesis. In addition, when animals were exposed to ultraviolet light (UV) irradiation, we observed that accumulation of p21WAF1 and cell-cycle arrest were significantly alleviated in the skin of Tg mice as compared to wild-type controls. Most importantly, chronic UV irradiation of Tg mice induced the development of actinic keratosis-like lesions, which are considered in humans as precursors of squamous cell carcinomas (SCC), and subsequently of SCC in a significant proportion of the animals. In contrast, wild-type animals subjected to identical treatments did not develop any type of skin lesions. Thus, the oncoproteins E6 and E7 from beta HPV38 significantly contribute to SCC development in the skin rendering keratinocytes more susceptible to UV-induced carcinogenesis. Epidemiological and biological lines of evidence support a possible involvement of a sub-group of human papillomaviruses (HPV), referred to as cutaneous beta HPV types, in the development of non-melanoma skin cancer (NMSC). However, their role in carcinogenesis, in particular whether they synergize with other NMSC risk factors, e.g. UV irradiation, is still unclear. Here, we describe the generation of a novel model of transgenic mice (Tg) expressing the viral oncoproteins E6 and E7 from cutaneous beta HPV38 in the basal layer of the epidermis. We established two independent lines of HPV38 E6/E7 Tg mice and showed that they both have an increased susceptibility to develop squamous cell carcinoma (SCC) in comparison to the wild-type animals when exposed to chemical carcinogens and UV irradiation. Most interestingly, we found that UV irradiation of the Tg animals, promoted the formation of skin lesions that closely resembled the SCC-precursor lesions in humans, actinic keratosis and subsequently SCC. In contrast, we observed that wild-type mice developed neither actinic keratosis nor SCC when exposed to the same dose of UV. In conclusion, we present evidence that supports the role of cutaneous beta HPV types in skin carcinogenesis.
Collapse
|
39
|
NF-kappaB protects human papillomavirus type 38 E6/E7-immortalized human keratinocytes against tumor necrosis factor alpha and UV-mediated apoptosis. J Virol 2011; 85:9013-22. [PMID: 21715489 DOI: 10.1128/jvi.00002-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis.
Collapse
|
40
|
Noris E, Poli A, Cojoca R, Rittà M, Cavallo F, Vaglio S, Matic S, Landolfo S. A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol 2011; 156:587-95. [PMID: 21234770 DOI: 10.1007/s00705-010-0893-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/14/2010] [Indexed: 01/13/2023]
Abstract
We investigated the potential of Nicotiana benthamiana to express the E7 protein of human papillomavirus 8 (HPV-8), a paradigm genotype among cutaneous HPVs. The protein, modified in its putative pRb-binding domain (E7(QGD)), was transiently expressed in leaves following infiltration with agrobacteria carrying either a binary vector combined with silencing suppressor constructs or replicating tobacco mosaic virus (TMV)-based vectors with different targeting signals. HPV-8 E7(QGD) yields ranged from 250 ng to 4.6 mg per gram of fresh leaf tissue. The highest yields were obtained with TMV-based vectors targeting the antigen to the apoplast. HPV8-CER (H2(q)) mice transformed with the complete early region of HPV-8 showed a delay in the onset of skin papillomatous lesions and produced E7-specific immunoglobulins G when inoculated subcutaneously with leaf extracts expressing E7(QGD). Furthermore, we demonstrated that the plant-made HPV-8 E7(QGD) induced a specific cytotoxic response in C57BL/6 (H2(b)) mice.
Collapse
Affiliation(s)
- Emanuela Noris
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
De Andrea M, Rittà M, Landini MM, Borgogna C, Mondini M, Kern F, Ehrenreiter K, Baccarini M, Marcuzzi GP, Smola S, Pfister H, Landolfo S, Gariglio M. Keratinocyte-specific stat3 heterozygosity impairs development of skin tumors in human papillomavirus 8 transgenic mice. Cancer Res 2010; 70:7938-48. [PMID: 20876801 DOI: 10.1158/0008-5472.can-10-1128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human papillomaviruses (HPV) of the genus β are thought to play a role in human skin cancers, but this has been difficult to establish using epidemiologic approaches. To gain insight into the transforming activities of β-HPV, transgenic mouse models have been generated that develop skin tumors. Recent evidence suggests a central role of signal transducer and activator of transcription 3 (Stat3) as a transcriptional node for cancer cell-autonomous initiation of a tumor-promoting gene signature associated with cell proliferation, cell survival, and angiogenesis. Moreover, high levels of phospho-Stat3 have been detected in tumors arising in HPV8-CER transgenic mice. In this study, we investigate the in vivo role of Stat3 in HPV8-induced skin carcinogenesis by combining our established experimental model of HPV8-induced skin cancer with epidermis-restricted Stat3 ablation. Stat3 heterozygous epidermis was less prone to tumorigenesis than wild-type epidermis. Three of the 23 (13%) Stat3(+/-):HPV8 animals developed tumors within 12 weeks of life, whereas 54.3% of Stat3(+/+):HPV8 mice already exhibited tumors in the same observation period (median age for tumor appearance, 10 weeks). The few tumors that arose in the Stat3(+/-):HPV8 mice were benign and never progressed to a more malignant phenotype. Collectively, these results offer direct evidence of a critical role for Stat3 in HPV8-driven epithelial carcinogenesis. Our findings imply that targeting Stat3 activity in keratinocytes may be a viable strategy to prevent and treat HPV-induced skin cancer.
Collapse
Affiliation(s)
- Marco De Andrea
- Department of Public Health and Microbiology, Medical School of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Senger T, Schädlich L, Textor S, Klein C, Michael KM, Buck CB, Gissmann L. Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs. Vaccine 2009; 28:1583-93. [PMID: 20003923 DOI: 10.1016/j.vaccine.2009.11.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 01/10/2023]
Abstract
The potential as prophylactic vaccines of L1-based particles from cutaneous genus alpha human papillomavirus (HPV) types has not been assessed so far. However, there is a high medical need for such vaccines since HPV-induced skin warts represent a major burden for children and for immunocompromised adults, such as organ transplant recipients. In this study, we have examined the immunogenicity of capsomeres and virus-like particles (VLPs) from HPV types 2, 27, and 57, the most frequent causative agents of skin warts. Immunization of mice induced immune responses resembling those observed upon vaccination with HPV 16 L1-based antigens. The antibody responses were cross-reactive but type-restricted in their neutralizing capacities. Application of adjuvant led to an enhanced potential to neutralize the respective immunogen type but did not improve cross-neutralization. Vaccination with capsomeres and VLPs from all four analyzed HPV types induced robust IFNgamma-associated T-cell activation. Immunization with mixed VLPs from HPV types 2, 27, and 57 triggered an antibody response similar to that after single-type immunization and capable of efficiently neutralizing all three types. Our results imply that vaccination with combinations of VLPs from cutaneous HPV types constitutes a promising strategy to prevent HPV-induced skin lesions.
Collapse
Affiliation(s)
- Tilo Senger
- Department of Genome Modifications and Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hsu JYC, Chen ACH, Keleher A, McMillan NAJ, Antonsson A. Shared and persistent asymptomatic cutaneous human papillomavirus infections in healthy skin. J Med Virol 2009; 81:1444-9. [PMID: 19551818 DOI: 10.1002/jmv.21529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cutaneous human papillomavirus (HPV) types are commonly found in normal skin, and some of them have been suspected to play a role in the development of non-melanoma skin cancer. This present study is divided into three sections, the aims of this study were to examine if certain HPV-types persist over time and if HPV-types are shared within families. From the first part of the study, swab samples from foreheads were collected for three longitudinal studies from one family with a newborn baby. Five specific HPV-types were isolated from the family with a newborn, with HPV-5 and FA67 being found at various time points and prevalence rates in all four members of the family. Part 2 consisted of a followed up study from two families with a 6 years interval. Six of the family members were found to have at least one of the HPV-types identified in the family 6 years earlier. Many of the HPV-types identified were shared within the families studied. Part 3 of this study involved weekly samples from four healthy females for 4 months. Among the four healthy individuals, 11%, 65%, and 56% of the weekly samples were HPV-DNA positive with one individual HPV-negative. All specimens were tested for HPV-DNA by PCR using the broad range HPV-type primer pair FAP59/64. The positive samples were HPV-type determined by cloning and sequencing. Specific cutaneous HPV-types persist over long periods of time in healthy skin in most individuals investigated and certain HPVs are shared between family members.
Collapse
Affiliation(s)
- J Y-C Hsu
- The University of Queensland, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | |
Collapse
|
44
|
Interaction between ultraviolet radiation and human papillomavirus. Cancer Treat Res 2009. [PMID: 19415201 DOI: 10.1007/978-0-387-78574-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology 2009; 384:260-5. [PMID: 19135222 DOI: 10.1016/j.virol.2008.11.046] [Citation(s) in RCA: 999] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/18/2008] [Indexed: 12/11/2022]
Abstract
Approximately 35 years ago a role of human papillomaviruses (HPV) in cervical cancer has been postulated. Today it is well established that this very heterogeneous virus family harbours important human carcinogens, causing not only the vast majority of cervical, but also a substantial proportion of other anogenital and head and neck cancers. In addition, specific types have been linked to certain cutaneous cancers. In females, HPV infections on a global scale account for more than 50% of infection-linked cancers, in males for barely 5%. Vaccines against the high risk HPV types 16 and 18 represent the first preventive vaccines directly developed to protect against a major human cancer (cervical carcinoma). This review will cover some of the historical aspects of papillomavirus research; it tries briefly to analyze the present state of linking HPV to human cancers and will discuss some emerging developments.
Collapse
|
46
|
Betapapillomaviruses: innocent bystanders or causes of skin cancer. J Clin Virol 2008; 43:353-60. [PMID: 18986829 DOI: 10.1016/j.jcv.2008.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/20/2022]
Abstract
Human papillomaviruses (HPV) are found in almost all squamous epithelia where they can cause hyperproliferative disease of mucosa and skin. Mucosal HPV types, such as HPV6 and HPV16, are known to cause anogenital warts and dysplasia or neoplasia, respectively. These HPV types have been studied extensively, and for some of them recently preventive vaccines have become available. Although HPV that populate the skin were the first identified HPV types, knowledge of the pathogenicity of HPV in the cornified epithelia stayed behind. What the majority of cutaneous HPV types do, for instance those belonging to the beta genus (betaPV), is largely unknown. As the number of reports that describe epidemiological associations between markers of betaPV infection and skin cancer gradually increases, the need for basic knowledge about these viruses grows as well. This review aims to picture what is currently known about betaPV with respect to infection, transmission and transformation, in order to envisage their potential role in cutaneous carcinogenesis.
Collapse
|
47
|
Chen ACH, McMillan NAJ, Antonsson A. Human papillomavirus type spectrum in normal skin of individuals with or without a history of frequent sun exposure. J Gen Virol 2008; 89:2891-2897. [DOI: 10.1099/vir.0.2008/003665-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cutaneous human papillomavirus (HPV) has been widely detected in healthy skin. Previous studies have found that UV radiation can activate several HPV types, and a possible role for cutaneous HPV in the development of non-melanoma skin cancer has been suggested. This study investigated the prevalence and type-spectrum of cutaneous HPV in relation to UV radiation by studying forehead skin swab samples from 50 healthy males frequently exposed to the sun and 50 healthy males who were not frequently exposed to the sun. A questionnaire including ethnic background of the participants, history of cancers and a self-assessment of sun-exposure was also conducted and analysed. PCR with the FAP primer pair was carried out to detect HPV DNA in samples. HPV prevalence was higher in individuals who spent more time outdoors and in individuals with a history of skin cancers (P=0.044 and P=0.04, respectively). Furthermore, individuals wearing sunglasses as a means of sun protection had a lower prevalence of HPV (P=0.018). Interestingly, HPV-76 was only detected in the group without frequent sun-exposure (P=0.001). These results suggest that increased UV radiation exposure may be a factor leading to a difference in prevalence of cutaneous HPV types.
Collapse
Affiliation(s)
- Alice Che-Ha Chen
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Nigel A. J. McMillan
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Annika Antonsson
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
48
|
Benavides F, Oberyszyn TM, VanBuskirk AM, Reeve VE, Kusewitt DF. The hairless mouse in skin research. J Dermatol Sci 2008; 53:10-8. [PMID: 18938063 DOI: 10.1016/j.jdermsci.2008.08.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/21/2008] [Accepted: 08/19/2008] [Indexed: 01/07/2023]
Abstract
The hairless (Hr) gene encodes a transcriptional co-repressor highly expressed in the mammalian skin. In the mouse, several null and hypomorphic Hr alleles have been identified resulting in hairlessness in homozygous animals, characterized by alopecia developing after a single cycle of relatively normal hair growth. Mutations in the human ortholog have also been associated with congenital alopecia. Although a variety of hairless strains have been developed, outbred SKH1 mice are the most widely used in dermatologic research. These unpigmented and immunocompetent mice allow for ready manipulation of the skin, application of topical agents, and exposure to UVR, as well as easy visualization of the cutaneous response. Wound healing, acute photobiologic responses, and skin carcinogenesis have been extensively studied in SKH1 mice and are well characterized. In addition, tumors induced in these mice resemble, both at the morphologic and molecular levels, UVR-induced skin malignancies in man. Two limitations of the SKH1 mouse in dermatologic research are the relatively uncharacterized genetic background and its outbred status, which precludes inter-individual transplantation studies.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Carcinogenesis, Science Park Research Division, University of Texas, MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
49
|
Struijk L, van der Meijden E, Kazem S, Ter Schegget J, de Gruijl FR, Steenbergen RDM, Feltkamp MCW. Specific betapapillomaviruses associated with squamous cell carcinoma of the skin inhibit UVB-induced apoptosis of primary human keratinocytes. J Gen Virol 2008; 89:2303-2314. [PMID: 18753241 DOI: 10.1099/vir.0.83317-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have shown an association between infections by specific betapapillomaviruses, such as human papillomavirus (HPV) types 5 and 8, and cutaneous squamous cell carcinoma (SCC). The role of betapapillomaviruses in the development of cutaneous SCC is, however, still enigmatic. The ability to inhibit UVB-induced apoptosis, as demonstrated for HPV5 in vitro, may be important in this respect, as survival of DNA-damaged and mutated cells increases the risk of transformation. The aim of this study was to assess whether inhibition of UVB-induced apoptosis is a general property of betapapillomaviruses and to identify apoptotic factors that are potentially involved in this process. Primary human keratinocytes transduced with E6 and E7 of selected betapapillomaviruses (HPV5, HPV8, HPV15, HPV20, HPV24 and HPV38) were characterized and subjected to UVB irradiation. HPV8- and HPV20-expressing keratinocytes in particular showed fewer signs of apoptosis, as demonstrated by lower levels of active caspase 3, less enzymic caspase activity and less DNA fragmentation. The observed inhibition of UVB-induced apoptosis was mediated by E6 and coincided with reduced steady-state expression of the pro-apoptotic protein Bax. In conclusion, E6 of HPV8 and HPV20 reduces the apoptotic responses upon UVB irradiation when expressed in primary human keratinocytes. Infections with HPV8 and HPV20 may therefore augment the carcinogenic effect of UV radiation and potentially contribute to oncogenic transformation of the skin.
Collapse
Affiliation(s)
- Linda Struijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Siamaque Kazem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Ter Schegget
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
|