1
|
Cortes-Hernández U, Lizardi-Aguilera TM, Noriega-Mejía BJ, González-Macías J, García-Quiroz J, Díaz L, Larrea F, Avila E. Prostaglandin E 2 suppresses KCNH1 gene expression and inhibits the proliferation of CaSki cervical cells through its four prostanoid PTGER subtypes. Gene 2025; 933:148997. [PMID: 39419236 DOI: 10.1016/j.gene.2024.148997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The main risk factor for cervical cancer is the persistent infection of high-risk HPV subtypes, notably HPV16. Another contributing factor is proinflammatory prostaglandin E2 (PGE2), a lipid abundantly found in seminal fluid. PGE2, along with its receptors (PTGER1-4), contributes to cancer development; however, its specific role in the proliferation of cervical cancer models with high HPV16 copy numbers remains unclear. In this study, we investigated the effects of PGE2 on the proliferation of CaSki cells, a cell line with a high HPV16 viral load. Surprisingly, PGE2 inhibited CaSki cell proliferation, while it increased the proliferation of SiHa, HeLa, and C-33 A cervical cancer cells. The effect of PGE2 on CaSki cell proliferation was specific, as estradiol increased cell growth. Furthermore, PGE2 suppressed expression and promoter activity of the cervical tumoral marker KCNH1. To discern the specific role of each receptor in cell proliferation, we generated stable CaSki cell lines overexpressing each receptor alongside control cells with an empty vector. Notably, PGE2 significantly inhibited cell proliferation in all stable transfected CaSki cells, suppressing oncogenic KCNH1 expression and its promoter activity. In conclusion, our findings indicate that PGE2 inhibits the proliferation of CaSki cervical cancer cells with a high HPV16 load, at least in part, by suppressing the expression of the oncogenic KCNH1 gene.
Collapse
Affiliation(s)
- Ulises Cortes-Hernández
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tomas Misael Lizardi-Aguilera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bryan Javier Noriega-Mejía
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jocelyn González-Macías
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
2
|
Salazar-Piña A, Maldonado-Gama M, Gonzalez-Jaimes AM, Cruz-Valdez A, Ortiz-Panozo E, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Serum Antibodies Against the E5 Oncoprotein from Human Papillomavirus Type 16 Are Inversely Associated with the Infection and the Degree of Cervical Lesions. Biomedicines 2024; 12:2699. [PMID: 39767606 PMCID: PMC11673199 DOI: 10.3390/biomedicines12122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The humoral immune response against human papillomavirus (HPV) has been suggested as a source of biomarkers for the early detection of cervical cancer (CC). Therefore, we aimed to characterize the antibody response against HPV16 E5 in the natural history of cervical cancer and to determine its usefulness as a biomarker of HPV-associated cervical lesions. METHODS This study was conducted at the Cuautla General Hospital, Morelos, Mexico, with women (18 to 64 years) who agreed to participate. Samples were obtained from 335 women with cervical lesions and 150 women with negative Papanicolaou tests. HPV genotyping was performed by PCR and pyrosequencing, and anti-E5 antibodies were detected by slot blot. RESULTS The overall anti-E5 antibodies prevalence in the study was 17.9%, with the higher prevalence observed in the no lesion (NL, 49.4%) group, and with a downward trend according to the degree of the cervical lesion, from cervical intraepithelial neoplasia-1 (CIN1, 32.2%) to CIN2 (11.5%) and CIN3/CC (6.9%). The logistic regression model showed negative associations of anti-E5 antibodies with CIN1 (OR = 0.38), CIN2 (OR = 0.42), and CIN3/CC (OR = 0.32) groups, being statistically significant. Contrast analysis showed an inverse relationship between anti-E5 antibodies with HPV DNA and the CIN1 (OR = 0.35), CIN2 (OR = 0.39), and CIN3/CC (OR = 0.31) groups. CONCLUSIONS These results suggest that anti-E5 antibodies could be associated with clearance of infection in women without lesions and with CIN1 lesions since an inverse relationship was observed between the presence of HPV DNA and anti-E5 antibodies. In contrast, with progression from CIN2/CIN3 to CC, the relationship was reversed, as the anti-E5 antibodies disappeared, and the frequency of the viral genome increased.
Collapse
Affiliation(s)
- Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Mexico;
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Ana M. Gonzalez-Jaimes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| | - Aurelio Cruz-Valdez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.C.-V.); (E.O.-P.)
| | - Eduardo Ortiz-Panozo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.C.-V.); (E.O.-P.)
| | | | - Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| |
Collapse
|
3
|
Nascimento KCG, São Marcos BDF, Fontes PHB, Isídio BEDO, Leão SL, da Silva GRP, Lussón DB, dos Santos DL, Leal LRS, Espinoza BCF, de Macêdo LS, de França Neto PL, Silva AJD, Silva Neto JC, Santos VEP, de Freitas AC. HPV Detection in Breast Tumors and Associated Risk Factors in Northeastern Brazil. Cells 2024; 13:1132. [PMID: 38994984 PMCID: PMC11240692 DOI: 10.3390/cells13131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer risk factors include lifestyle, genetic-hormonal influences, and viral infections. Human papillomavirus (HPV), known primarily as the etiological agent of cervical cancer, also appears active in breast carcinogenesis, as evidenced in our study of 56 patients from northeastern Brazil. We assessed the clinical and sociodemographic characteristics, correlating them with various breast cancer tumor types. HPV detection involved amplifying the L1 region, with viral load measured using the E2/E6 ratio and viral activity indicated by E5 oncogene expression. Predominantly, patients over 56 years of age with healthy lifestyles showed a high incidence of invasive ductal carcinoma and triple-negative breast cancer. HPV was detected in 35.7% of cases, mostly HPV16, which is associated with high viral loads (80 copies per cell) and significant E5 expression. These results hint at a possible link between HPV and breast carcinogenesis, necessitating further studies to explore this association and the underlying viral mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco, Recife 50670901, PE, Brazil; (K.C.G.N.); (B.d.F.S.M.); (P.H.B.F.); (B.E.d.O.I.); (S.L.L.); (G.R.P.d.S.); (D.B.L.); (D.L.d.S.); (L.R.S.L.); (B.C.F.E.); (L.S.d.M.); (P.L.d.F.N.); (A.J.D.S.); (J.C.S.N.); (V.E.P.S.)
| |
Collapse
|
4
|
Ozcelikay G, Gamella M, Solís-Fernández G, Barderas R, Pingarrón JM, Campuzano S, Ozkan SA. Electrochemical bioplatform for the determination of the most common and carcinogenic human papillomavirus DNA. J Pharm Biomed Anal 2023; 231:115411. [PMID: 37094410 DOI: 10.1016/j.jpba.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Nucleic acid-based analytical bioplatforms have gained importance as diagnostic tests for genomics and as early detection tools for diseases such as cancer. In this context, we report the development of an amperometric bioplatform for the determination of a specific human papillomavirus type 16 (HPV16) sequence. The bioplatform utilizes an immune-nucleic acid hybrid-sandwich assay. A biotinylated RNA capture probe (RNAbCp), complementary to the selected HPV16 target DNA sequence, was immobilised on the surface of streptavidin coated magnetic microbeads (Strep-MBs). The RNA/DNA heteroduplex resulting from the hybridization of the RNAbCP and the HPV16 target sequence was recognised by a commercial antibody that specifically bound to the heteroduplex (AbDNA-RNA). A horseradish-peroxide labeled secondary antibody (antiIgG-HRP) was used for the detection of AbDNA-RNA. Relying on amperometric detection of the resulting HRP-labeled magnetic bioconjugates captured on screen-printed electrodes (SPCEs) in the presence of H2O2 and hydroquinone (HQ), the biotool achieved a low limit of detection (0.5 pM) for the synthetic HPV16 target DNA. In addition, the developed bioplatform was able to discriminate between HPV16 positive and negative human cancer cells using only 25 ng of amplified DNA in a test time of 45 min.
Collapse
Affiliation(s)
- Göksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria Gamella
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
5
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
6
|
von Witzleben A, Currall E, Wood O, Chudley L, Akinyegun O, Thomas J, Bendjama K, Thomas GJ, Friedmann PS, King EV, Laban S, Ottensmeier CH. Correlation of HPV16 Gene Status and Gene Expression With Antibody Seropositivity and TIL Status in OPSCC. Front Oncol 2021; 10:591063. [PMID: 33575210 PMCID: PMC7871909 DOI: 10.3389/fonc.2020.591063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/02/2020] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Human papillomavirus 16 (HPV16) is the main cause of oropharyngeal squamous cell carcinoma (OPSCC). To date, the links between HPV16 gene expression and adaptive immune responses have not been investigated. We evaluated the correlation of HPV16 DNA, RNA transcripts and features of adaptive immune response by evaluating antibody isotypes against E2, E7 antigens and density of tumor-infiltrating lymphocytes (TIL). MATERIAL AND METHODS FFPE-tissue from 27/77 p16-positive OPSCC patients was available. DNA and RNA were extracted and quantified using qPCR for all HPV16 genes. The TIL status was assessed. Immune responses against E2 and E7 were quantified by ELISA (IgG, IgA, and IgM; 77 serum samples pre-treatment, 36 matched post-treatment). RESULTS Amounts of HPV16 genes were highly correlated at DNA and RNA levels. RNA co-expression of all genes was detected in 37% (7/19). E7 qPCR results were correlated with higher anti-E7 antibody (IgG, IgA) level in the blood. Patients with high anti-E2 IgG antibody (>median) had better overall survival (p=0.0311); anti-E2 and anti-E7 IgA levels had no detectable effect. During the first 6 months after treatment, IgA but not IgG increased significantly, and >6 months both antibody classes declined over time. Patients with immune cell-rich tumors had higher levels of circulating antibodies against HPV antigens. CONCLUSION We describe an HPV16 qPCR assay to quantify genomic and transcriptomic expression and correlate this with serum antibody levels against HPV16 oncoproteins. Understanding DNA/RNA expression, relationship to the antibody response in patients regarding treatment and outcome offers an attractive tool to improve patient care.
Collapse
Affiliation(s)
- Adrian von Witzleben
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, Ulm, Germany
| | - Eve Currall
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Oliver Wood
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lindsey Chudley
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Oluyemisi Akinyegun
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Jaya Thomas
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kaïdre Bendjama
- Department Affaires Médicinales, Research, Project, Transgene SA, Illkirch, France
| | - Gareth J. Thomas
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Peter S. Friedmann
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Emma V. King
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Otorhinolaryngology, Head & Neck Surgery, Poole Hospital, Poole, United Kingdom
| | - Simon Laban
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, Ulm, Germany
| | - Christian H. Ottensmeier
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Liverpool Head and Neck Centre, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Gutierrez-Xicotencatl L, Pedroza-Saavedra A, Chihu-Amparan L, Salazar-Piña A, Maldonado-Gama M, Esquivel-Guadarrama F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol Cancer Res 2020; 19:167-179. [PMID: 33106372 DOI: 10.1158/1541-7786.mcr-20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is recognized as the main etiologic agent associated with cervical cancer. HPVs are epitheliotropic, and the ones that infect the mucous membranes are classified into low-risk (LR) and high-risk (HR) types. LR-HPVs produce benign lesions, whereas HR-HPVs produce lesions that may progress to cancer. HR-HPV types 16 and 18 are the most frequently found in cervical cancer worldwide. E6 and E7 are the major HPV oncogenic proteins, and they have been profusely studied. Moreover, it has been shown that the HPV16 E5 (16E5) oncoprotein generates transformation, although the molecular mechanisms through which it carries out its activity have not been well defined. In contrast to E6 and E7, the E5 open reading frame is lost during the integration of the episomal HPV DNA into the cellular genome. This suggests that E5 acts at the early stages of the transformation process. In this review, we focused on the biochemical characteristics and functions of the HPV E5 oncoprotein, mainly on its association with growth factor receptors and other cellular proteins. Knowledge of the HPV E5 biology is important to understand the role of this oncoprotein in maintaining the viral cycle through the modulation of proliferation, differentiation, and apoptosis, as well as the alteration of other processes, such as survival, adhesion, migration, and invasion during early carcinogenesis. Finally, we summarized recent research that uses the E5 oncoprotein as a therapeutic target, promising a novel approach to the treatment of cervical cancer in its early stages.
Collapse
Affiliation(s)
- Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Lilia Chihu-Amparan
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
8
|
Impact of HPV E5 on viral life cycle via EGFR signaling. Microb Pathog 2020; 139:103923. [DOI: 10.1016/j.micpath.2019.103923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022]
|
9
|
Basto DL, Chaves CBP, Felix SP, Amaro-Filho SM, Vieira VC, Martins LFL, de Carvalho NA, Almeida LM, Moreira MÂM. The papillomavirus E5 gene does not affect EGFR transcription and overall survival in cervical cancer. J Med Virol 2019; 92:1283-1289. [PMID: 31696949 DOI: 10.1002/jmv.25624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The human papillomavirus (HPV) E5 gene encodes a small and highly hydrophobic oncoprotein that affects immune evasion, cell proliferation, loss of apoptotic capacity and angiogenesis in tumors. E5 shows an affinity for biological membranes and was associated with an increase of epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) signaling through the accumulation of EGFR in cellular membranes. Due to the frequent integration of the HPV genome into the host cell genome, E5 is frequently not transcribed in cervical tumors. AIM In this study we looked forward to verifying whether the potential expression of E5 protein in human papillomavirus 16 positive (HPV16+ ) and human papillomavirus 18 positive (HPV18+ ) cervical tumors was associated with levels of EGFR and vascular endothelial growth factor A (VEGFA) transcription and with patients overall survival. RESULTS Association between the presence of E5 transcripts and viral genome disruption was observed for HPV16+ and HPV18+ tumors. Association was not observed between tumors potentially capable of translating E5 and EGFR or VEGFA transcriptional levels. Similarly, the capability of translating E5 and overall survival in patients with HPV16+ squamous cell carcinoma tumors stage ≥ IB2 were not associated. CONCLUSION The likely presence of E5 transcripts was neither associated to a higher activity of the EGFR-VEGFA pathway nor to the overall survival of patients with HPV16+ squamous cell carcinoma in stages ≥ IB2.
Collapse
Affiliation(s)
- Diogo Lisbôa Basto
- Department of Genetics, Post-Graduate Program in Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Genetics Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Cláudia Bessa Pereira Chaves
- Gynecologic Oncology Department and Clinical Research Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | - Valdimara Corrêa Vieira
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | | | | | - Liz Maria Almeida
- Population Research Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Wetherill LF, Wasson CW, Swinscoe G, Kealy D, Foster R, Griffin S, Macdonald A. Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus (HPV) E5. Antiviral Res 2018; 158:113-121. [PMID: 30096339 PMCID: PMC6156294 DOI: 10.1016/j.antiviral.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Despite the availability of prophylactic vaccines the burden of human papillomavirus (HPV) associated malignancy remains high and there is a need to develop additional therapeutic strategies to complement vaccination. We have previously shown that the poorly characterised E5 oncoprotein forms a virus-coded ion channel or viroporin that was sensitive to the amantadine derivative rimantadine. We now demonstrate that alkylated imino sugars, which have antiviral activity against a number of viruses, inhibit E5 channel activity in vitro. Using molecular modelling we predict that imino sugars intercalate between E5 protomers to prevent channel oligomerisation. We explored the ability of these viroporin inhibitors to block E5-mediated activation of mitogenic signalling in keratinocytes. Treatment with either rimantadine or imino sugars prevented ERK-MAPK phosphorylation and reduced cyclin B1 expression in cells expressing E5 from a number of high-risk HPV types. Moreover, viroporin inhibitors also reduced ERK-MAPK activation and cyclin B1 expression in differentiating primary human keratinocytes containing high-risk HPV18. These observations provide evidence of a key role for E5 viroporin function during the HPV life cycle. Viroporin inhibitors could be utilised for stratified treatment of HPV associated tumours prior to virus integration, or as true antiviral therapies to eliminate virus prior to malignant transformation. Imino sugars inhibit the viroporin activity of the E5 oncoprotein. Imino sugars likely interact at E5 protomer interfaces within a channel to prevent oligomerisation. Imino sugars and adamantanes block mitogenic signalling mediated by E5 from a range of high-risk HPV types. Viroporin inhibitors reduce mitogenic signalling in differentiating primary keratinocytes containing high-risk HPV18.
Collapse
Affiliation(s)
- Laura F Wetherill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Gemma Swinscoe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Foster
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Griffin
- School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Development of Novel Single-Chain Antibodies against the Hydrophobic HPV-16 E5 Protein. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5809028. [PMID: 30027096 PMCID: PMC6031085 DOI: 10.1155/2018/5809028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022]
Abstract
The human papilloma virus type 16 infects genital mucosa with high prevalence in the oncogenesis of cervical and oropharyngeal cancers. The E5 protein of this virus is a small hydrophobic protein, whose expression generally decreases as the infection progresses to malignancy. These characteristics point to a role of E5 in the establishment of HPV infection and the initiation into cell transformation. The study of the HPV-16 E5 functions has been hindered because of the lack of antibodies. Detection is very difficult because of its hydrophobic nature, membrane location, and very low levels of expression. Thus, the objective of this study was to select single-chain antibodies against the full size E5 protein, which was coexpressed with maltose-binding protein. We report that the E5 protein was recognized by the antibody and was validated in W12 cells by fluorescent microscopy, including a colocalization with one of its host substrates. The use of this antibody could increase our knowledge about the functions of the oncogenic HPV-16 E5 protein during the earliest stages of keratinocyte infection in human.
Collapse
|
12
|
Wechsler EI, Tugizov S, Herrera R, Da Costa M, Palefsky JM. E5 can be expressed in anal cancer and leads to epidermal growth factor receptor-induced invasion in a human papillomavirus 16-transformed anal epithelial cell line. J Gen Virol 2018; 99:631-644. [PMID: 29624161 DOI: 10.1099/jgv.0.001061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We created the first human papillomavirus (HPV)-16-immortalized anal epithelial cell line, known as AKC2 cells to establish an in vitro model of HPV-16-induced anal carcinogenesis. Consistent with detection of E6, E7 and E5 expression in anal cancer biopsies, AKC2 cells expressed high levels of all three HPV oncogenes. Also, similar to findings in anal cancer biopsies, epidermal growth factor receptor (EGFR) was overexpressed in AKC2 cells. AKC2 cells exhibited a poorly differentiated and invasive phenotype in three-dimensional raft culture and inhibition of EGFR function abrogated AKC2 invasion. Reducing E5 expression using E5-targeted siRNAs in AKC2 cells led to knockdown of E5 expression, but also HPV-16 E2, E6 and E7 expression. AKC2 cells treated with E5-targeted siRNA had reduced levels of total and phosphorylated EGFR, and reduced invasion. Rescue of E6/E7 expression with simultaneous E5 knockdown confirmed that E5 plays a key role in EGFR overexpression and EGFR-induced invasion.
Collapse
Affiliation(s)
- Erin Isaacson Wechsler
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sharof Tugizov
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rossana Herrera
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Maria Da Costa
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Joel M Palefsky
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Human papillomavirus type 16 E5-mediated upregulation of Met in human keratinocytes. Virology 2018; 519:1-11. [PMID: 29609071 DOI: 10.1016/j.virol.2018.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Human papillomaviruses (HPVs) cause benign lesions that can lead to malignancy. How cellular changes induced by viral oncogenes contribute to the progeny virion production is not always clear. Stromally-derived growth factors and their receptors are critical for development of malignancy, but their impact on the pre-malignant HPV life cycle is unknown. We show that HPV16 increases levels of Met, a growth factor receptor critical for tumor cell invasion, motility, and cancer metastasis. The viral oncogene E5 is primarily responsible for Met upregulation, with E6 playing a minor role. Met induction by E5 requires the epidermal growth factor receptor, which is also increased by E5 at the mRNA level. E5-induced Met contributes motility of HPV-containing cells. Finally, Met signaling is necessary for viral gene expression, particularly in the differentiation-dependent phase of the viral life cycle. These studies show a new role for E5 in epithelial-stromal interactions, with implications for cancer development.
Collapse
|
14
|
HPV16 E5 is produced from an HPV16 early mRNA spliced from SD226 to SA3358. Virus Res 2017; 244:128-136. [PMID: 29155138 DOI: 10.1016/j.virusres.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
The HPV16 E5 open reading frame (ORF) is present on the majority of all alternatively spliced HPV16 mRNAs, but it is currently unknown how well it is translated into E5 protein. To identify HPV16 mRNAs that are efficiently translated into E5, we have generated cDNA plasmids expressing individual, alternatively spliced HPV16 mRNAs with the potential to produce E5. By replacing the E5 ORF with sLuc, we could quantitate sLuc and determine how well each cDNA was translated. Our results showed that the upstream E1 and E7 AUGs inhibited translation of the E5 ORF and revealed that only one HPV16 mRNA produced high levels of E5. This was an HPV16 early mRNA spliced from SD226 to SA3358. These results were confirmed in the context of the entire HPV16 genome. Taken together, our results indicate that E5 is expressed early in the HPV16 replication cycle since it is translated efficiently only by one early mRNA.
Collapse
|
15
|
Paolini F, Curzio G, Cordeiro MN, Massa S, Mariani L, Pimpinelli F, de Freitas AC, Franconi R, Venuti A. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum Vaccin Immunother 2016; 13:291-297. [PMID: 27929754 DOI: 10.1080/21645515.2017.1264777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HPV16 persistent infection is a well-known condition that precedes human cancer development. High risk HPV E5 proteins cooperate with E6/E7 oncogenes to promote hyper-proliferation of infected cells leading to possible cancer progression. Thus, presence of E5 viral transcripts could be a key marker of active infection and, in turn, a target of immunotherapy. Purpose of the study is to detect E5 transcripts in clinical samples and to explore the activity of novel anti-HPV16 E5 DNA vaccines. HPV transcripts were detected by PCR with specific primers encompassing the splice-donor sites of E5 transcript. For E5-based immunotherapies, 2 E5-based versions of DNA vaccines carrying whole E5 gene or a synthetic multiepitope gene were improved by fusion to sequence of PVX coat protein. These vaccines were challenged with a new luminescent animal model based on C3-Luc cell line. E5 transcripts were detected in clinical samples of women with HPV positive low-grade SIL, demonstrating the validity of our test. In C3 pre-clinical mouse model, vaccine candidates were able to induce a strong cellular immunity as indicated by ELISPOT assays. In addition, E5-CP vaccines elicited strong anti-tumor effects as showed by decreased tumor growth monitored by animal imaging. The tumor growth inhibition was comparable to those obtained with anti-E7 DNA vaccines. In conclusion, detection of E5 transcripts in clinical samples indicates that E5 is a possible target of immunotherapy. Data from pre-clinical model demonstrate that E5 genetic immunization is feasible, efficacious and could be utilized in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Silvia Massa
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Luciano Mariani
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| | | | | | - Rosella Franconi
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Aldo Venuti
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| |
Collapse
|
16
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
17
|
Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. Virology 2014; 462-463:14-24. [PMID: 25092457 DOI: 10.1016/j.virol.2014.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/02/2014] [Accepted: 05/16/2014] [Indexed: 01/15/2023]
Abstract
Two classes of Human papillomaviruses (HPV) infect the anogenital track: high risk viruses that are associated with risk of cervical cancer and low risk types that drive development of benign lesions, such as condylomas. In the present study, we established quantitative transcriptional maps of the viral genome in clinical lesions associated with high risk HPV16 or low risk HPV6b. Marked qualitative and quantitative changes in the HPV16 transcriptome were associated with progression from low to high grade lesions. Specific transcripts encoding essential regulatory proteins such as E7, E2, E1^E4 and E5 were identified. We also identified intrinsic differences between the HPV6b-associated condyloma transcript map and that of the HPV16-associated low grade CIN specifically regarding promoter usage. Characterization and quantification of HPV transcripts in patient samples thus establish the impact of viral transcriptional regulation on the status of HPV-associated lesions and may therefore help in defining new biologically-relevant prognosis markers.
Collapse
|
18
|
de Freitas AC, Coimbra EC, Leitão MDCG. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:91-103. [PMID: 24388872 DOI: 10.1016/j.bbcan.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide and is responsible for 275,000 deaths each year. Persistent infection with high-risk human papillomavirus (HR-HPV) is an essential factor for the development of cervical cancer. Although the process is not fully understood, molecular mechanisms caused by HPV infection are necessary for its development and reveal a large number of potential biomarkers for diagnosis and prognosis. These molecules are host genes and/or proteins, and cellular microRNAs involved in cell cycle regulation that result from disturbed expression of HR-HPV E5, E6 and E7 oncoproteins. One of the current challenges in medicine is to discover potent biomarkers that can correctly diagnose cervical premalignant lesions and standardize clinical management. Currently, studies are showing that some of these molecules are potential biomarkers of cervical carcinogenesis, and it is possible to carry out a more accurate diagnosis and provide more appropriate follow-up treatment for women with cervical dysplasia. In this paper, we review recent research studies on cell cycle molecules deregulated by HPV infections, as well as their potential use for cervical cancer screening.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
19
|
DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445:99-114. [PMID: 23731971 DOI: 10.1016/j.virol.2013.05.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 protein is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, USA; Department of Therapeutic Radiology, Yale School of Medicine, USA; Department of Molecular Biophysics & Biochemistry, Yale University, USA; Yale Cancer Center, USA.
| | | |
Collapse
|