1
|
Natsrita P, Charoenkwan P, Shoombuatong W, Mahalapbutr P, Faksri K, Chareonsudjai S, Rungrotmongkol T, Pipattanaboon C. Machine-learning-assisted high-throughput identification of potent and stable neutralizing antibodies against all four dengue virus serotypes. Sci Rep 2024; 14:17165. [PMID: 39060292 PMCID: PMC11282219 DOI: 10.1038/s41598-024-67487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Several computational methods have been developed to identify neutralizing antibodies (NAbs) covering four dengue virus serotypes (DENV-1 to DENV-4); however, limitations of the dataset and the resulting performance remain. Here, we developed a new computational framework to predict potent and stable NAbs against DENV-1 to DENV-4 using only antibody (CDR-H3) and epitope sequences as input. Specifically, our proposed computational framework employed sequence-based ML and molecular dynamic simulation (MD) methods to achieve more accurate identification. First, we built a novel dataset (n = 1108) by compiling the interactions of CDR-H3 and epitope sequences with the half maximum inhibitory concentration (IC50) values, which represent neutralizing activities. Second, we achieved an accurately predictive ML model that showed high AUC values of 0.879 and 0.885 by tenfold cross-validation and independent tests, respectively. Finally, our computational framework could be applied to filter approximately 2.5 million unseen antibodies into two final candidates that showed strong and stable binding to all four serotypes. In addition, the most potent and stable candidate (1B3B9_V21) was evaluated for its development potential as a therapeutic agent by molecular docking and MD simulations. This study provides an antibody computational approach to facilitate the high-throughput identification of NAbs and accelerate the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Piyatida Natsrita
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellent in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Basheer A, Jamal SB, Alzahrani B, Faheem M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front Immunol 2023; 14:1273838. [PMID: 38045699 PMCID: PMC10690774 DOI: 10.3389/fimmu.2023.1273838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Dengue virus infection (DVI) is a mosquito-borne disease that can lead to serious morbidity and mortality. Dengue fever (DF) is a major public health concern that affects approximately 3.9 billion people each year globally. However, there is no vaccine or drug available to deal with DVI. Dengue virus consists of four distinct serotypes (DENV1-4), each raising a different immunological response. In the present study, we designed a tetravalent subunit multi-epitope vaccine, targeting proteins including the structural protein envelope domain III (EDIII), precursor membrane proteins (prM), and a non-structural protein (NS1) from each serotype by employing an immunoinformatic approach. Only conserved sequences obtained through a multiple sequence alignment were used for epitope mapping to ensure efficacy against all serotypes. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, overall, 11 B-cell epitopes, 10 HTL epitopes, and 10 CTL epitopes from EDIII, prM, and NS1 proteins targeting all serotypes were selected and joined via KK, AAY, and GGGS linkers, respectively. We incorporated a 45-amino-acid-long B-defensins adjuvant in the final vaccine construct for a better immunogenic response. The vaccine construct has an antigenic score of 0.79 via VaxiJen and is non-toxic and non-allergenic. Our refined vaccine structure has a Ramachandran score of 96.4%. The vaccine has shown stable interaction with TLR3, which has been validated by 50 ns of molecular dynamics (MD) simulation. Our findings propose that a designed multi-epitope vaccine has substantial potential to elicit a strong immune response against all dengue serotypes without causing any adverse effects. Furthermore, the proposed vaccine can be experimentally validated as a probable vaccine, suggesting it may serve as an effective preventative measure against dengue virus infection.
Collapse
Affiliation(s)
- Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
3
|
Singh S, Alallah J, Amrit A, Maheshwari A, Boppana S. Neurological Manifestations of Perinatal Dengue. NEWBORN (CLARKSVILLE, MD.) 2023; 2:158-172. [PMID: 37559696 PMCID: PMC10411360 DOI: 10.5005/jp-journals-11002-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Jubara Alallah
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Astha Amrit
- Department of Neonatology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal Medicine, Louisiana State University – Shreveport, Shreveport, Louisiana; Global Newborn Society, Baltimore, Maryland, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
4
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
6
|
CD27 hiCD38 hi plasmablasts are activated B cells of mixed origin with distinct function. iScience 2021; 24:102482. [PMID: 34113823 PMCID: PMC8169951 DOI: 10.1016/j.isci.2021.102482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Clinically important broadly reactive B cells evolve during multiple infections, with B cells re-activated after secondary infection differing from B cells activated after a primary infection. Here we studied CD27highCD38high plasmablasts from patients with a primary or secondary dengue virus infection. Three transcriptionally and functionally distinct clusters were identified. The largest cluster 0/1 was plasma cell-related, with cells coding for serotype cross-reactive antibodies of the IgG1 isotype, consistent with memory B cell activation during an extrafollicular response. Cells in clusters 2 and 3 expressed low levels of antibody genes and high levels of genes associated with oxidative phosphorylation, EIF2 pathway, and mitochondrial dysfunction. Clusters 2 and 3 showed a transcriptional footprint of T cell help, in line with activation from naive B cells or memory B cells. Our results contribute to the understanding of the parallel B cell activation events that occur in humans after natural primary and secondary infection.
Collapse
|
7
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
8
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Durham ND, Agrawal A, Waltari E, Croote D, Zanini F, Fouch M, Davidson E, Smith O, Carabajal E, Pak JE, Doranz BJ, Robinson M, Sanz AM, Albornoz LL, Rosso F, Einav S, Quake SR, McCutcheon KM, Goo L. Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. eLife 2019; 8:e52384. [PMID: 31820734 PMCID: PMC6927745 DOI: 10.7554/elife.52384] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes (DENV1-4) that are spreading into new territories is an important goal of vaccine design. To define bNAb targets, we characterized 28 antibodies belonging to expanded and hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from DENV-infected individuals. Among these, we identified J9 and J8, two somatically related bNAbs that potently neutralized DENV1-4. Mutagenesis studies showed that the major recognition determinants of these bNAbs are in E protein domain I, distinct from the only known class of human bNAbs against DENV with a well-defined epitope. B cell repertoire analysis from acute-phase peripheral blood suggested that J9 and J8 followed divergent somatic hypermutation pathways, and that a limited number of mutations was sufficient for neutralizing activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs targeting a new epitope that can be exploited for vaccine design.
Collapse
Affiliation(s)
| | | | - Eric Waltari
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Derek Croote
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Fabio Zanini
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | | | - Olivia Smith
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - John E Pak
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Ana M Sanz
- Clinical Research CenterFundación Valle del LiliCaliColombia
| | - Ludwig L Albornoz
- Pathology and Laboratory DepartmentFundación Valle del LiliCaliColombia
| | - Fernando Rosso
- Clinical Research CenterFundación Valle del LiliCaliColombia
- Department of Internal Medicine, Division of Infectious DiseasesFundación Valle del LiliCaliColombia
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Stephen R Quake
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | - Leslie Goo
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
10
|
Kamaladasa A, Gomes L, Wijesinghe A, Jeewandara C, Toh YX, Jayathilaka D, Ogg GS, Fink K, Malavige GN. Altered monocyte response to the dengue virus in those with varying severity of past dengue infection. Antiviral Res 2019; 169:104554. [PMID: 31288040 DOI: 10.1016/j.antiviral.2019.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We sought to investigate the differences in monocyte immune responses to the dengue virus (DENV) in those who previously had either severe disease (past SD) or non-severe dengue (past NSD) following a secondary dengue infection. METHOD Monocytes from healthy individuals who had either past SD (n = 6) or past NSD (n = 6) were infected at MOI one with all four DENV serotypes following incubation with autologous serum. 36-hours post infection, levels of inflammatory cytokines and viral loads were measured in the supernatant and expression of genes involved in viral sensing and interferon signaling was determined. RESULTS Monocytes of individuals with past SD produced significantly higher viral loads (p = 0.0426 and cytokines (IL-10 p = 0.008, IL-1β p = 0.008 and IL-6 p = 0.0411) when infected with DENV serotypes they were not immune to, compared to those who has past NSD. Monocytes of individuals with past SD also produced significantly higher viral loads (p = 0.022) and cytokines (IL-10 p < 0.0001, IL-1β < 0.0001 and IL-6 p < 0.0001) when infected with DENV serotypes they were previously exposed to, despite the monocytes being infected in the presence of autologous serum. A significant upregulation of NLRP3 (p = 0.005), RIG-I (0.0004) and IFNB-1 (0.01) genes were observed in those who had past SD compared to past NSD when infected with non-immune DENV serotypes. CONCLUSION Monocytes from those with past SD appear to show marked differences in viral loads, viral sensing and production of inflammatory mediators in response to the DENV, when compared to those who experienced past NSD, suggesting that initial innate immune responses may influence the disease outcome.
Collapse
Affiliation(s)
- Achala Kamaladasa
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Ayesha Wijesinghe
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | | | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deshni Jayathilaka
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Graham S Ogg
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - G N Malavige
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK.
| |
Collapse
|
11
|
Li L, Meng W, Horton M, DiStefano DR, Thoryk EA, Pfaff JM, Wang Q, Salazar GT, Barnes T, Doranz BJ, Bett AJ, Casimiro DR, Vora KA, An Z, Zhang N. Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog 2019; 15:e1007716. [PMID: 31170257 PMCID: PMC6553876 DOI: 10.1371/journal.ppat.1007716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies. Dengue virus (DENV) is a leading cause of human illness in the tropics and subtropics, with about 40% of the world’s population living in areas at risk for infection. There are four DENV serotypes. Patients who have previously been infected by one dengue serotype may develop more severe symptoms such as bleeding and endothelial leakage upon secondary infection with another dengue serotype. This study reports the extensive cloning and analysis of 780 monoclonal antibodies (mAbs) from single B cells of rhesus macaques after immunization with an experimental dengue vaccine. We identified a panel of potent neutralizing mAbs with diverse epitopes on the DENV envelope protein. Antibodies in this panel were found to bind to the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and the loops of DI. We also isolated one mAb (d448) that can neutralize all four dengue serotypes and binds to a novel epitope at the interface of the DENV envelope and membrane proteins. Further investigation of these neutralizing monoclonal antibodies is warranted for better vaccine efficacy evaluation and vaccine design.
Collapse
Affiliation(s)
- Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weixu Meng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Melanie Horton
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Daniel R. DiStefano
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Elizabeth A. Thoryk
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Qihui Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Georgina T. Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Trevor Barnes
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Bett
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Danilo R. Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| |
Collapse
|
12
|
Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018; 19:206-224. [PMID: 29282215 PMCID: PMC5797954 DOI: 10.15252/embr.201745302] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE). The most striking example is provided by the four different dengue viruses, where infection by one serotype appears to predispose to more severe disease upon infection by a second one. A similar effect was postulated for sequential infections with Zika and dengue viruses. In this review, we analyze the molecular determinants of the dual antibody response to flavivirus infection or vaccination in humans. We highlight the role of conserved partially cryptic epitopes giving rise to cross-reacting and poorly neutralizing, ADE-prone antibodies. We end by proposing a strategy for developing an epitope-focused vaccine approach to avoid eliciting undesirable antibodies while focusing the immune system on producing protective antibodies only.
Collapse
Affiliation(s)
- Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Marie-Christine Vaney
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Mariano Dellarole
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Haslwanter D, Blaas D, Heinz FX, Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog 2017; 13:e1006643. [PMID: 28915259 PMCID: PMC5617232 DOI: 10.1371/journal.ppat.1006643] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement of viral infection is a well-described phenomenon that is based on the cellular uptake of infectious virus-antibody complexes following their interaction with Fcγ receptors expressed on myeloid cells. Here we describe a novel mechanism of antibody-mediated enhancement of infection by a flavivirus (tick-borne encephalitis virus) in transformed and primary human cells, which is independent of the presence of Fcγ receptors. Using chemical cross-linking and immunoassays, we demonstrate that the monoclonal antibody (mab) A5, recognizing an epitope at the interface of the dimeric envelope protein E, causes dimer dissociation and leads to the exposure of the fusion loop (FL). Under normal conditions of infection, this process is triggered only after virus uptake by the acidic pH in endosomes, resulting in the initiation of membrane fusion through the interaction of the FL with the endosomal membrane. Analysis of virus binding and cellular infection, together with inhibition by the FL-specific mab 4G2, indicated that the FL, exposed after mab A5- induced dimer-dissociation, mediated attachment of the virus to the plasma membrane also at neutral pH, thereby increasing viral infectivity. Since antibody-induced enhancement of binding was not only observed with cells but also with liposomes, it is likely that increased infection was due to FL-lipid interactions and not to interactions with cellular plasma membrane proteins. The novel mechanism of antibody-induced infection enhancement adds a new facet to the complexity of antibody interactions with flaviviruses and may have implications for yet unresolved effects of polyclonal antibody responses on biological properties of these viruses.
Collapse
Affiliation(s)
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Xu M, Zuest R, Velumani S, Tukijan F, Toh YX, Appanna R, Tan EY, Cerny D, MacAry P, Wang CI, Fink K. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines 2017; 2:2. [PMID: 29263863 PMCID: PMC5627287 DOI: 10.1038/s41541-016-0003-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection. Moreover, mice were protected from pathology and death from a lethal dengue virus-2 infection. To avoid potential Fc-mediated uptake of immune complexes and ensuing enhanced infection, we introduced a LALA mutation in the Fc part. SIgN-3C-LALA was as efficient as the non-modified antibody in neutralizing dengue virus and in protecting mice while antibody-dependent enhancement was completely abrogated. The epitope of the antibody includes conserved amino acids in all three domains of the glycoprotein, which can explain its cross-reactivity. SIgN-3C-LALA neutralizes dengue virus both pre and post-attachment to host cells. These attributes likely contribute to the remarkable protective capacity of SIgN-3C.
Collapse
Affiliation(s)
- Meihui Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Roland Zuest
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sumathy Velumani
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farhana Tukijan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ramapraba Appanna
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Daniela Cerny
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Paul MacAry
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|