1
|
Zyla DS, Della Marca R, Niemeyer G, Zipursky G, Stearns K, Leedale C, Sobolik EB, Callaway HM, Hariharan C, Peng W, Parekh D, Marcink TC, Diaz Avalos R, Horvat B, Mathieu C, Snijder J, Greninger AL, Hastie KM, Niewiesk S, Moscona A, Porotto M, Ollmann Saphire E. A neutralizing antibody prevents postfusion transition of measles virus fusion protein. Science 2024; 384:eadm8693. [PMID: 38935733 DOI: 10.1126/science.adm8693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 06/29/2024]
Abstract
Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use. We present cryo-electron microscopy (cryo-EM) structures of prefusion F alone [2.1-angstrom (Å) resolution], F complexed with a fusion-inhibitory peptide (2.3-Å resolution), F complexed with the neutralizing and protective monoclonal antibody (mAb) 77 (2.6-Å resolution), and an additional structure of postfusion F (2.7-Å resolution). In vitro assays and examination of additional EM classes show that mAb 77 binds prefusion F, arrests F in an intermediate state, and prevents transition to the postfusion conformation. These structures shed light on antibody-mediated neutralization that involves arrest of fusion proteins in an intermediate state.
Collapse
Affiliation(s)
- Dawid S Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roberta Della Marca
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Gele Niemeyer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Luebeck, D-23538 Luebeck, Germany
| | - Gillian Zipursky
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kyle Stearns
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Branka Horvat
- Immunobiology of Viral Infections, International Center for Infectiology Research-CIRI, INSERM U1111, CNRS UMR5308, University Lyon 1, ENS de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie équipe Neuro-Invasion, TROpism and VIRal Encephalitis (NITROVIRE), INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
3
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. RESEARCH SQUARE 2022:rs.3.rs-1700877. [PMID: 35677066 PMCID: PMC9176655 DOI: 10.21203/rs.3.rs-1700877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitors, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, block respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We used a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptides to the respiratory tract and demonstrated the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevented MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional shield which complements vaccination to fight against respiratory infection, presenting a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure, that can be readily translated to human trials.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032 Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | - Francesca T. Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Laboratory of Infection and Virology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032 Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.,Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Experimental Medicine, University of Studies of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
4
|
Schmitz KS, Lange MV, Gommers L, Handrejk K, Porter DP, Alabi CA, Moscona A, Porotto M, de Vries RD, de Swart RL. Repurposing an In Vitro Measles Virus Dissemination Assay for Screening of Antiviral Compounds. Viruses 2022; 14:v14061186. [PMID: 35746658 PMCID: PMC9230603 DOI: 10.3390/v14061186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Measles virus (MV) is a highly contagious respiratory virus responsible for outbreaks associated with significant morbidity and mortality among children and young adults. Although safe and effective measles vaccines are available, the COVID-19 pandemic has resulted in vaccination coverage gaps that may lead to the resurgence of measles when restrictions are lifted. This puts individuals who cannot be vaccinated, such as young infants and immunocompromised individuals, at risk. Therapeutic interventions are complicated by the long incubation time of measles, resulting in a narrow treatment window. At present, the only available WHO-advised option is treatment with intravenous immunoglobulins, although this is not approved as standard of care. Antivirals against measles may contribute to intervention strategies to limit the impact of future outbreaks. Here, we review previously described antivirals and antiviral assays, evaluate the antiviral efficacy of a number of compounds to inhibit MV dissemination in vitro, and discuss potential application in specific target populations. We conclude that broadly reactive antivirals could strengthen existing intervention strategies to limit the impact of measles outbreaks.
Collapse
Affiliation(s)
- Katharina S. Schmitz
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Mona V. Lange
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Kim Handrejk
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | | | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA;
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
- Correspondence:
| |
Collapse
|
5
|
The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23. Int J Mol Sci 2022; 23:ijms23020883. [PMID: 35055066 PMCID: PMC8779559 DOI: 10.3390/ijms23020883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.
Collapse
|
6
|
Antivirals targeting paramyxovirus membrane fusion. Curr Opin Virol 2021; 51:34-47. [PMID: 34592709 DOI: 10.1016/j.coviro.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/29/2023]
Abstract
The Paramyxoviridae family includes enveloped single-stranded negative-sense RNA viruses such as measles, mumps, human parainfluenza, canine distemper, Hendra, and Nipah viruses, which cause a tremendous global health burden. The ability of paramyxoviral glycoproteins to merge viral and host membranes allows entry of the viral genome into host cells, as well as cell-cell fusion, an important contributor to disease progression. Recent molecular and structural advances in our understanding of the paramyxovirus membrane fusion machinery gave rise to various therapeutic approaches aiming at inhibiting viral infection, spread, and cytopathic effects. These therapeutic approaches include peptide mimics, antibodies, and small molecule inhibitors with various levels of success at inhibiting viral entry, increasing the potential of effective antiviral therapeutic development.
Collapse
|
7
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
8
|
Bovier FT, Rybkina K, Biswas S, Harder O, Marcink TC, Niewiesk S, Moscona A, Alabi CA, Porotto M. Inhibition of Measles Viral Fusion Is Enhanced by Targeting Multiple Domains of the Fusion Protein. ACS NANO 2021; 15:12794-12803. [PMID: 34291895 PMCID: PMC9164017 DOI: 10.1021/acsnano.1c02057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.
Collapse
Affiliation(s)
- Francesca T Bovier
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ksenia Rybkina
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Sudipta Biswas
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
9
|
Molecular Features of the Measles Virus Viral Fusion Complex That Favor Infection and Spread in the Brain. mBio 2021; 12:e0079921. [PMID: 34061592 PMCID: PMC8263006 DOI: 10.1128/mbio.00799-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) bearing a single amino acid change in the fusion protein (F)—L454W—was isolated from two patients who died of MeV central nervous system (CNS) infection. This mutation in F confers an advantage over wild-type virus in the CNS, contributing to disease in these patients. Using murine ex vivo organotypic brain cultures and human induced pluripotent stem cell-derived brain organoids, we show that CNS adaptive mutations in F enhance the spread of virus ex vivo. The spread of virus in human brain organoids is blocked by an inhibitory peptide that targets F, confirming that dissemination in the brain tissue is attributable to F. A single mutation in MeV F thus alters the fusion complex to render MeV more neuropathogenic.
Collapse
|
10
|
Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:2026027118. [PMID: 33903248 DOI: 10.1073/pnas.2026027118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.
Collapse
|
11
|
Nilamyani AN, Auliah FN, Moni MA, Shoombuatong W, Hasan MM, Kurata H. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Int J Mol Sci 2021; 22:2704. [PMID: 33800121 PMCID: PMC7962192 DOI: 10.3390/ijms22052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.
Collapse
Affiliation(s)
- Andi Nur Nilamyani
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Firda Nurul Auliah
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| |
Collapse
|
12
|
Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. J Virol 2020; 94:JVI.00644-20. [PMID: 32669342 DOI: 10.1128/jvi.00644-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Medically important paramyxoviruses, such as measles, mumps, parainfluenza, Nipah, and Hendra viruses, infect host cells by directing fusion of the viral and cellular plasma membranes. Upon infection, paramyxoviruses cause a second type of membrane fusion, cell-cell fusion (syncytium formation), which is linked to pathogenicity. Host cell receptor binding causes conformational changes in the attachment glycoprotein (HN, H, or G) that trigger a conformational cascade in the fusion (F) glycoprotein that mediates membrane fusion. F, a class I fusion protein, contains the archetypal heptad repeat regions 1 (HR1) and 2 (HR2). It is well established that binding of HR1 and HR2 is key to fusing viral and cellular membranes. In this study, we uncovered a novel fusion-modulatory role of a third structurally conserved helical region (HR3) in F. Based on its location within the F structure, and structural differences between its prefusion and postfusion conformations, we hypothesized that the HR3 modulates triggering of the F conformational cascade (still requiring G). We used the deadly Nipah virus (NiV) as an important paramyxoviral model to perform alanine scan mutagenesis and a series of multidisciplinary structural/functional analyses that dissect the various states of the membrane fusion cascade. Remarkably, we found that specific residues within the HR3 modulate not only early F-triggering but also late extensive fusion pore expansion steps in the membrane fusion cascade. Our results characterize these novel fusion-modulatory roles of the F HR3, improving our understanding of the membrane fusion process for NiV and likely for the related Henipavirus genus and possibly Paramyxoviridae family members.IMPORTANCE The Paramyxoviridae family includes important human and animal pathogens, such as measles, mumps, and parainfluenza viruses and the deadly henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviruses infect the respiratory tract and the central nervous system (CNS) and can be highly infectious. Most paramyxoviruses have a limited host range. However, the biosafety level 4 NiV and HeV are highly pathogenic and have a wide mammalian host range. Nipah viral infections result in acute respiratory syndrome and severe encephalitis in humans, leading to 40 to 100% mortality rates. The lack of licensed vaccines or therapeutic approaches against NiV and other important paramyxoviruses underscores the need to understand viral entry mechanisms. In this study, we uncovered a novel role of a third helical region (HR3) of the NiV fusion glycoprotein in the membrane fusion process that leads to viral entry. This discovery sets HR3 as a new candidate target for antiviral strategies for NiV and likely for related viruses.
Collapse
|
13
|
Structural characteristics of measles virus entry. Curr Opin Virol 2020; 41:52-58. [PMID: 32413678 DOI: 10.1016/j.coviro.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022]
Abstract
Measles virus, a member of the genus Morbillivirus, is highly contagious and still shows considerable mortality with over 100000 deaths annually, although efficient attenuated vaccines exist. Recent studies of measles virus haemagglutinin (MeV-H) and its receptor, including crystallographic and electron microscopic structural analyses combined with functional assays, have revealed how the MeV-H protein recognizes its cognate receptors, SLAM and Nectin-4, and how the glycan shield ensures effective vaccination. In addition, the crystal structure of the MeV-F protein indicated its similarity to those of other paramyxoviruses. Taking into account these data, several models of viral entry/membrane fusion of measles viruses and related paramyxoviruses have been proposed. Furthermore, anti-MeV-F inhibitors targeted to specific regions to inhibit MeV-F protein activation were reported, with potency for preventing MeV infection. The inhibitors targeted for entry events may potentially be applied to treatment of MeV-derived diseases, although escape mutations and drug profiles should be considered.
Collapse
|
14
|
Plemper RK. Measles Resurgence and Drug Development. Curr Opin Virol 2020; 41:8-17. [PMID: 32247280 DOI: 10.1016/j.coviro.2020.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Measles caused an estimated minimum of one million fatalities annually before vaccination. Outstanding progress towards controlling the virus has been made since the measles vaccine was introduced, but reduction of measles case-fatalities has stalled at around 100,000 annually for the last decade and a 2019 resurgence in several geographical regions threatens some of these past accomplishments. Whereas measles eradication through vaccination is feasible, a potentially open-ended endgame of elimination may loom. Other than doubling-down on existing approaches, is it worthwhile to augment vaccination efforts with antiviral therapeutics to solve the conundrum? This question is hypothetical at present, since no drugs have yet been approved specifically for the treatment of measles, or infection by any other pathogen of the paramyxovirus family. This article will consider obstacles that have hampered anti-measles and anti-paramyxovirus drug development, discuss MeV-specific challenges of clinical testing, and define drug properties suitable to address some of these problems.
Collapse
Affiliation(s)
- Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
15
|
Abstract
Paramyxoviruses, including human parainfluenza virus type 3, are internalized into host cells by fusion between viral and target cell membranes. The receptor binding protein, hemagglutinin-neuraminidase (HN), upon binding to its cell receptor, triggers conformational changes in the fusion protein (F). This action of HN activates F to reach its fusion-competent state. Using small molecules that interact with HN, we can induce the premature activation of F and inactivate the virus. To obtain highly active pretriggering compounds, we carried out a virtual modeling screen for molecules that interact with a sialic acid binding site on HN that we propose to be the site involved in activating F. We use cryo-electron tomography of authentic intact viral particles for the first time to directly assess the mechanism of action of this treatment on the conformation of the viral F protein and present the first direct observation of the induced conformational rearrangement in the viral F protein. The receptor binding protein of parainfluenza virus, hemagglutinin-neuraminidase (HN), is responsible for actively triggering the viral fusion protein (F) to undergo a conformational change leading to insertion into the target cell and fusion of the virus with the target cell membrane. For proper viral entry to occur, this process must occur when HN is engaged with host cell receptors at the cell surface. It is possible to interfere with this process through premature activation of the F protein, distant from the target cell receptor. Conformational changes in the F protein and adoption of the postfusion form of the protein prior to receptor engagement of HN at the host cell membrane inactivate the virus. We previously identified small molecules that interact with HN and induce it to activate F in an untimely fashion, validating a new antiviral strategy. To obtain highly active pretriggering candidate molecules we carried out a virtual modeling screen for molecules that interact with sialic acid binding site II on HN, which we propose to be the site responsible for activating F. To directly assess the mechanism of action of one such highly effective new premature activating compound, PAC-3066, we use cryo-electron tomography on authentic intact viral particles for the first time to examine the effects of PAC-3066 treatment on the conformation of the viral F protein. We present the first direct observation of the conformational rearrangement induced in the viral F protein.
Collapse
|
16
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
17
|
Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. J Virol 2019; 93:JVI.01862-18. [PMID: 30728259 DOI: 10.1128/jvi.01862-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
A clinical isolate of measles virus (MeV) bearing a single amino acid alteration in the viral fusion protein (F; L454W) was previously identified in two patients with lethal sequelae of MeV central nervous system (CNS) infection. The mutation dysregulated the viral fusion machinery so that the mutated F protein mediated cell fusion in the absence of known MeV cellular receptors. While this virus could feasibly have arisen via intrahost evolution of the wild-type (wt) virus, it was recently shown that the same mutation emerged under the selective pressure of small-molecule antiviral treatment. Under these conditions, a potentially neuropathogenic variant emerged outside the CNS. While CNS adaptation of MeV was thought to generate viruses that are less fit for interhost spread, we show that two animal models can be readily infected with CNS-adapted MeV via the respiratory route. Despite bearing a fusion protein that is less stable at 37°C than the wt MeV F, this virus infects and replicates in cotton rat lung tissue more efficiently than the wt virus and is lethal in a suckling mouse model of MeV encephalitis even with a lower inoculum. Thus, either during lethal MeV CNS infection or during antiviral treatment in vitro, neuropathogenic MeV can emerge, can infect new hosts via the respiratory route, and is more pathogenic (at least in these animal models) than wt MeV.IMPORTANCE Measles virus (MeV) infection can be severe in immunocompromised individuals and lead to complications, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE) occur even in the face of an intact immune response. While they are relatively rare complications of MeV infection, MIBE and SSPE are lethal. This work addresses the hypothesis that despite a dysregulated viral fusion complex, central nervous system (CNS)-adapted measles virus can spread outside the CNS within an infected host.
Collapse
|
18
|
Watanabe S, Shirogane Y, Sato Y, Hashiguchi T, Yanagi Y. New Insights into Measles Virus Brain Infections. Trends Microbiol 2019; 27:164-175. [DOI: 10.1016/j.tim.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/15/2022]
|
19
|
Kalbermatter D, Shrestha N, Ader-Ebert N, Herren M, Moll P, Plemper RK, Altmann KH, Langedijk JP, Gall F, Lindenmann U, Riedl R, Fotiadis D, Plattet P. Primary resistance mechanism of the canine distemper virus fusion protein against a small-molecule membrane fusion inhibitor. Virus Res 2018; 259:28-37. [PMID: 30296457 DOI: 10.1016/j.virusres.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Morbilliviruses (e.g. measles virus [MeV] or canine distemper virus [CDV]) employ the attachment (H) and fusion (F) envelope glycoproteins for cell entry. H protein engagement to a cognate receptor eventually leads to F-triggering. Upon activation, F proteins transit from a prefusion to a postfusion conformation; a refolding process that is associated with membrane merging. Small-molecule morbilliviral fusion inhibitors such as the compound 3G (a chemical analog in the AS-48 class) were previously generated and mechanistic studies revealed a stabilizing effect on morbilliviral prefusion F trimers. Here, we aimed at designing 3G-resistant CDV F mutants by introducing single cysteine residues at hydrophobic core positions of the helical stalk region. Covalently-linked F dimers were generated, which highlighted substantial conformational flexibility within the stalk to achieve those irregular F conformations. Our findings demonstrate that "top-stalk" CDV F cysteine mutants (F-V571C and F-L575C) remained functional and gained resistance to 3G. Conversely, although not all "bottom-stalk" F cysteine variants preserved proper bioactivity, those that remained functional exhibited 3G-sensitivity. According to the recently determined prefusion MeV F trimer/AS-48 co-crystal structure, CDV residues F-V571 and F-L575 may directly interact with 3G. A combination of conformation-specific anti-F antibodies and low-resolution electron microscopy structural analyses confirmed that 3G lost its stabilizing effect on "top-stalk" F cysteine mutants thus suggesting a primary resistance mechanism. Overall, our data suggest that the fusion inhibitor 3G stabilizes prefusion CDV F trimers by docking at the top of the stalk domain.
Collapse
Affiliation(s)
- David Kalbermatter
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Neeta Shrestha
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Nadine Ader-Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Michael Herren
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Pascal Moll
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Flavio Gall
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Urs Lindenmann
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Philippe Plattet
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland.
| |
Collapse
|
20
|
Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. Proc Natl Acad Sci U S A 2018; 115:2496-2501. [PMID: 29463726 DOI: 10.1073/pnas.1718957115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.
Collapse
|