1
|
Tommasi C, Yogev O, Yee MB, Drousioti A, Jones M, Ring A, Singh M, Dry I, Atkins O, Naeem AS, Kriplani N, Akbar AN, Haas JG, O'Toole EA, Kinchington PR, Breuer J. Upregulation of keratin 15 is required for varicella-zoster virus replication in keratinocytes and is attenuated in the live attenuated vOka vaccine strain. Virol J 2024; 21:253. [PMID: 39385182 PMCID: PMC11465976 DOI: 10.1186/s12985-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype. Here, we extend these findings to show that VZV infection upregulates the expression of keratin 15 (KRT15), a marker expressed by basal epidermal keratinocytes and hair follicles stem cells. We demonstrate that KRT15 is essential for VZV replication in the skin, since downregulation of KRT15 inhibits VZV replication in keratinocytes, while KRT15 exogenous overexpression supports viral replication. Importantly, our data show that VZV upregulation of KRT15 depends on the expression of the VZV immediate early gene ORF62. ORF62 is the only regulatory gene that is mutated in the live attenuated VZV vaccine and contains four of the five fixed mutations present in the VZV Oka vaccine. Our data indicate that the mutated vaccine ORF62 is not capable of upregulating KRT15, suggesting that this may contribute to the vaccine attenuation in skin. Taken together our data present a novel association between VZV and KRT15, which may open a new therapeutic window for a topical targeting of VZV replication in the skin via modulation of KRT15.
Collapse
Affiliation(s)
- Cristina Tommasi
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Ohad Yogev
- Infection and Immunity Department, University College London, London, UK
- Eleven Therapeutics, Cambridge, UK
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
- Krystalbio Inc, Pittsburgh, US
| | - Andriani Drousioti
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Meleri Jones
- Infection and Immunity Department, University College London, London, UK
- UKHSA, Porton Down, UK
| | - Alice Ring
- Infection and Immunity Department, University College London, London, UK
| | | | - Inga Dry
- Infection and Immunity Department, University College London, London, UK
- The Roslin Institute, Edinburgh, UK
| | - Oscar Atkins
- Infection and Immunity Department, University College London, London, UK
- Francis Crick Institute, London, UK
| | - Aishath S Naeem
- Infection and Immunity Department, University College London, London, UK
- Dana-Farber Cancer Institute, Boston, US
| | - Nisha Kriplani
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Arne N Akbar
- Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
| | - Jürgen G Haas
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK.
| |
Collapse
|
2
|
Jiang H, Nace R, Carrasco TF, Zhang L, Whye Peng K, Russell SJ. Oncolytic varicella-zoster virus engineered with ORF8 deletion and armed with drug-controllable interleukin-12. J Immunother Cancer 2024; 12:e008307. [PMID: 38527762 DOI: 10.1136/jitc-2023-008307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The varicella-zoster virus (VZV), belonging to the group of human α-herpesviruses, has yet to be developed as a platform for oncolytic virotherapy, despite indications from clinical case reports suggesting a potential association between VZV infection and cancer remission. METHODS Here, we constructed oncolytic VZV candidates based on the vaccine strain vOka and the laboratory strain Ellen. These newly engineered viruses were subsequently assessed for their oncolytic properties in the human MeWo melanoma xenograft model and the mouse B16-F10-nectin1 melanoma syngeneic model. RESULTS In the MeWo xenograft model, both vOka and Ellen exhibited potent antitumor efficacy. However, it was observed that introducing a hyperfusogenic mutation into glycoprotein B led to a reduction in VZV's effectiveness. Notably, the deletion of ORF8 (encodes viral deoxyuridine triphosphatase) attenuated the replication of VZV both in vitro and in vivo, but it did not compromise VZV's oncolytic potency. We further armed the VZV Ellen-ΔORF8 vector with a tet-off controlled mouse single-chain IL12 (scIL12) gene cassette. This augmented virus was validated for its oncolytic activity and triggered systemic antitumor immune responses in the immunocompetent B16-F10-nectin1 model. CONCLUSIONS These findings highlight the potential of using Ellen-ΔORF8-tet-off-scIL12 as a novel VZV-based oncolytic virotherapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
3
|
Arvin AM. Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions. Microbiol Mol Biol Rev 2023; 87:e0011622. [PMID: 37354037 PMCID: PMC10521358 DOI: 10.1128/mmbr.00116-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
Collapse
Affiliation(s)
- Ann M. Arvin
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Arvin AM. Insights From Studies of the Genetics, Pathogenesis, and Immunogenicity of the Varicella Vaccine. J Infect Dis 2022; 226:S385-S391. [PMID: 36265853 DOI: 10.1093/infdis/jiac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the varicella vaccine was created with approaches established for other live attenuated viral vaccines, novel methods to probe virus-host interactions have been used to explore the genetics, pathogenesis, and immunogenicity of the vaccine compared to wild-type varicella-zoster virus (VZV). As summarized here, a mechanism-based understanding of the safety and efficacy of the varicella vaccine has been achieved through these investigations.
Collapse
Affiliation(s)
- Ann M Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Sadaoka T, Depledge DP, Rajbhandari L, Breuer J, Venkatesan A, Cohen JI. A Variant Allele in Varicella-Zoster Virus Glycoprotein B Selected during Production of the Varicella Vaccine Contributes to Its Attenuation. mBio 2022; 13:e0186422. [PMID: 35916400 PMCID: PMC9426484 DOI: 10.1128/mbio.01864-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Attenuation of the live varicella Oka vaccine (vOka) has been attributed to mutations in the genome acquired during cell culture passage of pOka (parent strain); however, the precise mechanisms of attenuation remain unknown. Comparative sequence analyses of several vaccine batches showed that over 100 single-nucleotide polymorphisms (SNPs) are conserved across all vaccine batches; 6 SNPs are nearly fixed, suggesting that these SNPs are responsible for attenuation. By contrast, prior analysis of chimeric vOka and pOka recombinants indicates that loci other than these six SNPs contribute to attenuation. Here, we report that pOka consists of a heterogenous population of virus sequences with two nearly equally represented bases, guanine (G) or adenine (A), at nucleotide 2096 of the ORF31 coding sequence, which encodes glycoprotein B (gB) resulting in arginine (R) or glutamine (Q), respectively, at amino acid 699 of gB. By contrast, 2096A/699Q is dominant in vOka (>99.98%). gB699Q/gH/gL showed significantly less fusion activity than gB699R/gH/gL in a cell-based fusion assay. Recombinant pOka with gB669Q (rpOka_gB699Q) had a similar growth phenotype as vOka during lytic infection in cell culture including human primary skin cells; however, rpOka_gB699R showed a growth phenotype similar to pOka. rpOka_gB699R entered neurons from axonal terminals more efficiently than rpOka_gB699Q in the presence of cell membrane-derived vesicles containing gB. Strikingly, when a mixture of pOka with both alleles equally represented was used to infect human neurons from axon terminals, pOka with gB699R was dominant for virus entry. These results identify a variant allele in gB that contributes to attenuation of vOka. IMPORTANCE The live-attenuated varicella vaccine has reduced the burden of chickenpox. Despite its development in 1974, the molecular basis for its attenuation is still not well understood. Since the live-attenuated varicella vaccine is the only licensed human herpesvirus vaccine that prevents primary disease, it is important to understand the mechanism for its attenuation. Here we identify that a variant allele in glycoprotein B (gB) selected during generation of the varicella vaccine contributes to its attenuation. This variant is impaired for fusion, virus entry into neurons from nerve terminals, and replication in human skin cells. Identification of a variant allele in gB, one of the essential herpesvirus core genes, that contributes to its attenuation may provide insights that assist in the development of other herpesvirus vaccines.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, USA
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judith Breuer
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
7
|
Viral Vaccines. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8830773 DOI: 10.1016/b978-0-12-818731-9.00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ramachandran PS, Wilson MR, Catho G, Blanchard-Rohner G, Schiess N, Cohrs RJ, Boutolleau D, Burrel S, Yoshikawa T, Wapniarski A, Heusel EH, Carpenter JE, Jackson W, Ford BA, Grose C. Meningitis Caused by the Live Varicella Vaccine Virus: Metagenomic Next Generation Sequencing, Immunology Exome Sequencing and Cytokine Multiplex Profiling. Viruses 2021; 13:2286. [PMID: 34835092 PMCID: PMC8620440 DOI: 10.3390/v13112286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Varicella vaccine meningitis is an uncommon delayed adverse event of vaccination. Varicella vaccine meningitis has been diagnosed in 12 children, of whom 3 were immunocompromised. We now report two additional cases of vaccine meningitis in twice-immunized immunocompetent children and we perform further testing on a prior third case. We used three methods to diagnose or investigate cases of varicella vaccine meningitis, none of which have been used previously on this disease. These include metagenomic next-generation sequencing and cytokine multiplex profiling of cerebrospinal fluid and immunology exome analysis of white blood cells. In one new case, the diagnosis was confirmed by metagenomic next-generation sequencing of cerebrospinal fluid. Both varicella vaccine virus and human herpesvirus 7 DNA were detected. We performed cytokine multiplex profiling on the cerebrospinal fluid of two cases and found ten elevated biomarkers: interferon gamma, interleukins IL-1RA, IL-6, IL-8, IL-10, IL-17F, chemokines CXCL-9, CXCL-10, CCL-2, and G-CSF. In a second new case, we performed immunology exome sequencing on a panel of 356 genes, but no errors were found. After a review of all 14 cases, we concluded that (i) there is no common explanation for this adverse event, but (ii) ingestion of an oral corticosteroid burst 3-4 weeks before onset of vaccine meningitis may be a risk factor in some cases.
Collapse
Affiliation(s)
- Prashanth S. Ramachandran
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Michael R. Wilson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Gaud Catho
- Division of Pediatric Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Geraldine Blanchard-Rohner
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - David Boutolleau
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Sonia Burrel
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Toyoake 470-1192, Japan;
| | - Anne Wapniarski
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Ethan H. Heusel
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - John E. Carpenter
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Wallen Jackson
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Bradley A. Ford
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Charles Grose
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| |
Collapse
|
9
|
Heusel EH, Grose C. Twelve Children with Varicella Vaccine Meningitis: Neuropathogenesis of Reactivated Live Attenuated Varicella Vaccine Virus. Viruses 2020; 12:E1078. [PMID: 32992805 PMCID: PMC7599892 DOI: 10.3390/v12101078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Varicella vaccine is a live attenuated varicella-zoster virus (VZV). Like its parental strain called VZV pOka, the vaccine virus vOka retains some neurotropic properties. To better understand vOka neuropathogenesis, we reassessed 12 published cases of vOka meningitis that occurred in once-immunized and twice-immunized children, all of whom had bouts of herpes zoster preceding the central nervous system infection. Eight of the 12 meningitis cases occurred in children who had received only one immunization. There was no pattern to the time interval between varicella vaccination and the onset of herpes zoster with meningitis. Four of the meningitis cases occurred in children who had received two immunizations. Since all four children were 14 years old when meningitis was diagnosed, there was a strong pattern to the interval between the first vaccination at age 1 year and onset of meningitis, namely, 13 years. Knowledge of pathogenesis requires knowledge of the location of herpes zoster; the majority of dermatomal rashes occurred at sites of primary immunization on the arm or thigh, while herpes zoster ophthalmicus was uncommon. Based on this literature review, currently there is no consensus as to the cause of varicella vaccine meningitis in twice-immunized children.
Collapse
Affiliation(s)
| | - Charles Grose
- Virology Laboratory, Children’s Hospital, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
10
|
Abstract
Prophylactic and therapeutic vaccines for the alphaherpesviruses including varicella zoster virus (VZV) and herpes simplex virus types 1 and 2 have been the focus of enormous preclinical and clinical research. A live viral vaccine for prevention of chickenpox and a subunit therapeutic vaccine to prevent zoster are highly successful. In contrast, progress towards the development of effective prophylactic or therapeutic vaccines against HSV-1 and HSV-2 has met with limited success. This review provides an overview of the successes and failures, the different types of immune responses elicited by various vaccine modalities, and the need to reconsider the preclinical models and immune correlates of protection against HSV.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C. Herald
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Hwang HR, Kim SC, Kang SH, Lee CH. Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture. J Microbiol 2019; 57:1033-1039. [PMID: 31659688 DOI: 10.1007/s12275-019-9429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Primary infections with the varicella-zoster virus (VZV) result in varicella, while latent reactivation leads to herpes zoster. Both varicella and zoster can be prevented by live attenuated vaccines. There have been reports suggesting that both clinical VZV strains and those in vaccine preparations are genetically polymorphic, containing mixtures of both wild-type and vaccine-type sequences at certain vaccine-specific sites. In this study, the genetic polymorphism of the VZV genome was examined by analyzing the frequencies of minor alleles at each nucleotide position. Next-generation sequencing of the clinical VZV strain YC02 passaged in an in vitro cell culture was used to identify genetically polymorphic sites (GPS), where the minor allele frequency (MAF) exceeded 5%. The number of GPS increased by 7.3-fold at high passages (p100) when compared to low passages (p17), although the average MAF remained similar. GPS were found in 6 open reading frames (ORFs) in p17, 35, and 54 ORFs in p60 and p100, respectively. GPS were found more frequently in the dispensable gene group than the essential gene group, but the average MAF was greater in the essential gene group. The most common two major/minor base pairs were A/g and T/c. GPS were found in all three passages at 16 positions, all located in the reiterated (R) region. The population diversity as measured by Shannon entropy increased in p60 and p100. However, the entropy remained unchanged in the R regions.
Collapse
Affiliation(s)
- Hye Rim Hwang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seok Cheon Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se Hwan Kang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
12
|
Breuer J. Molecular Genetic Insights Into Varicella Zoster Virus (VZV), the vOka Vaccine Strain, and the Pathogenesis of Latency and Reactivation. J Infect Dis 2019; 218:S75-S80. [PMID: 30247591 DOI: 10.1093/infdis/jiy279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic tools for molecular typing of varicella zoster virus (VZV) have been used to understand the spread of virus, to differentiate wild-type and vaccine strains, and to understand the natural history of VZV infection in its cognate host. Molecular genetics has identified 7 clades of VZV (1-6 and 9), with 2 more mooted. Differences between the vOka vaccine strain and wild-type VZVs have been used to distinguish the cause of postimmunization events and to provide insight into the natural history of VZV infections. Importantly molecular genetics has shown that reinfection with establishment of latency by the reinfecting strain is common, that dual infections with different viruses can occur, and that reactivation of the superinfecting genotype can both occur. Whole-genome sequencing of the vOka vaccine has been used to show that vesicles form from a single virion, that latency is established within a few days of inoculation, and that all vaccine strains are capable of establishing latency and reactivating. Novel molecular tools have characterized the transcripts expressed during latent infection in vitro.
Collapse
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
13
|
Comparison of the Whole-Genome Sequence of an Oka Varicella Vaccine from China with Other Oka Vaccine Strains Reveals Sites Putatively Critical for Vaccine Efficacy. J Virol 2019; 93:JVI.02281-18. [PMID: 30728261 PMCID: PMC6475776 DOI: 10.1128/jvi.02281-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
Abstract
Varicella-zoster virus (VZV) infection results in varicella mostly in children. Reactivation of the virus causes herpes zoster (HZ), mostly in adults. A live attenuated vaccine (vOka-Biken) was originally derived from the parental strain pOka. Several live attenuated vaccines based on the Oka strain are currently available worldwide. In China, varicella vaccines have been licensed by four manufacturers. In this study, we analyze the whole-genome sequence (WGS) of vOka-BK produced by Changchun BCHT Biotechnology also known as Baike. vOka-BK WGS was compared against the genomic sequences of four other Oka strains: pOka, vOka-Biken, vOka-Varilrix from GlaxoSmithKline, and vOka-Varivax from Merck & Co. A previous study identified 137 single nucleotide polymorphisms (SNPs) shared by all vOkas. The current analysis used these data as a reference to compare with vOka-BK WGS and focused on 54 SNPs located in the unique regions of the genome. Twenty-eight nonsynonymous substitutions were identified, ORF62 and ORF55 featuring the most amino acid changes with 9 and 3, respectively. Among the 54 SNPs, 10 had a different mutation profile in vOka-BK compared to the other three vaccines. A comparison with the clade 3 strain Ellen, known to be attenuated, identified three shared amino acid changes: *130R in ORF0 and R958G and S628G in ORF62. This analysis provides the first comparison of a Chinese varicella vaccine to the other vaccines available worldwide and identifies sites potentially critical for VZV vaccine efficacy.IMPORTANCE Varicella, also known as chickenpox, is a highly contagious disease, caused by varicella-zoster virus (VZV). Varicella is a common childhood disease that can be prevented by a live attenuated vaccine. The first available vaccine was derived from the parental Oka strain in Japan in 1974. Several live attenuated vaccines based on the Oka strain are currently available worldwide. Among the four vaccines produced in China, the vaccine manufactured by Changchun BCHT Biotechnology, also known as Baike, has been reported to be very efficacious. Comparative genomic analysis of the Baike vaccine with other Oka vaccine strains identified sites that might be involved in vaccine efficacy, as well as important for the biology of the virus.
Collapse
|
14
|
Moodley A, Swanson J, Grose C, Bonthius DJ. Severe Herpes Zoster Following Varicella Vaccination in Immunocompetent Young Children. J Child Neurol 2019; 34:184-188. [PMID: 30628536 PMCID: PMC6376897 DOI: 10.1177/0883073818821498] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 01/02/2023]
Abstract
Varicella vaccination is now virtually universal in North America, as well as in some European and Asian countries. Since varicella vaccine is a live attenuated virus, the virus replicates in the skin after administration and can travel via sensory nerves or viremia to become latent in the dorsal root ganglia. In some immunized children, virus reactivates within a few months to a few years to cause the dermatomal exanthem known as herpes zoster (shingles). Herpes zoster caused by vaccine virus often reactivates within the same dermatome as the site of the original varicella vaccine injection. We present evidence that occasional cases of herpes zoster following varicella vaccination in immunocompetent children can be as severe as herpes zoster following wild-type varicella. Analysis of the virus in one case disclosed that the vaccine virus causing herpes zoster was a wild-type variant with a mutation in ORF0. With regard to dermatomal localization of the viral eruption, we predict that herpes zoster of the lumbar dermatomes in children is likely to be caused by vaccine virus, because herpes zoster in those dermatomes is rare in children after wild-type varicella. One of the children with herpes zoster subsequently developed asthma, a known risk factor for herpes zoster, but none of the children had an autoimmune disease. Although postherpetic neuralgia is exceedingly rare, children who develop herpes zoster following varicella vaccination are at risk (albeit low) of developing meningoencephalitis and should be carefully observed for a few weeks.
Collapse
Affiliation(s)
- Amaran Moodley
- Division of Infectious Diseases, Blank Children’s Hospital, Des Moines, IA, USA
| | - Jack Swanson
- Department of Pediatrics, McFarland Clinic, Ames, IA, USA
| | - Charles Grose
- Division of Infectious Diseases/Virology, Children’s Hospital, University of Iowa, Iowa City, IA, USA
| | - Daniel J. Bonthius
- Division of Child Neurology, Children’s Hospital, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-Zoster Virus Latency. Viruses 2018; 10:v10070349. [PMID: 29958408 PMCID: PMC6070824 DOI: 10.3390/v10070349] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Abstract
Nedd4 is a family of ubiquitin E3 ligases that regulate numerous cellular processes. In this report, we showed that alpha- and beta-herpesviruses have membrane proteins that regulate the function of the Nedd4 family members. Although the homology search score was quite low, UL56 of herpes simplex virus type 1 and 2, ORF0 of varicella-zoster virus, UL42 of human cytomegalovirus, and U24 of human herpesvirus 6A, 6B, and 7 all possess at least one PPxY (PY) motif in their cytoplasmic domain, and are able to bind with Itch, a member of the Nedd4 family. These viral proteins altered the localization of Itch and decreased Itch expression in co-expressing cells. In addition, these viral proteins reduced the production of retrovirus vectors through the regulation of the Nedd4 family of proteins. U24, but not the other proteins, effectively reduced CD3ε expression on the T cell surface. These viral molecules are thought to contribute to the specific function of each virus through the regulation of Nedd4 family activity.
Collapse
|
17
|
Sadaoka T, Mori Y. Vaccine Development for Varicella-Zoster Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:123-142. [PMID: 29896666 DOI: 10.1007/978-981-10-7230-7_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Varicella-zoster virus (VZV) is the first and only human herpesvirus for which a licensed live attenuated vaccine, vOka, has been developed. vOka has highly safe and effective profiles; however, worldwide herd immunity against VZV has not yet been established and it is far from eradication. Despite the successful reduction in the burden of VZV-related illness by the introduction of the vaccine, some concerns about vOka critically prevent worldwide acceptance and establishment of herd immunity, and difficulties in addressing these criticisms often relate to its ill-defined mechanism of attenuation. Advances in scientific technologies have been applied in the VZV research field and have contributed toward uncovering the mechanism of vOka attenuation as well as VZV biology at the molecular level. A subunit vaccine targeting single VZV glycoprotein, rationally designed based on the virological and immunological research, has great potential to improve the strategy for eradication of VZV infection in combination with vOka.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Kim SC, Won YH, Park JS, Jeon JS, Ahn JH, Song MJ, Shin OS, Lee CH. Vaccine-type mutations identified in Varicella zoster virus passaged in cell culture. Virus Res 2017; 245:62-68. [PMID: 29242077 DOI: 10.1016/j.virusres.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Varicella-zoster virus (VZV) is a causative agent for chickenpox and shingles. Comparative genomic sequence analysis of clinical and vaccine strains suggested potential sites responsible for attenuation. In this study, low and high passages of two VZV clinical strains cultured in human fibroblast cells were compared for genomic DNA sequences and growth characteristics. Mutations were detected at 187 and 162 sites in the strain YC01 and YC02, respectively. More than 86% of mutations were found in open reading frames, and ORF62 exhibited highest frequency of mutations. T to C and A to G transitions accounted for more 90% of all possible substitutions. Forty mutations were common to two strains, including 27 in ORF62. Mutations found in attenuated vaccine strains were also detected at 7 positions. Both high and low passage strains were infectious and grew similarly in human fibroblast cells. In guinea pig cells, however, high passage strain remained infectious while low passage strain lost infectivity. This study may provide new insight into the attenuating mutations associated with in vitro passaging of VZV.
Collapse
Affiliation(s)
- Seok Cheon Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Youn Hee Won
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Ji Seon Park
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Jeong Seon Jeon
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Jin Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Moon Jung Song
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea.
| |
Collapse
|
19
|
Warren-Gash C, Forbes H, Breuer J. Varicella and herpes zoster vaccine development: lessons learned. Expert Rev Vaccines 2017; 16:1191-1201. [PMID: 29047317 PMCID: PMC5942150 DOI: 10.1080/14760584.2017.1394843] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Before vaccination, varicella zoster virus (VZV), which is endemic worldwide, led to almost universal infection. This neurotropic virus persists lifelong by establishing latency in sensory ganglia, where its reactivation is controlled by VZV-specific T-cell immunity. Lifetime risk of VZV reactivation (zoster) is around 30%. Vaccine development was galvanised by the economic and societal burden of VZV, including debilitating zoster complications that largely affect older individuals. Areas covered: We describe the story of development, licensing and implementation of live attenuated vaccines against varicella and zoster. We consider the complex backdrop of VZV virology, pathogenesis and immune responses in the absence of suitable animal models and examine the changing epidemiology of VZV disease. We review the vaccines' efficacy, safety, effectiveness and coverage using evidence from trials, observational studies from large routine health datasets and clinical post-marketing surveillance studies and outline newer developments in subunit and inactivated vaccines. Expert commentary: Safe and effective, varicella and zoster vaccines have already made major inroads into reducing the burden of VZV disease globally. As these live vaccines have the potential to reactivate and cause clinical disease, developing alternatives that do not establish latency is an attractive prospect but will require better understanding of latency mechanisms.
Collapse
Affiliation(s)
- Charlotte Warren-Gash
- Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Harriet Forbes
- Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
20
|
Characterization and phylogenetic analysis of Varicella-zoster virus strains isolated from Korean patients. J Microbiol 2017; 55:665-672. [PMID: 28752294 DOI: 10.1007/s12275-017-7171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
Varicella-zoster virus (VZV) is a causative agent of chickenpox in primary infection and shingles after its reactivation from latency. Complete or almost-complete genomic DNA sequences for various VZV strains have been reported. Recently, clinical VZV strains were isolated from Korean patients whose genome was sequenced using high-throughput sequencing technology. In this study, we analyzed single nucleotide polymorphism (SNP) of VZV strains to genetically characterize Korean clinical isolates. Phylogenetic analyses revealed that three Korean strains, YC01, YC02, and YC03, were linked to clade 2. Comprehensive SNP analysis identified 86 sites specific for the 5 VZV clades. VZV strains isolated from Korea did not form a phylogenetic cluster. Rather, YC02 and YC03 clustered strongly with Chinese strain 84-7 within clade 2, more specifically cluster 2a. Signature sequences for the cluster 2a were identified and found to play an important role in the separation of cluster 2a strains from other clade 2 strains, as shown in substitution studies. Further genetic analysis with additional strains isolated from Japan, China, and other Asian countries would provide a novel insight into the significance of two distinct subclades within clade 2.
Collapse
|
21
|
Hosogai M, Nakatani Y, Mimura K, Kishi S, Akiyama H. Genetic analysis of varicella-zoster virus in the aqueous humor in uveitis with severe hyphema. BMC Infect Dis 2017; 17:427. [PMID: 28619012 PMCID: PMC5472993 DOI: 10.1186/s12879-017-2518-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genetic variations have been identified in the genome of varicella-zoster virus (VZV) strains using vesicle fluid, varicella scabs and throat swab samples. We report a rare case of VZV-associated uveitis with severe hyphema, which was immediately diagnosed by polymerase chain reaction (PCR) using the aqueous humor, in which we were able to analyze the VZV genotype for the first time. CASE PRESENTATION A 16-year-old Japanese boy was referred to our hospital with a 20-day history of unilateral anterior uveitis and 11-day history of hyphema. At presentation, details of the iris, the iridocorneal angle, and the fundus were not visible due to the severe hyphema. Serum anti-VZV IgG and anti-VZV IgM were elevated, and 1.61 × 109 copies/mL of VZV-DNA were detected by real-time PCR using the aqueous humor. As there were no eruptions on his face or body, we diagnosed zoster sine herpete and started intravenous administration of prednisolone and acyclovir. The hyphema completely disappeared 2 weeks after presentation, while sectorial iris atrophy and mild periphlebitis of the fundus became gradually apparent. Anterior inflammation and periphlebitis gradually improved and VZV-DNA in the aqueous humor was reduced to 1.02 × 106 copies/mL at 4 weeks after presentation. Examination by slit lamp microscope revealed no inflammation after 5 months, and VZV-DNA could no longer be detected in the aqueous humor. Serum anti-VZV IgG and anti-VZV IgM also showed a gradual decrease along with improvement in ocular inflammation. The genetic analysis of multiple open reading frames and the R5 variable repeat region in the VZV genes, using DNA extracted from the aqueous humor at presentation, showed that the isolate was a wild-type clade 2 VZV strain (prevalent in Japan and surrounding countries) with R5A allele and one SNP unique to clade 1 (both are major types in Europe and North America). CONCLUSIONS VZV-associated uveitis may develop hyphema that obscures ocular inflammation, thus PCR analysis using the aqueous humor is the key investigation necessary for the diagnosis. The measurement of VZV-DNA copies by real-time PCR would be useful for evaluation of therapeutic effects. We could amplify and analyze VZV genotype using the aqueous humor including a very large number of VZV-DNA copies (1.61 × 109 copies/mL).
Collapse
Affiliation(s)
- Mayumi Hosogai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Yoko Nakatani
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kensuke Mimura
- Department of Ophthalmology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shoji Kishi
- Department of Ophthalmology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hideo Akiyama
- Department of Ophthalmology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
22
|
Maksyutov RA, Gavrilova EV, Shchelkunov SN. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J Virol Methods 2016; 236:215-220. [PMID: 27477914 PMCID: PMC9629046 DOI: 10.1016/j.jviromet.2016.07.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022]
Abstract
A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species.
Collapse
|
23
|
Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms. J Virol 2016; 90:8698-704. [PMID: 27440875 PMCID: PMC5021409 DOI: 10.1128/jvi.00998-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable. IMPORTANCE The continued success of vaccinations to prevent chickenpox and shingles, combined with the extremely low incidence of adverse reactions, indicates the quality of these vaccines. The vaccine itself is comprised of a heterogeneous live attenuated virus population and thus requires deep-sequencing technologies to explore the differences and similarities in the virus populations between different preparations and batches of the vaccines. Our data demonstrate minimal variation between batches, an important safety feature, and provide new insights into the extent of the mutations present in this attenuated virus.
Collapse
|
24
|
Jeon JS, Won YH, Kim IK, Ahn JH, Shin OS, Kim JH, Lee CH. Analysis of single nucleotide polymorphism among Varicella-Zoster Virus and identification of vaccine-specific sites. Virology 2016; 496:277-286. [PMID: 27376245 DOI: 10.1016/j.virol.2016.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/11/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Abstract
Varicella-zoster virus (VZV) is a causative agent for chickenpox and zoster. Live attenuated vaccines have been developed based on Oka and MAV/06 strains. In order to understand the molecular mechanisms of attenuation, complete genome sequences of vaccine and wild-type strains were compared and single nucleotide polymorphism (SNP) was analyzed. ORF22 and ORF62 contained the highest number of SNPs. The detailed analysis of the SNPs suggested 24 potential vaccine-specific sites. All the mutational events found in vaccine-specific sites were transitional, and most of them were substitution of AT to GC pair. Interestingly, 18 of the vaccine-specific sites of the vaccine strains appeared to be genetically heterogeneous. The probability of a single genome of vaccine strain to contain all 24 vaccine-type sequences was calculated to be less than 4%. The average codon adaptation index (CAI) value of the vaccine strains was significantly lower than the CAI value of the clinical strains.
Collapse
Affiliation(s)
- Jeong Seon Jeon
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Youn Hee Won
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - In Kyo Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Jin Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Jung Hwan Kim
- Mogam Biotechnology Research Institute, Yongin, South Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea.
| |
Collapse
|
25
|
Jing L, Laing KJ, Dong L, Russell RM, Barlow RS, Haas JG, Ramchandani MS, Johnston C, Buus S, Redwood AJ, White KD, Mallal SA, Phillips EJ, Posavad CM, Wald A, Koelle DM. Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2205-2218. [PMID: 26810224 DOI: 10.4049/jimmunol.1502366] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, USA
| | | | - Russell S Barlow
- Department of Global Health, University of Washington, Seattle, USA
| | - Juergen G Haas
- Max von Pettenkofer-Institute, Munich, Germany.,Division of Pathway Medicine, University of Edinburgh, United Kingdom
| | | | | | - Soren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Katie D White
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Christine M Posavad
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, USA.,Department of Epidemiology, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, USA.,Department of Global Health, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA.,Benaroya Research Institute, Seattle, USA
| |
Collapse
|
26
|
Abstract
Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%). K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs). Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.
Collapse
|
27
|
Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, Grose C, Hambleton S, Kennedy PGE, Oxman MN, Seward JF, Yamanishi K. Varicella zoster virus infection. Nat Rev Dis Primers 2015; 1:15016. [PMID: 27188665 PMCID: PMC5381807 DOI: 10.1038/nrdp.2015.16] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death - a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14xVI1.
Collapse
Affiliation(s)
- Anne A Gershon
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | - Judith Breuer
- Department of Infection and Immunity, University College London, UK
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Massachusetts, USA
| | - Randall J Cohrs
- Departments of Neurology and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Don Gilden
- Departments of Neurology and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles Grose
- Division of Infectious Diseases/Virology, Children's Hospital, University of Iowa, Iowa City, Iowa, USA
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Peter G E Kennedy
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow University, Glasgow, Scotland, UK
| | - Michael N Oxman
- Infectious Diseases Section, Medicine Service, Veterans Affairs San Diego Healthcare System, Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, USA
| | - Jane F Seward
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Koichi Yamanishi
- Research Foundation for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Quinlivan M, Breuer J. Clinical and molecular aspects of the live attenuated Oka varicella vaccine. Rev Med Virol 2014; 24:254-73. [PMID: 24687808 DOI: 10.1002/rmv.1789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/24/2022]
Abstract
VZV is a ubiquitous member of the Herpesviridae family that causes varicella (chicken pox) and herpes zoster (shingles). Both manifestations can cause great morbidity and mortality and are therefore of significant economic burden. The introduction of varicella vaccination as part of childhood immunization programs has resulted in a remarkable decline in varicella incidence, and associated hospitalizations and deaths, particularly in the USA. The vaccine preparation, vOka, is a live attenuated virus produced by serial passage of a wild-type clinical isolate termed pOka in human and guinea pig cell lines. Although vOka is clinically attenuated, it can cause mild varicella, establish latency, and reactivate to cause herpes zoster. Sequence analysis has shown that vOka differs from pOka by at least 42 loci; however, not all genomes possess the novel vOka change at all positions, creating a heterogeneous population of genetically distinct haplotypes. This, together with the extreme cell-associated nature of VZV replication in cell culture and the lack of an animal model, in which the complete VZV life cycle can be replicated, has limited studies into the molecular basis for vOka attenuation. Comparative studies of vOka with pOka replication in T cells, dorsal root ganglia, and skin indicate that attenuation likely involves multiple mutations within ORF 62 and several other genes. This article presents an overview of the clinical aspects of the vaccine and current progress on understanding the molecular mechanisms that account for the clinical phenotype of reduced virulence.
Collapse
Affiliation(s)
- Mark Quinlivan
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
29
|
Won YH, Kim JI, Kim YY, Lee CH. Characterization of the Repeat Sequences of Varicella-Zoster Virus. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.4.326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Youn Hee Won
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| | - Jong Ik Kim
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| | - Yu Young Kim
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
30
|
Depledge DP, Kundu S, Jensen NJ, Gray ER, Jones M, Steinberg S, Gershon A, Kinchington PR, Schmid DS, Balloux F, Nichols RA, Breuer J. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol Biol Evol 2013; 31:397-409. [PMID: 24162921 PMCID: PMC3907055 DOI: 10.1093/molbev/mst210] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immunization with the vOka vaccine prevents varicella (chickenpox) in children and susceptible adults. The vOka vaccine strain comprises a mixture of genotypes and, despite attenuation, causes rashes in small numbers of recipients. Like wild-type virus, the vaccine establishes latency in neuronal tissue and can later reactivate to cause Herpes zoster (shingles). Using hybridization-based methodologies, we have purified and sequenced vOka directly from skin lesions. We show that alleles present in the vaccine can be recovered from the lesions and demonstrate the presence of a severe bottleneck between inoculation and lesion formation. Genotypes in any one lesion appear to be descended from one to three vaccine-genotypes with a low frequency of novel mutations. No single vOka haplotype and no novel mutations are consistently present in rashes, indicating that neither new mutations nor recombination with wild type are critical to the evolution of vOka rashes. Instead, alleles arising from attenuation (i.e., not derived from free-living virus) are present at lower frequencies in rash genotypes. We identify 11 loci at which the ancestral allele is selected for in vOka rash formation and show genotypes in rashes that have reactivated from latency cannot be distinguished from rashes occurring immediately after inoculation. We conclude that the vOka vaccine, although heterogeneous, has not evolved to form rashes through positive selection in the mode of a quasispecies, but rather alleles that were essentially neutral during the vaccine production have been selected against in the human subjects, allowing us to identify key loci for rash formation.
Collapse
Affiliation(s)
- Daniel P Depledge
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ihira M, Higashimoto Y, Kawamura Y, Sugata K, Ohashi M, Asano Y, Yoshikawa T. Cycling probe technology to quantify and discriminate between wild-type varicella-zoster virus and Oka vaccine strains. J Virol Methods 2013; 193:308-13. [PMID: 23820238 DOI: 10.1016/j.jviromet.2013.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 01/29/2023]
Abstract
Rapid differentiation between wild-type varicella zoster virus (VZV) and Oka-vaccine (vOka) strains is important for monitoring side reactions of varicella vaccination. To develop a high-throughput molecular diagnostic method for the differentiation of wild-type VZV and vOka strains based on cycling probe technology. The primers were designed to amplify common sequences spanning a single nucleotide polymorphism (SNP) in gene 62 of VZV. DNA-RNA chimeric probes (cycling probes) were designed to detect the SNP at nucleotide 105705. The cycling probe real-time PCR assays for VZV wild-type and vOka strains specifically amplified plasmids containing target sequences that ranged between 10 and 1×10(6) copies per reaction. The inter- and intra-assay coefficients of variation were less than 5%. After initial validation studies, the clinical reliability of this method was evaluated using 38 swab samples that were collected from patients suspected of being zoster. Compared to the loop mediated isothermal amplification method, which is defined as the gold standard, cycling probe real-time PCR was highly sensitive and specific. The cycling probe real-time PCR technology is a reliable tool for differentiating between wild-type VZV and vOka strains in clinical samples.
Collapse
Affiliation(s)
- Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Aberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neurons. J Virol 2013; 87:9643-8. [PMID: 23804641 DOI: 10.1128/jvi.01506-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Highly pure (>95%) terminally differentiated neurons derived from pluripotent stem cells appear healthy at 2 weeks after infection with varicella-zoster virus (VZV), and the cell culture medium contains no infectious virus. Analysis of the healthy-appearing neurons revealed VZV DNA, transcripts, and proteins corresponding to the VZV immediate early, early, and late kinetic phases of replication. Herein, we further characterized virus in these neuronal cells, focusing on (i) transcription and expression of late VZV glycoprotein C (gC) open reading frame 14 (ORF14) and (ii) ultrastructural features of virus particles in neurons. The analysis showed that gC was not expressed in most infected neurons and gC expression was markedly reduced in a minority of VZV-infected neurons. In contrast, expression of the early-late VZV gE glycoprotein (ORF68) was abundant. Transcript analysis also showed decreased gC transcription compared with gE. Examination of viral structure by high-resolution transmission electron microscopy revealed fewer viral particles than typically observed in cells productively infected with VZV. Furthermore, viral particles were more aberrant, in that most capsids in the nuclei lacked a dense core and most enveloped particles in the cytoplasm were light particles (envelopes without capsids). Together, these results suggest a considerable deficiency in late-phase replication and viral assembly during VZV infection of neurons in culture.
Collapse
|
33
|
Sloutskin A, Kinchington PR, Goldstein RS. Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology 2013; 443:285-93. [PMID: 23769240 DOI: 10.1016/j.virol.2013.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 12/19/2022]
Abstract
Varicella Zoster virus (VZV) productively infects humans causing varicella upon primary infection and herpes zoster upon reactivation from latency in neurons. In vitro studies using cell-associated VZV infection have demonstrated productive VZV-infection, while a few recent studies of human neurons derived from stem cells incubated with cell-free, vaccine-derived VZV did not result in generation of infectious virus. In the present study, 90%-pure human embryonic stem cell-derived neurons were incubated with recombinant cell-free pOka-derived virus made with an improved method or VZV vaccine. We found that cell-free pOka and vOka at higher multiplicities of infection elicited productive infection in neurons followed by spread of infection, cytopathic effect and release of infectious virus into the medium. These results further validate the use of this unlimited source of human neurons for studying unexplored aspects of VZV interaction with neurons such as entry, latency and reactivation.
Collapse
Affiliation(s)
- Anna Sloutskin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | | | | |
Collapse
|
34
|
Changes in patterns of hospitalized children with varicella and of associated varicella genotypes after introduction of varicella vaccine in Australia. Pediatr Infect Dis J 2013; 32:530-7. [PMID: 23249914 DOI: 10.1097/inf.0b013e31827e92b7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Varicella in children, although usually mild, can cause hospitalization and rarely death. This study examined patterns of hospitalized children with varicella, and associated varicella genotypes, in 4 tertiary children's hospitals throughout Australia before and after varicella vaccine was introduced. METHODS We obtained coded data on discharge diagnoses from each hospital before (1999 to 2001) and after (2007 to 2010) varicella vaccine introduction in 2005, adding active surveillance to capture clinical features, complications and immunization history in the latter period. Varicella vesicles were swabbed, and genotyping of varicella strains was performed by real-time polymerase chain reaction amplification. RESULTS Overall, a 68% reduction in coded hospitalizations (varicella, 73.2% [P < 0.001]; zoster, 40% [P = 0.002]) occurred post-vaccine introduction. Of children with detailed clinical data (97 varicella and 18 zoster cases), 46 (40%) were immunocompromised. Only 6 of 32 (19%) age-eligible immunocompetent children were immunized. Complications, most commonly secondary skin infections (n = 25) and neurologic conditions (n = 14), occurred in 44% of children. There were no deaths; but 3 immunocompetent unimmunized children had severe multiple complications requiring intensive care. All strains genotyped were "wild-type" varicella, with Clade 1 (European origin) predominating. CONCLUSIONS After the introduction of varicella vaccine, coverage of greater than 80% at 2 years of age was achieved, with varicella hospitalizations reduced by almost 70%. Of hospitalized children age-eligible for varicella vaccine, 80% were unimmunized, including all cases requiring intensive care.
Collapse
|
35
|
Chow VT, Tipples GA, Grose C. Bioinformatics of varicella-zoster virus: single nucleotide polymorphisms define clades and attenuated vaccine genotypes. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23183312 DOI: 10.1016/j.meegid.2012.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Varicella zoster virus (VZV) is one of the human herpesviruses. To date, over 40 complete VZV genomes have been sequenced and analyzed. The VZV genome contains around 125,000 base pairs including 70 open reading frames (ORFs). Enumeration of single nucleotide polymorphisms (SNPs) has determined that the following ORFs are the most variable (in descending order): 62, 22, 29, 28, 37, 21, 54, 31, 1 and 55. ORF 62 is the major immediate early regulatory VZV gene. Further SNP analysis across the entire genome has led to the observation that VZV strains can be broadly grouped into clades within a phylogenetic tree. VZV strains collected in Singapore provided important sequence data for construction of the phylogenetic tree. Currently five VZV clades are recognized; they have been designated clades 1 through 5. Clades 1 and 3 include European/North American strains; clade 2 includes Asian strains, especially from Japan; and clade 5 includes strains from India. Clade 4 includes some strains from Europe, but its geographic origins need further documentation. Within clade 1, five variant viruses have been isolated with a missense mutation in the gE (ORF 68) glycoprotein; these strains have an altered increased cell spread phenotype. Bioinformatics analyses of the attenuated vaccine strains have also been performed, with a subsequent discovery of a stop-codon SNP in ORFO as a likely attenuation determinant. Taken together, these VZV bioinformatics analyses have provided enormous insights into VZV phylogenetics as well as VZV SNPs associated with attenuation.
Collapse
Affiliation(s)
- Vincent T Chow
- Department of Microbiology, National University of Singapore, Singapore
| | | | | |
Collapse
|