1
|
Li Y, Chu H, Jiang Y, Li Z, Wang J, Liu F. Comparative transcriptomics analysis on Senecavirus A-infected and non-infected cells. Front Vet Sci 2024; 11:1431879. [PMID: 38983770 PMCID: PMC11231404 DOI: 10.3389/fvets.2024.1431879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Senecavirus A (SVA) is an emerging virus that causes the vesicular disease in pigs, clinically indistinguishable from other high consequence vesicular diseases. This virus belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded RNA, approximately 7,300 nt in length, with a 3' poly(A) tail but without 5'-end capped structure. SVA can efficiently propagate in different cells, including some non-pig-derived cell lines. A wild-type SVA was previously rescued from its cDNA clone using reverse genetics in our laboratory. In the present study, the BSR-T7/5 cell line was inoculated with the passage-5 SVA. At 12 h post-inoculation, SVA-infected and non-infected cells were independently collected for the analysis on comparative transcriptomics. The results totally showed 628 differentially expressed genes, including 565 upregulated and 63 downregulated ones, suggesting that SVA infection significantly stimulated the transcription initiation in cells. GO and KEGG enrichment analyses demonstrated that SVA exerted multiple effects on immunity-related pathways in cells. Furthermore, the RNA sequencing data were subjected to other in-depth analyses, such as the single-nucleotide polymorphism, transcription factors, and protein-protein interactions. The present study, along with our previous proteomics and metabolomics researches, provides a multi-omics insight into the interaction between SVA and its hosts.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Huanhuan Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Zhongren-OLand Bioengineering Co., Ltd., Qingdao, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Yang X, Liu R, Du Y, Mei C, Zhang G, Wang C, Yang Y, Xu Z, Li W, Liu X. circRNA_8521 promotes Senecavirus A infection by sponging miRNA-324 to regulate LC3A. Vet Res 2024; 55:43. [PMID: 38581048 PMCID: PMC10996121 DOI: 10.1186/s13567-024-01291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Senecavirus A (SVA) causes outbreaks of vesicular disease in pigs, which imposes a considerable economic burden on the pork industry. As current SVA prevention measures are ineffective, new strategies for controlling SVA are urgently needed. Circular (circ)RNA is a newly characterized class of widely expressed, endogenous regulatory RNAs, which have been implicated in viral infection; however, whether circRNAs regulate SVA infection remains unknown. To investigate the influence of circRNAs on SVA infection in porcine kidney 15 (PK-15) cells, RNA sequencing technology was used to analyze the circRNA expression profiles of SVA-infected and uninfected PK-15 cells, the interactions between circRNAs, miRNAs, and mRNAs potentially implicated in SVA infection were predicted using bioinformatics tools. The prediction accuracy was verified using quantitative real-time (qRT)-PCR, Western blotting, as well as dual-luciferase reporter and RNA pull-down assays. The results showed that 67 circRNAs were differentially expressed as a result of SVA infection. We found that circ_8521 was significantly upregulated in SVA-infected PK-15 cells and promoted SVA infection. circ_8521 interacted with miR-324. miR-324 bound to LC3A mRNA which inhibited the expression of LC3A. Knockdown of LC3A inhibited SVA infection. However, circ_8521 promoted the expression of LC3A by binding to miR-324, thereby promoting SVA infection. We demonstrated that circ_8521 functioned as an endogenous miR-324 sponge to sequester miR-324, which promoted LC3A expression and ultimately SVA infection.
Collapse
Affiliation(s)
- Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Yunsha Du
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Caiqiu Mei
- Ya'an People's Hospital, Ya'an, 625000, China
| | - Guangneng Zhang
- School of Public Health, Southern Medical University, Guangzhou, 511495, China
| | - Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610052, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China.
- State Key Laboratory of Silkworm Genome Biology, Chongqing, 400715, China.
| |
Collapse
|
4
|
Wang H, Mo Y, Liu W, Niu C, He Q, Ren T, Ouyang K, Chen Y, Huang W, Wei Z. Construction and characterization of a full-length infectious clone of an emerging senecavirus A strain. Arch Virol 2024; 169:25. [PMID: 38214826 DOI: 10.1007/s00705-023-05951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Senecavirus A (SVA) is an emerging virus that causes vesicular disease in pigs. Construction of a full-length SVA cDNA clone is crucial for understanding its replication and pathogenesis. Here, we successfully constructed a CMV-promoter-driven infectious cDNA clone of the SVA isolate SVA/GX/CH/2018, which we named rSVA GX01. Sequence comparison between the pSVA GX01 and the parental isolate (SVA/GX/CH/2018) revealed three single-nucleotide differences. Four-week-old piglets were experimentally infected with either the parental virus or the cloned virus. The results showed that the cloned rSVA GX01 displayed weak pathogenicity in 4-week-old pigs compared to the parental virus SVA CH-GX-01-2018. The infectious clone of SVA will serve as a valuable tool for studying the viral replication cycle and for functional analysis of the viral genome.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yongfang Mo
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Wenbo Liu
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Chenxia Niu
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qijie He
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tongwei Ren
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kang Ouyang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530005, China
| | - Ying Chen
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530005, China
| | - Weijian Huang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530005, China
| | - Zuzhang Wei
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530005, China.
| |
Collapse
|
5
|
Wang M, Zhao D, Li J, Zhu L, Duan X, Zhang Y, Li Y, Liu F. AAACH is a conserved motif in a cis-acting replication element that is artificially inserted into Senecavirus A genome. Virus Res 2024; 339:199269. [PMID: 37952688 PMCID: PMC10694738 DOI: 10.1016/j.virusres.2023.199269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Cis-acting replication element (cre) is required for generating a diuridylylated VPg that acts as a protein primer to initiate the synthesis of picornaviral genome or antigenome. The cre is a stem-loop structure, dependent of different picornaviruses, located in different genomic regions. The AAACA motif is highly conserved in the apical loop of cre among several picornaviral members, and plays a key role in synthesizing a diuridylylated VPg. We previously demonstrated that senecavirus A (SVA) also possesses an AAACA-containing cre in its genome. Its natural cre (Nc), if functionally inactivated through site-directed mutagenesis (SDM), would confer a lethal impact on virus recovery, whereas an artificial cre (Ac) is able to compensate for the Nc-caused functional inactivation, leading to successful rescue of a viable SVA. In this study, we constructed a set of SVA cDNA clones. Each of them contained one functionally inactivated Nc, and an extra SDM-modified Ac. Every cDNA clone had a unique SDM-modified Ac. The test of virus recovery showed that only two SVAs were rescued from their individual cDNA clones. They were AAACU- and AAACC-containing Ac genotypes. Both viruses were serially passaged in vitro for analyzing their viral characteristics. The results showed that both AAACU and AAACC genotypes were genetically stable during twenty passages, implying when the Nc was functionally inactivated, SVA could still use an AAACH-containing Ac to complete its own replication cycle.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, 266500, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Wang X, Meng H, Duan X, Sang Y, Zhang Y, Li Y, Liu F. The 3' end of the coding region of senecavirus A contains a highly conserved sequence that potentially forms a stem-loop structure required for virus rescue. Arch Virol 2023; 168:256. [PMID: 37737963 DOI: 10.1007/s00705-023-05863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/20/2023] [Indexed: 09/23/2023]
Abstract
Senecavirus A (SVA) can cause a vesicular disease in swine. It is a positive-strand RNA virus belonging to the genus Senecavirus in the family Picornaviridae. Positive-strand RNA viruses possess positive-sense, single-stranded genomes whose untranslated regions (UTRs) have been reported to contain cis-acting RNA elements. In the present study, a total of 100 SVA isolates were comparatively analyzed at the genome level. A highly conserved fragment (HCF) was found to be located in the 3D sequence and to be close to the 3' UTR. The HCF was computationally predicted to form a stem-loop structure. Eight synonymous mutations can individually disrupt the formation of a single base pair within the stem region. We found that SVA itself was able to tolerate each of these mutations alone, as evidenced by the ability to rescue all eight single-site mutants from their individual cDNA clones, and all of them were genetically stable during serial passaging. However, the replication-competent SVA could not be rescued from another cDNA clone containing all eight mutations. The failure to recover SVA might be attributed to disruption of the predicted stem-loop structure, whereas introduction of a wild-type HCF into the cDNA clone with eight mutations still had no effect on virus recovery. These results suggest that the putative stem-loop structure at the 3' end of the 3D sequence is a cis-acting RNA element that is required for SVA growth.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Meng H, Li Z, Wang L, Lyu L, Liu S, Wei R, Ni B, Liu F. Cells at early and late stages of infection with Senecavirus A: Comparative analysis of N 6-methyladenosine modification on mRNAs. Virology 2023; 585:186-195. [PMID: 37379620 DOI: 10.1016/j.virol.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Infection with Senecavirus A (SVA) causes differential phenotypes in cells. In this study, cells were inoculated with SVA for culture. At 12 and 72 h post infection, cells were independently harvested for high-throughput RNA sequencing, and further methylated RNA immunoprecipitation sequencing. The resultant data were comprehensively analyzed for mapping N6-methyladenosine (m6A)-modified profiles of SVA-infected cells. More importantly, m6A-modified regions were identified in the SVA genome. A dataset of m6A-modified mRNAs was generated for screening out differentially m6A-modified mRNAs, further subjected to a series of in-depth analyses. This study not only showed statistical differentiation of m6A-modified sites between two SVA-infected groups, but also demonstrated that SVA genome, as a positive-sense, single-stranded mRNA, itself could be modified through the m6A pattern. Out of the six samples of SVA mRNAs, only three were identified to be m6A-modified, implying that the epigenetic effect might not be a crucial driving force for SVA evolution.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liangpeng Lyu
- Qingdao Workstation of Animal Husbandry, Qingdao, 266199, China
| | - Shuqing Liu
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Rong Wei
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Zhao D, Li Y, Li Z, Zhu L, Sang Y, Zhang H, Zhang F, Ni B, Liu F. Only fourteen 3'-end poly(A)s sufficient for rescuing Senecavirus A from its cDNA clone, but inadequate to meet requirement of viral replication. Virus Res 2023; 328:199076. [PMID: 36841440 DOI: 10.1016/j.virusres.2023.199076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-strand RNA that has 5' and 3' untranslated regions. There is a poly(A) tail at the 3' end of viral genome. Although the number of poly(A)s is variable, the length of poly(A) tail generally has the minimum nucleotide limit for picornaviral replication. To identify a range limit of poly(A)s for SVA recovery, five SVA cDNA clones, separately containing 25, 20, 15, 10 and 5 poly(A)s, were constructed for rescuing viruses. Replication-competent SVAs could be rescued from the first three cDNA clones, implying the range limit of poly(A)s was (A)15 to (A)10. To recognize the precise limit, four extra cDNA clones, separately containing 14, 13, 12 and 11 poly(A)s, were constructed to rescue SVAs further. The replication-competent SVA was rescued only from the poly(A)14-containing plasmid, indicating that the precise limit was poly(A)14 at the 3' end of cDNA clone for SVA recovery. The rescued SVA was serially passaged in cells. The passage-5 and -10 progenies were independently subjected to the analysis of 3'-rapid amplification of cDNA ends. Both progenies showed their own poly(A) tails far more than 14 (A)s, implying extra (A)s added to the poly(A)14 sequence during viral passaging. It can be concluded that fourteen (A)s are sufficient for rescuing a replication-competent SVA from its cDNA clone, but inadequate for maintaining viral propagation in cells.
Collapse
Affiliation(s)
- Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
11
|
Wang Q, Zhao D, Wang L, Sang Y, Meng H, Wang Q, Shan H, Liu F, Geri L. Translation of Senecavirus A polyprotein is initiated from the IRES-proximal initiation codon. Virology 2023; 579:67-74. [PMID: 36608596 DOI: 10.1016/j.virol.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
To clarify whether Senecavirus A (SVA) has the potential of alternative translation, an extra G residue was inserted into an SVA cDNA clone, resultantly generating an "AUGAUG" motif. The second AUG is the authentic SVA initiation codon, whereas the first AUG is a putative one. Subsequently, eighteen nucleotides were inserted one by one between AUG and AUG for reconstructing cDNA clones. The test of virus recovery showed that three replication-competent SVAs, whose AUG/AUG-flanked sequences were not multiples of three nucleotides, were successfully rescued from their individual cDNA clones. The wild-type SVA possesses a UUUUU motif within the polyprotein-encoding region. Sanger sequencing showed that these three replication-competent SVAs harbored one or two extra U residues in the UUUUU motif, implying that polyprotein translation was initiated from the putative AUG, and the authentic AUG would be inactivated. This is probably attributed to the lack of ribosome scanning along an SVA genome.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
12
|
Xu F, Dang W, Li T, Wang Y, Yang F, Zheng H. IFIT3 mediated the type I interferon antiviral response by targeting Senecavirus A entry, assembly and release pathways. Vet Microbiol 2022; 275:109594. [DOI: 10.1016/j.vetmic.2022.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
13
|
Meng H, Wang Q, Liu M, Li Z, Hao X, Zhao D, Dong Y, Liu S, Zhang F, Cui J, Ni B, Shan H, Liu F. The 5′-end motif of Senecavirus A cDNA clone is genetically modified in 36 different ways for uncovering profiles of virus recovery. Front Microbiol 2022; 13:957849. [PMID: 36060787 PMCID: PMC9428520 DOI: 10.3389/fmicb.2022.957849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus. Its genome is one positive-sense, single-stranded RNA. The viral protein (VPg) is covalently linked to the extreme 5′ end of the SVA genome. A complex hairpin-pseudoknot-hairpin (HPH) RNA structure was computationally predicted to form at the 5′ end of the SVA genome. A total of three extra “U” residues (UUU) served as a linker between the HPH structure and the VPg, causing putative UUU–HPH formation at the extreme 5′ end of the SVA genome. It is unclear how the UUU–HPH structure functions. One SVA cDNA clone (N0) was constructed previously in our laboratory. Here, the N0 was genetically tailored for reconstructing a set of 36 modified cDNA clones (N1 to N36) in an attempt to rescue replication-competent SVAs using reverse genetics. The results showed that a total of nine viruses were successfully recovered. Out of them, five were independently rescued from the N1 to N5, reconstructed by deleting the first five nucleotides (TTTGA) one by one from the extreme 5′ end of N0. Interestingly, these five viral progenies reverted to the wild-type or/and wild-type-like genotype, suggesting that SVA with an ability to repair nucleotide defects in its extreme 5′ end. The other four were independently rescued from the N26 to N29, containing different loop-modifying motifs in the first hairpin of the HPH structure. These four loop-modifying motifs were genetically stable after serial passages, implying the wild-type loop motif was not a high-fidelity element in the first hairpin during SVA replication. The other genetically modified sequences were demonstrated to be lethal elements in the HPH structure for SVA recovery, suggesting that the putative HPH formation was a crucial cis-acting replication element for SVA propagation.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiling Liu
- Department of Animal Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaojing Hao
- Qingdao Workstation of Animal Husbandry, Qingdao, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaqin Dong
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuang Liu
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jin Cui
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Bo Ni
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Hu Shan
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Fuxiao Liu
| |
Collapse
|
14
|
Sun D, Kong N, Dong S, Chen X, Qin W, Wang H, Jiao Y, Zhai H, Li L, Gao F, Yu L, Zheng H, Tong W, Yu H, Zhang W, Tong G, Shan T. 2AB protein of Senecavirus A antagonizes selective autophagy and type I interferon production by degrading LC3 and MARCHF8. Autophagy 2022; 18:1969-1981. [PMID: 34964697 PMCID: PMC9450971 DOI: 10.1080/15548627.2021.2015740] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Senecavirus A (SVA), an important emerging porcine virus, has outbreaks in different regions and countries each year, becoming a virus with global prevalence. SVA infection has been reported to induce macroautophagy/autophagy; however, the molecular mechanisms of autophagy induction and the effect of SVA on autophagy remain unknown. This study showed that SVA infection induced the autophagy process in the early stage of SVA infection, and the rapamycin-induced autophagy inhibited SVA replication by degrading virus 3 C protein. To counteract this, SVA utilized 2AB protein inhibiting the autophagy process from promoting viral replication in the late stage of SVA infection. Further study showed that SVA 2AB protein interacted with MARCHF8/MARCH8 and LC3 to degrade the latter and inhibit the autophagy process. In addition, we found that MARCHF8 was a positive regulator of type I IFN (IFN-I) signaling. During the autophagy process, the SVA 2AB protein targeted MARCHF8 and MAVS forming a large complex for degradation to deactivate IFN-I signaling. Together, our study reveals the molecular mechanisms of selective autophagy in the host against viruses and reveals potential viral strategies to evade the autophagic process and IFN-I signaling for successful pathogenesis.Abbreviations: Baf A1: bafilomycin A1; Co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; hpi: hours post-infection; IFN: interferon; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane associated ring-CH-type finger 8; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; Rapa: rapamycin; RT: room temperature; siRNA: small interfering RNA; SVA: Senecavirus A; TCID50: 50% tissue culture infectious doses.
Collapse
Affiliation(s)
- Dage Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Hua Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Yajuan Jiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Huanjie Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China,CONTACT Guangzhi Tong ; Tongling Shan
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
15
|
Zhao K, Guo XR, Liu SF, Liu XN, Han Y, Wang LL, Lei BS, Zhang WC, Li LM, Yuan WZ. 2B and 3C Proteins of Senecavirus A Antagonize the Antiviral Activity of DDX21 via the Caspase-Dependent Degradation of DDX21. Front Immunol 2022; 13:951984. [PMID: 35911774 PMCID: PMC9329633 DOI: 10.3389/fimmu.2022.951984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Senecavirus A (SVA), also known as Seneca Valley virus, is a recently discovered picornavirus that can cause swine vesicular disease, posing a great threat to the global swine industry. It can replicate efficiently in cells, but the molecular mechanism remains poorly understood. This study determined the host’s differentially expressed proteins (DEPs) during SVA infection using dimethyl labeling based on quantitative proteomics. Among the DE proteins, DDX21, a member of the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase (DDX) family, was downregulated and demonstrated inhibiting SVA replication by overexpression and knockdown experiment. To antagonize this antiviral effect of DDX21, SVA infection induces the degradation of DDX21 by 2B and 3C proteins. The Co-IP results showed that 2B and 3C did not interact with DDX21, suggesting that the degradation of DDX21 did not depend on their interaction. Moreover, the 3C protein protease activity was necessary for the degradation of DDX21. Furthermore, our study revealed that the degradation of DDX21 by 2B and 3C proteins of SVA was achieved through the caspase pathway. These findings suggest that DDX21 was an effective antiviral factor for suppressing SVA infection and that SVA antagonized its antiviral effect by degrading DDX21, which will be useful to guide further studies into the mechanism of mutual regulation between SVA and the host.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Xiao-Ran Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shuai-Feng Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao-Na Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lu-Lu Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Bai-Shi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wu-Chao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Li-Min Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Wan-Zhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
- North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding, China
- *Correspondence: Wan-Zhe Yuan,
| |
Collapse
|
16
|
Experimental evidence for occurrence of putative copy-choice recombination between two Senecavirus A genomes. Vet Microbiol 2022; 271:109487. [DOI: 10.1016/j.vetmic.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
|
17
|
Wen W, Chen X, Lv Q, Chen H, Qian P, Li X. Identification of a conserved neutralizing epitope in Seneca Valley virus VP2 protein: new insight for epitope vaccine designment. Virol J 2022; 19:65. [PMID: 35410270 PMCID: PMC8995699 DOI: 10.1186/s12985-022-01791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease are similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent.
Methods
The neutralizing antibodies were produced to detect the neutralizing epitope.
Results
Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The peptide 153QELNEE158 is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A).
Conclusions
The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.
Collapse
|
18
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
19
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
20
|
Wang N, Wang H, Shi J, Li C, Liu X, Fan J, Sun C, Cameron CE, Qi H, Yu L. The Stem-Loop I of Senecavirus A IRES Is Essential for Cap-Independent Translation Activity and Virus Recovery. Viruses 2021; 13:v13112159. [PMID: 34834966 PMCID: PMC8619302 DOI: 10.3390/v13112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine and the only member of the Senecavirus genus. Like in all members of Picornaviridae, the 5′ untranslated region (5’UTR) of SVA contains an internal ribosome entry site (IRES) that initiates cap-independent translation. For example, the replacement of the IRES of foot-and-mouth disease virus (FMDV) with its relative bovine rhinitis B virus (BRBV) affects the viral translation efficiency and virulence. Structurally, the IRES from SVA resembles that of hepatitis C virus (HCV), a flavivirus. Given the roles of the IRES in cap-independent translation for picornaviruses, we sought to functionally characterize the IRES of this genus by studying chimeric viruses generated by exchanging the native SVA IRES with that of HCV either entirely or individual domains. First, the results showed that a chimeric SVA virus harboring the IRES from HCV, H-SVA, is viable and replicated normally in rodent-derived BHK-21 cells but displays replication defects in porcine-derived ST cells. In the generation of chimeric viruses in which domain-specific elements from SVA were replaced with those of HCV, we identified an essential role for the stem-loop I element for IRES activity and recombinant virus recovery. Furthermore, a series of stem-loop I mutants allowed us to functionally characterize discrete IRES regions and correlate impaired IRES activities, using reporter systems with our inability to recover recombinant viruses in two different cell types. Interestingly, mutant viruses harboring partially defective IRES were viable. However, no discernable replication differences were observed, relative to the wild-type virus, suggesting the cooperation of additional factors, such as intermolecular viral RNA interactions, act in concert in regulating IRES-dependent translation during infection. Altogether, we found that the stem-loop I of SVA is an essential element for IRES-dependent translation activity and viral replication.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Jiabao Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Chen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Xinran Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Junhao Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA;
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, School of Environment, Harbin 150090, China
- Correspondence: (H.Q.); (L.Y.); Tel.: +86-451-51051738 (L.Y.)
| | - Li Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
- Correspondence: (H.Q.); (L.Y.); Tel.: +86-451-51051738 (L.Y.)
| |
Collapse
|
21
|
Impacts of single nucleotide deletions from the 3' end of Senecavirus A 5' untranslated region on activity of viral IRES and on rescue of recombinant virus. Virology 2021; 563:126-133. [PMID: 34530232 DOI: 10.1016/j.virol.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The 5' untranslated region (UTR) of Senecavirus A (SVA) harbors an internal ribosome entry site (IRES), in which a pseudoknot structure is upstream of start codon AUG. Wild-type SVAs have a highly conserved 13-nt-sequence between the pseudoknot stem II (PKS-II)-forming motif and the AUG. In this study, a single nucleotide was deleted one by one from the 13-nt-sequence within a wild-type SVA minigenome. The result showed that neither mono- nor multi-nucleotide deletions abolished the IRES activity. Furthermore, a single nucleotide was deleted one by one from the 13-nt-sequence within a full-length SVA cDNA clone. The result indicated that nucleotide-deleting SVAs could be rescued from 1- to 5-nt-deleting cDNA clones, whereas only the 1- and 2-nt-deleting viruses were genetically stable during nine serial passages in vitro. Additionally, only the 1-nt-deleting SVA showed similar growth kinetics to that of the wild-type virus, suggesting that the pseudoknot-AUG distance was crucial for SVA replication.
Collapse
|
22
|
Liu F, Wang N, Wang Q, Shan H. Motif mutations in pseudoknot stem I upstream of start codon in Senecavirus A genome: Impacts on activity of viral IRES and on rescue of recombinant virus. Vet Microbiol 2021; 262:109223. [PMID: 34507016 DOI: 10.1016/j.vetmic.2021.109223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Senecavirus A (SVA), formerly known as Seneca Valley virus, is classified into the genus Senecavirus in the family Picornaviridae. Mature virion harbors an approximately 7 300-nt-long, positive-sense, and single-stranded RNA genome, which contains 5' and 3' untranslated regions (UTRs). Internal ribosome entry site (IRES) is identified in the SVA 5' UTR, and includes a RNA pseudoknot upstream of the start codon. This pseudoknot contains two stem structures, pseudoknot stem I and II (PKS-I and -II). The PKS-I is composed of two base-paired motifs (PKS-Ia and -Ib), between which there is an unpaired spacing (UpS). We reported previously that motif mutation in the PKS-II did not abolish the IRES activity, but interfered with SVA recovery from cDNA clone. In this study, we constructed five SVA minigenomes with point mutations in the PKS-I motif. Dual-luciferase reporter assay showed that motif mutations in PKS-I did not significantly interfere with the IRES activity to initiate protein expression. Correspondingly, we constructed five SVA cDNA clones with point mutations in the PKS-I motif. These genetically modified cDNA clones were separately transfected into BSR-T7/5 cells in attempting to rescue competent SVAs. However, only two viruses, namely PKS-Ia- and UpS-mutated recombinants, could be recovered from their individual cDNA clones. It can be concluded that the PKS-Ib is indispensable for viral growth.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
Fernandes MHV, de Lima M, Joshi LR, Diel DG. A virulent and pathogenic infectious clone of Senecavirus A. J Gen Virol 2021; 102. [PMID: 34424160 DOI: 10.1099/jgv.0.001643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Senecavirus A (SVA) is a picornavirus that circulates in swine populations worldwide causing vesicular disease (VD) in affected animals. Here we developed a reverse genetics system for SVA based on the well-characterized wild-type SVA strain SD15-26 (wt SVA SD15-26). The full-length cDNA genome of SVA was cloned into a plasmid under a T7 RNA polymerase promoter. Following in vitro transcription, the genomic viral RNA was transfected into BHK-21 cells and rescue of infectious virus (rSVA SD15-26) was shown by inoculation of highly susceptible H1299 cells. In vitro characterization of the rSVA SD15-26 showed similar replication properties and protein expression levels as the wt SVA SD15-26. A pathogenesis study was conducted in 15-week-old finishing pigs to evaluate the pathogenicity and infection dynamics of the rSVA SD15-26 virus in comparison to the wt SVA SD15-26. Animals from both rSVA- and wt SVA SD15-26-inoculated groups presented characteristic SVA clinical signs (lethargy and lameness) followed by the development of vesicular lesions on the snout and/or feet. The clinical outcome of infection, including disease onset, severity and duration was similar in rSVA- and the wt SVA SD15-26-inoculated animals. All animals inoculated with rSVA or with wt SVA SD15-26 presented a short-term viremia, and animals from both groups shed similar amounts of virus in oral and nasal secretion, and faeces. Our data demonstrates that the rSVA SD5-26 clone is fully virulent and pathogenic in pigs, presenting comparable pathogenesis and infection dynamics to the wt SVA SD15-26 strain. The infectious clone generated here is a useful platform to study virulence determinants of SVA, and to dissect other aspects of SVA infection biology, pathogenesis and persistence.
Collapse
Affiliation(s)
- Maureen H V Fernandes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Marcelo de Lima
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Laboratório de Virologia e Imunologia, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lok R Joshi
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
24
|
Liu C, Liu Y, Li X, Liang L, Cui S. Pathogenicity Analysis of Weaned Piglets Challenged With Novel Emerging Senecavirus A in Fujian, China. Front Vet Sci 2021; 8:694110. [PMID: 34307532 PMCID: PMC8292739 DOI: 10.3389/fvets.2021.694110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the pathogenicity of Senecavirus A (SVA) to weaned piglets preliminarily, 28-day-old weaned piglets were challenged with SVA by intramuscular injection. The clinical manifestations, antibody levels, and tissue viral load of infected piglets were detected. The results indicated that the piglets challenged with SVA CH/FuJ/2017 showed drowsiness, lameness, oral blisters, diarrhea, and other clinical signs. Lesions on the hooves were observed. Red spots or plaques were initially observed on the hoof and then developed into blisters that cracked and gradually formed scab. The symptoms and signs were relieved after 8 days post-infection (dpi). The sentinel piglet, feeding together with the challenged piglets, showed similar clinical signs with the challenged piglets after 3 dpi. Monitoring of antibody levels showed that anti-SVA antibody could be detected at 5 dpi by competition enzyme-linked immunosorbent assay (cELISA) method, and neutralizing antibody could be detected after 7 dpi. Analysis of viral tissue distribution and viral load indicated that SVA could replicate in the liver, spleen, lung, kidney, and lymph node. In all, Senecavirus disease was successfully replicated by SVA CH/FuJ/2017 isolate, which verified the clinical manifestations of SVA infection in weaned piglets, and provided a foundation for further SVA pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Cun Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Shandong Provincial Center for Animal Disease Control, Ji'nan, China
| | - Yanhan Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Shandong Provincial Center for Animal Disease Control, Ji'nan, China
| | - Xiubo Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
25
|
Liu F, Wang N, Huang Y, Wang Q, Shan H. Stem II-disrupting pseudoknot does not abolish ability of Senecavirus A IRES to initiate protein expression, but inhibits recovery of virus from cDNA clone. Vet Microbiol 2021; 255:109024. [PMID: 33713975 DOI: 10.1016/j.vetmic.2021.109024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Senecavirus A (SVA) is classified into the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded and nonsegmented RNA, approximately 7300 nucleotides in length. A picornaviral genome is essentially an mRNA, which, albeit unmodified with 5' cap structure, can still initiate protein expression by the internal ribosome entry site (IRES). The SVA genome contains a hepatitis C virus-like IRES, in which a pseudoknot structure plays an important role in initiating protein expression. In this study, we constructed a set of SVA (CH-LX-01-2016 strain) minigenomes with all combinations of point mutations in its pseudoknot stem II (PKS-II). The results showed that any combination of point mutations could not significantly interfere with the IRES to initiate protein expression. Further, we constructed a full-length SVA cDNA clone, in which the PKS-II-forming cDNA motif was subjected to site-directed mutagenesis for totally disrupting the PKS-II formation in IRES. Such a modified SVA cDNA clone was transfected into BSR-T7/5 cells, consequently demonstrating that the PKS-II-disrupting IRES interfered neither with protein expression nor with antigenome replication, whereas a competent SVA could not be rescued from the cDNA clone. It was speculated that the mutated motif possibly disrupted a packaging signal for virion assembly, therefore causing the failure of SVA rescue.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
26
|
Liu F, Wang Q, Huang Y, Wang N, Shan H. A 5-Year Review of Senecavirus A in China since Its Emergence in 2015. Front Vet Sci 2020; 7:567792. [PMID: 33134352 PMCID: PMC7561413 DOI: 10.3389/fvets.2020.567792] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Senecavirus A (SVA), previously known as Seneca Valley virus, is classified into the genus Senecavirus in the family Picornaviridae. This virus can cause vesicular disease and epidemic transient neonatal losses in swine. Typical clinical signs include vesicular and/or ulcerative lesions on the snout, oral mucosa, coronary bands and hooves. SVA emerged in Guangdong Province of China in 2015, and thereafter gradually spread into other provinces, autonomous regions and municipalities (P.A.M.s). Nowadays more than half of the P.A.M.s have been affected by SVA, and asymptomatic infection has occurred in some areas. The phylogenetic analysis shows that China isolates are clustered into five genetic branches, implying a fast evolutionary speed since SVA emergence in 2015. This review presented current knowledge concerning SVA infection in China, including its history, epidemiology, evolutionary characteristics, diagnostics and vaccines.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
27
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
28
|
Houston E, Temeeyasen G, Piñeyro PE. Comprehensive review on immunopathogenesis, diagnostic and epidemiology of Senecavirus A. Virus Res 2020; 286:198038. [PMID: 32479975 DOI: 10.1016/j.virusres.2020.198038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Senecavirus A (SVA), formerly known as Seneca Valley virus, is a single-strand, positive-sense RNA virus in the family Picornaviridae. This virus has been associated with recent outbreaks of vesicular disease (SVA-VD) and epidemic transient neonatal losses (ETNL) in several swine-producing countries. The clinical manifestation of and lesion caused by SVA are indistinguishable from other vesicular diseases. Pathogenicity studies indicate that SVA could regulate the host innate immune response to facilitate virus replication and the spread of the virus to bystander cells. SVA infection can induce specific humoral and cellular responses that can be detected within the first week of infection. However, SVA seems to produce persistent infection, and the virus can be shed in oral fluids for a month and detected in tissues for approximately two months after experimental infection. SVA transmission could be horizontal or vertical in infected herds of swine, while positive animals can also remain subclinical. In addition, mice seem to act as reservoirs, and the virus can persist in feed and feed ingredients, increasing the risk of introduction into naïve farms. Besides the pathological effects in swine, SVA possesses cytolytic activity, especially in neoplastic cells. Thus, SVA has been evaluated in phase II clinical trials as a virotherapy for neuroendocrine tumors. The goal of this review is summarize the current SVA-related research in pathogenesis, immunity, epidemiology and advances in diagnosis as well as discuses current challenges with subclinical/persistent presentation.
Collapse
Affiliation(s)
- Elizabeth Houston
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gun Temeeyasen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Pablo Enrique Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
29
|
Zhu M, Cai Y, Zhao W, He C, Yang Y, Gao Q, Su S. Long non-coding RNAs are associated with Seneca Valley virus infection. Vet Microbiol 2020; 246:108728. [PMID: 32605750 DOI: 10.1016/j.vetmic.2020.108728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
Sporadic outbreaks of Seneca Valley virus (SVV) have been detected in recent years causing huge economic losses to the pig industry. SVV infection can lead to redness and fever of the mouth, nose or hoof wall, ulcerative injury and inflammation in pigs. Although long non-coding RNAs (lncRNAs) have been shown to play an important role in antiviral and inflammatory regulation, how lncRNAs regulate and induce SVV infection inflammation remains unclear. Here, we found the differential expression of 1332 lncRNAs and 3299 mRNAs in SVV-infected ST cells using RNA-seq. Functional annotation analysis revealed that regulated transcripts are mainly involved in signaling pathways related to host immunity and inflammatory responses. We identified lnc-MSTRG.18940.1 as an important immune regulator in SVV infection. Lnc-MSTRG.18940.1 silencing specifically inhibited SVV replication and the production of inflammatory factors TNF-α, IL-1, IL-6, and IL-8. Our findings aid to a better understanding of host responses to SVV infection and provide new directions for understanding the potential association between lncRNAs and SVV pathogenesis.
Collapse
Affiliation(s)
- Mengyan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuchen Cai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengxi He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yichen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
30
|
Sharma B, Fernandes MHV, de Lima M, Joshi LR, Lawson S, Diel DG. A Novel Live Attenuated Vaccine Candidate Protects Against Heterologous Senecavirus A Challenge. Front Immunol 2019; 10:2660. [PMID: 31849928 PMCID: PMC6901945 DOI: 10.3389/fimmu.2019.02660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus causing vesicular disease (VD) clinically indistinguishable from foot-and-mouth disease (FMD) in pigs. Currently there are no vaccines currently available for SVA. Here we developed a recombinant SVA strain (rSVAm SacII) using reverse genetics and assessed its immunogenicity and protective efficacy in pigs. In vivo characterization of the rSVAm SacII strain demonstrated that the virus is attenuated, as evidenced by absence of lesions, decreased viremia and virus shedding in inoculated animals. Notably, while attenuated, rSVA mSacII virus retained its immunogenicity as high neutralizing antibody (NA) responses were detected in inoculated animals. To assess the immunogenicity and protective efficacy of rSVA mSacII, 4-week-old piglets were sham-immunized or immunized with inactivated or live rSVA mSacII virus-based formulations. A single immunization with live rSVA mSacII virus via the intramuscular (IM) and intranasal (IN) routes resulted in robust NA responses with antibodies being detected between days 3-7 pi. Neutralizing antibody responses in animals immunized with the inactivated virus via the IM route were delayed and only detected after a booster on day 21 pi. Immunization with live virus resulted in recall T cell proliferation (CD4+, CD8+, and CD4+/CD8+ T cells), demonstrating efficient stimulation of cellular immunity. Notably, a single dose of the live attenuated vaccine candidate resulted in protection against heterologous SVA challenge, as demonstrated by absence of overt disease and reduced viremia, virus shedding and viral load in tissues. The live attenuated vaccine candidate developed here represents a promising alternative to prevent and control SVA in swine.
Collapse
Affiliation(s)
- Bishwas Sharma
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, United States
| | - Maureen H V Fernandes
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, United States.,Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marcelo de Lima
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Lok R Joshi
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, United States.,Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Steve Lawson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Diego G Diel
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, United States.,Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Yokoyama T, Machida K, Iwasaki W, Shigeta T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, Harada Y, Shigematsu H, Shirouzu M, Tadakuma H, Imataka H, Ito T. HCV IRES Captures an Actively Translating 80S Ribosome. Mol Cell 2019; 74:1205-1214.e8. [PMID: 31080011 DOI: 10.1016/j.molcel.2019.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023]
Abstract
Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Eukaryotic Initiation Factors/chemistry
- Eukaryotic Initiation Factors/genetics
- Eukaryotic Initiation Factors/metabolism
- HEK293 Cells
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Host-Pathogen Interactions
- Humans
- Internal Ribosome Entry Sites
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
Collapse
Affiliation(s)
- Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Wakana Iwasaki
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoaki Shigeta
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Takahashi
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Shigematsu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan; Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
32
|
Focus on Translation Initiation of the HIV-1 mRNAs. Int J Mol Sci 2018; 20:ijms20010101. [PMID: 30597859 PMCID: PMC6337239 DOI: 10.3390/ijms20010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins.
Collapse
|
33
|
Bojar D, Fuhrer T, Fussenegger M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab Eng 2018; 52:110-123. [PMID: 30468874 DOI: 10.1016/j.ymben.2018.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 01/22/2023]
Abstract
Capitalizing on the ability of mammalian cells to conduct complex post-translational modifications, most protein therapeutics are currently produced in cell culture systems. Addition of a signal peptide to the product protein enables its accumulation in the cell culture supernatant, but separation of the product from endogenously secreted proteins remains costly and labor-intensive. We considered that global downregulation of translation of non-product proteins would be an efficient strategy to minimize downstream processing requirements. Therefore, taking advantage of the ability of mammalian protein kinase R (PKR) to switch off most cellular translation processes in response to infection by viruses, we fused a caffeine-inducible dimerization domain to the catalytic domain of PKR. Addition of caffeine to this construct results in homodimerization and activation of PKR, effectively rewiring rapid global translational downregulation to the addition of the stimulus in a dose-dependent manner. Then, to protect translation of the target therapeutic, we screened viral and cellular internal ribosomal entry sites (IRESes) known or suspected to be resistant to PKR-induced translational stress. After choosing the best-in-class Seneca valley virus (SVV) IRES, we additionally screened for IRES transactivation factors (ITAFs) as well as for supplementary small molecules to further boost the production titer of the product protein under conditions of global translational downregulation. Importantly, the residual global translation activity of roughly 10% under maximal downregulation is sufficient to maintain cellular viability during a production timeframe of at least five days. Standard industrially used adherent as well as suspension-adapted cell lines transfected with this synthetic biology-inspired Protein Kinase R-Enhanced Protein Production (PREPP) system could produce several medicinally relevant protein therapeutics, such as the blockbuster drug rituximab, in substantial quantities and with significantly higher purity than previous culture technologies. We believe incorporation of such purity-by-design technology in the production process will alleviate downstream processing bottlenecks in future biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Daniel Bojar
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tobias Fuhrer
- ETH Zurich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
34
|
Buckley A, Montiel N, Guo B, Kulshreshtha V, van Geelen A, Hoang H, Rademacher C, Yoon KJ, Lager K. Dexamethasone treatment did not exacerbate Seneca Valley virus infection in nursery-age pigs. BMC Vet Res 2018; 14:352. [PMID: 30453952 PMCID: PMC6245856 DOI: 10.1186/s12917-018-1693-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Senecavirus A, commonly known as Seneca Valley virus (SVV), is a picornavirus that has been infrequently associated with porcine idiopathic vesicular disease (PIVD). In late 2014 there were multiple PIVD outbreaks in several states in Brazil and samples from those cases tested positive for SVV. Beginning in July of 2015, multiple cases of PIVD were reported in the United States in which a genetically similar SVV was also detected. These events suggested SVV could induce vesicular disease, which was recently demonstrated with contemporary US isolates that produced mild disease in pigs. It was hypothesized that stressful conditions may exacerbate the expression of clinical disease and the following experiment was performed. Two groups of 9-week-old pigs were given an intranasal SVV challenge with one group receiving an immunosuppressive dose of dexamethasone prior to challenge. After challenge animals were observed for the development of clinical signs and serum and swabs were collected to study viral shedding and antibody production. In addition, pigs were euthanized 2, 4, 6, 8, and 12 days post inoculation (dpi) to demonstrate tissue distribution of virus during acute infection. RESULTS Vesicular disease was experimentally induced in both groups with the duration and magnitude of clinical signs similar between groups. During acute infection [0-14 days post infection (dpi)], SVV was detected by PCR in serum, nasal swabs, rectal swabs, various tissues, and in swabs from ruptured vesicles. From 15 to 30 dpi, virus was less consistently detected in nasal and rectal swabs, and absent from most serum samples. Virus neutralizing antibody was detected by 5 dpi and lasted until the end of the study. CONCLUSION Treatment with an immunosuppressive dose of dexamethasone did not drastically alter the clinical disease course of SVV in experimentally infected nursery aged swine. A greater understanding of SVV pathogenesis and factors that could exacerbate disease can help the swine industry with control and prevention strategies directed against this virus.
Collapse
Affiliation(s)
- Alexandra Buckley
- U.S. Department of Agriculture, Oak Ridge Institute for Science and Education and National Animal Disease Center, Ames, IA, USA
| | - Nestor Montiel
- U.S. Department of Agriculture, Oak Ridge Institute for Science and Education and National Animal Disease Center, Ames, IA, USA.,Present address: U.S. Department of Agriculture, Avian Viruses Section, Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Ames, IA, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Vikas Kulshreshtha
- U.S. Department of Agriculture, Oak Ridge Institute for Science and Education and National Animal Disease Center, Ames, IA, USA.,Present address: Toxikon Corporation, Bedford, MA, USA
| | - Albert van Geelen
- U.S. Department of Agriculture, Oak Ridge Institute for Science and Education and National Animal Disease Center, Ames, IA, USA
| | - Hai Hoang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Christopher Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kelly Lager
- U.S. Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA, 50010, USA.
| |
Collapse
|
35
|
Chen JH, Zhang RH, Lin SL, Li PF, Lan JJ, Song SS, Gao JM, Wang Y, Xie ZJ, Li FC, Jiang SJ. The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation. Front Microbiol 2018; 9:2250. [PMID: 30319572 PMCID: PMC6167517 DOI: 10.3389/fmicb.2018.02250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023] Open
Abstract
The duck hepatitis A virus type 1 (DHAV-1) is a member of Picornaviridae family, the genome of the virus contains a 5′ untranslated region (5′ UTR), a large open reading frame that encodes a polyprotein precursor and a 3′ UTR followed by a poly(A) tail. The translation initiation of virus proteins depends on the internal ribosome-entry site (IRES) element within the 5′ UTR. So far, little information is known about the role of the 3′ UTR and poly(A) tail during the virus proliferation. In this study, the function of the 3′ UTR and poly(A) tail of DHAV-1 in viral replication and IRES-mediated translation was investigated. The results showed that both 3′ UTR and poly(A) tail are important for maintaining viral genome RNA stability and viral genome replication. During DHAV-1 proliferation, at least 20 adenines were required for the optimal genome replication and the virus replication could be severely impaired when the poly (A) tail was curtailed to 10 adenines. In addition to facilitating viral genome replication, the presence of 3′ UTR and poly(A) tail significantly enhance IRES-mediated translation efficiency. Furthermore, 3′ UTR or poly(A) tail could function as an individual element to enhance the DHAV-1 IRES-mediated translation, during which process, the 3′ UTR exerts a greater initiation efficiency than the poly(A)25 tail.
Collapse
Affiliation(s)
- Jun-Hao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Rui-Hua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Shao-Li Lin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng-Fei Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Jing-Jing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Sha-Sha Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Ji-Ming Gao
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Zhi-Jing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Fu-Chang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| |
Collapse
|
36
|
Saeng-Chuto K, Stott CJ, Wegner M, Kaewprommal P, Piriyapongsa J, Nilubol D. The full-length genome characterization, genetic diversity and evolutionary analyses of Senecavirus A isolated in Thailand in 2016. INFECTION GENETICS AND EVOLUTION 2018; 64:32-45. [PMID: 29890334 DOI: 10.1016/j.meegid.2018.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Senecavirus A (SVA) is a novel picornavirus that causes porcine idiopathic vesicular disease characterized by lameness, coronary band hyperemia, and vesicles on the snout and coronary bands. An increase in the detection rate of SVA in several countries suggests that the disease has become a widespread problem. Herein, we report the detection of SVA in Thailand and the characterization of full-length genomic sequences of six Thai SVA isolates. Phylogenetic, genetic, recombination, and evolutionary analyses were performed. The full-length genome, excluding the poly (A) tail of the Thai SVA isolates, was 7282 nucleotides long, with the genomic organization resembling other previously reported SVA isolates. Phylogenetic and genetic analyses based on full-length genome demonstrated that the Thai SVA isolates were grouped in a novel cluster, separated from SVA isolates from other countries. Although the Thai SVA isolates were closely related to 11-55910-3, the first SVA isolate from Canada, with 97.9-98.2%, but they are different. Evolutionary and recombinant analyses suggested that the Thai SVA isolates shared a common ancestor with the 11-55910-3 isolate. The positive selection in the VP4 and 3D genes suggests that the virus was not externally introduced, but rather continuously evolved in the population prior to the first detection. Addition, the presence of SVA could have been ignored due to the presence of other pathogens causing similar clinical diseases. This study warrants further investigations into molecular epidemiology and genetic evolution of the SVA in Thailand.
Collapse
Affiliation(s)
- Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Matthew Wegner
- Department of Veterinary Pathology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavita Kaewprommal
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jittima Piriyapongsa
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
38
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
39
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
40
|
Montiel N, Buckley A, Guo B, Kulshreshtha V, VanGeelen A, Hoang H, Rademacher C, Yoon KJ, Lager K. Vesicular Disease in 9-Week-Old Pigs Experimentally Infected with Senecavirus A. Emerg Infect Dis 2018; 22:1246-8. [PMID: 27315363 PMCID: PMC4918149 DOI: 10.3201/eid2207.151863] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Senecavirus A has been infrequently associated with vesicular disease in swine since 1988. However, clinical disease has not been reproduced after experimental infection with this virus. We report vesicular disease in 9-week-old pigs after Sencavirus A infection by the intranasal route under experimental conditions.
Collapse
|
41
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
42
|
Mengardi C, Limousin T, Ricci EP, Soto-Rifo R, Decimo D, Ohlmann T. microRNAs stimulate translation initiation mediated by HCV-like IRESes. Nucleic Acids Res 2017; 45:4810-4824. [PMID: 28077561 PMCID: PMC5416841 DOI: 10.1093/nar/gkw1345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3΄ untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40S ribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3΄ UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks a poly(A) tail at its 3΄ extremity.
Collapse
Affiliation(s)
- Chloé Mengardi
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Taran Limousin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Emiliano P Ricci
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Ricardo Soto-Rifo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Didier Decimo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
43
|
Leme RA, Alfieri AF, Alfieri AA. Update on Senecavirus Infection in Pigs. Viruses 2017; 9:E170. [PMID: 28671611 PMCID: PMC5537662 DOI: 10.3390/v9070170] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022] Open
Abstract
Senecavirus A (SVA) is a positive-sense single-stranded RNA virus that belongs to the Senecavirus genus within the Picornaviridae family. The virus has been silently circulating in pig herds of the USA since 1988. However, cases of senecavirus-associated vesicular disease were reported in Canada in 2007 and in the USA in 2012. Since late 2014 and early 2015, an increasing number of senecavirus outbreaks have been reported in pigs in different producing categories, with this virus being detected in Brazil, China, and Thailand. Considering the novel available data on senecavirus infection and disease, 2015 may be a divisor in the epidemiology of the virus. Among the aspects that reinforce this hypothesis are the geographical distribution of the virus, the affected pig-producing categories, clinical signs associated with the infection, and disease severity. This review presents the current knowledge regarding the senecavirus infection and disease, especially in the last two years. Senecavirus epidemiology, pathogenic potential, host immunological response, diagnosis, and prophylaxis and control measures are addressed. Perspectives are focused on the need for complete evolutionary, epidemiological and pathogenic data and the capability for an immediate diagnosis of senecavirus infection. The health risks inherent in the swine industry cannot be neglected.
Collapse
Affiliation(s)
- Raquel A Leme
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
| | - Alice F Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, P.O. Box 10011, Paraná 86057-970, Brazil.
| |
Collapse
|
44
|
Sun Y, Dong L, Yu S, Wang X, Zheng H, Zhang P, Meng C, Zhan Y, Tan L, Song C, Qiu X, Wang G, Liao Y, Ding C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation. FASEB J 2016; 31:1337-1353. [PMID: 28011649 DOI: 10.1096/fj.201600980r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023]
Abstract
Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Luna Dong
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shengqing Yu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xiaoxu Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; and
| | - Hang Zheng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Pin Zhang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Chunchun Meng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yuan Zhan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; and
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China; .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
45
|
Abstract
Seneca Valley Virus isolate 001 (SVV-001) is an oncolytic RNA virus of the Picornaviridae family. It is also the first picornavirus discovered of the novel genus Senecavirus. SVV-001 replicates through an RNA intermediate, bypassing a DNA phase, and is unable to integrate into the host genome. SVV-001 was originally discovered as a contaminant in the cell culture of fetal retinoblasts and has since been identified as a potent oncolytic virus against tumors of neuroendocrine origin. SVV-001 has a number of features that make it an attractive oncolytic virus, namely, its ability to target and penetrate solid tumors via intravenous administration, inability for insertional mutagenesis, and being a self-replicating RNA virus with selective tropism for cancer cells. SVV-001 has been studied in both pediatric and adult early phase studies reporting safety and some clinical efficacy, albeit primarily in adult tumors. This review summarizes the current knowledge of SVV-001 and what its future as an oncolytic virus may hold.
Collapse
Affiliation(s)
- Michael J Burke
- Department of Pediatrics, Division of Pediatric Oncology, Medical College of Wisconsin, MACC Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
46
|
Chen Z, Yuan F, Li Y, Shang P, Schroeder R, Lechtenberg K, Henningson J, Hause B, Bai J, Rowland RRR, Clavijo A, Fang Y. Construction and characterization of a full-length cDNA infectious clone of emerging porcine Senecavirus A. Virology 2016; 497:111-124. [PMID: 27459668 DOI: 10.1016/j.virol.2016.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/27/2022]
Abstract
A full-length cDNA infectious clone, pKS15-01-Clone, was constructed from an emerging Senecavirus A (SVA; strain KS15-01). To explore the potential use as a viral backbone for expressing marker genes, the enhanced green fluorescent protein (EGFP)-tagged reporter virus (vKS15-01-EGFP) was generated using reverse genetics. Compared to the parental virus, the pKS15-01-Clone derived virus (vKS15-01-Clone) replicated efficiently in vitro and in vivo, and induced similar levels of neutralizing antibody and cytokine responses in infected animals. In contrast, the vKS15-01-EGFP virus showed impaired growth ability and induced lower level of immune response in infected animals. Lesions on the dorsal snout and coronary bands were observed in all pigs infected by parental virus KS15-01, but not in pigs infected with vKS15-01-Clone or vKS15-01-EGFP viruses. These results demonstrated that the infectious clone and EGFP reporter virus could be used as important tools in further elucidating the SVA pathogenesis and development of control measures.
Collapse
Affiliation(s)
- Zhenhai Chen
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Robin Schroeder
- Midwest Veterinary Services, Inc., Oakland, NE 68045, United States
| | | | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Benjamin Hause
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Alfonso Clavijo
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
47
|
Abstract
Senecavirus A (SVA) is the only member of the genus Senecavirus within the family Picornaviridae. This virus was discovered as a serendipitous finding in 2002 (and named Seneca Valley virus 001 [SVV-001]) while cultivating viral vectors in cell culture and has been proposed for use as an oncolytic virus to treat different types of human neoplasia. SVA was found in lesions in pigs affected by porcine idiopathic vesicular disease in Canada and the USA in 2008 and 2012, respectively. In 2014 and 2015, SVA infection was associated with outbreaks of vesicular disease in sows as well as neonatal pig mortality in Brazil and the USA. Phylogenetic analysis of the SVA VP1 indicates the existence of 3 clades of the virus. Clade I contains the historical strain SVV-001, clade II contains USA SVA strains identified between 1988 and 1997, and clade III contains global SVA strains from Brazil, Canada, China, and the USA identified between 2001 and 2015. The aim of this review is to draw the attention of veterinarians and researchers to a recently described infectious clinical-pathologic condition caused by a previously known agent (SVA). Apart from the intrinsic interest in a novel virus infecting pigs and causing economic losses, the major current concern is the similarity of the clinical picture to that of other swine diseases, because one of them-foot and mouth disease-is a World Organization for Animal Health-listed disease. Because the potential association of SVA with disease is rather new, there are still many questions to be resolved.
Collapse
Affiliation(s)
- J Segalés
- 1 UAB, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Campus de la Universitat Autònoma de Barcelona, Spain.,2 Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Spain
| | - D Barcellos
- 3 Departamento de Medicina Animal, Federal University of Rio Grande do Sul/UFRGS, Porto Alegre, RS, Brazil
| | - A Alfieri
- 4 Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - E Burrough
- 5 Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - D Marthaler
- 6 Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
48
|
Thakor N, Smith MD, Roberts L, Faye MD, Patel H, Wieden HJ, Cate JHD, Holcik M. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol 2016; 14:553-567. [PMID: 26828225 PMCID: PMC5449081 DOI: 10.1080/15476286.2015.1137419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
IRES-mediated translation of key cell fate regulating genes has been implicated in tumorigenesis. Concerted action of canonical eukaryotic initiation factors and IRES transacting factors (ITAFs) was shown to regulate cellular IRES mediated translation; however, the precise molecular mechanism of ribosome recruitment to cellular IRESes remains unclear. Here we show that the X-linked inhibitor of apoptosis (XIAP) IRES operates in an evolutionary conserved viral like mode and the structural integrity, particularly in the vicinity of AUG, is critical for ribosome recruitment. The binding of eIF3 together with PABP potentiates ribosome recruitment to the IRES. Our data support the model in which eIF3 binds directly to the XIAP IRES RNA in a structure-dependent manner and acts as a scaffold for IRES RNA, PABP and the 40S ribosome.
Collapse
Affiliation(s)
- Nehal Thakor
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - M Duane Smith
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Luc Roberts
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Mame Daro Faye
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada
| | - Harshil Patel
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Hans-Joachim Wieden
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Jamie H D Cate
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Martin Holcik
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,b Department of Pediatrics , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
49
|
Bracht AJ, O’Hearn ES, Fabian AW, Barrette RW, Sayed A. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens. PLoS One 2016; 11:e0146211. [PMID: 26757142 PMCID: PMC4710529 DOI: 10.1371/journal.pone.0146211] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/15/2015] [Indexed: 12/02/2022] Open
Abstract
Senecavirus A (SV-A), formerly, Seneca Valley virus (SVV), has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD), a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88%) were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18%) or without (6%) vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates.
Collapse
Affiliation(s)
- Alexa J. Bracht
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Orient, NY, United States of America
- * E-mail:
| | - Emily S. O’Hearn
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Orient, NY, United States of America
| | - Andrew W. Fabian
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Orient, NY, United States of America
| | - Roger W. Barrette
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Orient, NY, United States of America
| | - Abu Sayed
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Agriculture Select Agent Services, National Import Export Services, Riverdale, MD, United States of America
| |
Collapse
|
50
|
Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CMT. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J 2015; 34:3042-58. [PMID: 26604301 DOI: 10.15252/embj.201592469] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Marianne Collier
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Jochen Ismer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thiemo Sprink
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tanvir R Shaikh
- Structural Biology Programme, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marylena Dabrowski
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|