1
|
Bengu N, Cromhout G, Adland E, Govender K, Herbert N, Lim N, Fillis R, Sprenger K, Vieira V, Kannie S, van Lobenstein J, Chinniah K, Kapongo C, Bhoola R, Krishna M, Mchunu N, Pascucci GR, Cotugno N, Palma P, Tagarro A, Rojo P, Roider J, Garcia-Guerrero MC, Ochsenbauer C, Groll A, Reddy K, Giaquinto C, Rossi P, Hong S, Dong K, Ansari MA, Puertas MC, Ndung'u T, Capparelli E, Lichterfeld M, Martinez-Picado J, Kappes JC, Archary M, Goulder P. Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission. Nat Med 2024; 30:2796-2804. [PMID: 38843818 PMCID: PMC11485204 DOI: 10.1038/s41591-024-03105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.
Collapse
Affiliation(s)
- Nomonde Bengu
- Queen Nandi Regional Hospital, Empangeni, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rowena Fillis
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Samantha Kannie
- General Justice Gizenga Mpanza Regional Hospital, Stanger, South Africa
| | | | | | | | - Roopesh Bhoola
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Malini Krishna
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Noxolo Mchunu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Probiomics S.r.l., Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Pablo Rojo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | | | | | | | | | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Seohyun Hong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - John C Kappes
- University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Moherndran Archary
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Africa Health Research Institute, Durban, South Africa.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
2
|
Alves E, Al-Kaabi M, Keane NM, Leary S, Almeida CAM, Deshpande P, Currenti J, Chopra A, Smith R, Castley A, Mallal S, Kalams SA, Gaudieri S, John M. Adaptation to HLA-associated immune pressure over the course of HIV infection and in circulating HIV-1 strains. PLoS Pathog 2022; 18:e1010965. [PMID: 36525463 PMCID: PMC9803285 DOI: 10.1371/journal.ppat.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marwah Al-Kaabi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M. Keane
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Coral-Ann M. Almeida
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alison Castley
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Geographic variations in test reactivity for the serological diagnosis of Trypanosoma cruzi infection. J Clin Microbiol 2021; 59:e0106221. [PMID: 34469183 PMCID: PMC8601237 DOI: 10.1128/jcm.01062-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is a neglected disease caused by Trypanosoma cruzi parasites. Most diagnosis is based on serological tests, but the lack of a gold standard test complicates the measurement of test performance. To overcome this limitation, we used samples from a cohort of well-characterized T. cruzi-infected women to evaluate the reactivity of two rapid diagnostic tests and one enzyme-linked immunosorbent assay (ELISA). Our cohort was derived from a previous study on congenital transmission of T. cruzi and consisted of 481 blood/plasma samples from Argentina (n = 149), Honduras (n = 228), and Mexico (n = 104), with at least one positive T. cruzi PCR. Reactivity of the three tests ranged from 70.5% for the Wiener ELISA to 81.0% for the T-Detect and 90.4% for the Stat-Pak rapid tests. Test reactivity varied significantly among countries and was highest in Argentina and lowest in Mexico. When considering at least two reactive serological tests to confirm seropositivity, over 12% of T. cruzi infection cases from Argentina were missed by serological tests, over 21% in Honduras, and an alarming 72% in Mexico. Differences in test performance among countries were not due to differences in parasitemia, but differences in antibody levels against ELISA antigens were observed. Geographic differences in T. cruzi parasite strains as well as genetic differences among human populations both may contribute to the discrepancies in serological testing. Improvements in serological diagnostics for T. cruzi infections are critically needed to ensure an optimum identification of cases.
Collapse
|
4
|
Mohamed YS, Borthwick NJ, Moyo N, Murakoshi H, Akahoshi T, Siliquini F, Hannoun Z, Crook A, Hayes P, Fast PE, Mutua G, Jaoko W, Silva-Arrieta S, Llano A, Brander C, Takiguchi M, Hanke T. Specificity of CD8 + T-Cell Responses Following Vaccination with Conserved Regions of HIV-1 in Nairobi, Kenya. Vaccines (Basel) 2020; 8:E260. [PMID: 32485938 PMCID: PMC7349992 DOI: 10.3390/vaccines8020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.
Collapse
Affiliation(s)
- Yehia S. Mohamed
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Nicola J. Borthwick
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Nathifa Moyo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomohiro Akahoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Francesca Siliquini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Zara Hannoun
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Alison Crook
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Peter Hayes
- International AIDS Vaccine Initiative IAVI-Human Immunology Laboratory, Imperial College London, London SW10 9NH, UK;
| | - Patricia E. Fast
- International AIDS Vaccine Initiative-New York, New York, NY 10004, USA;
| | - Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Sandra Silva-Arrieta
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| |
Collapse
|
5
|
Clinical and evolutionary consequences of HIV adaptation to HLA: implications for vaccine and cure. Curr Opin HIV AIDS 2020; 14:194-204. [PMID: 30925534 DOI: 10.1097/coh.0000000000000541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in our understanding of HIV adaptation to human leukocyte antigen (HLA)-associated immune pressures and its relevance to HIV prevention and cure research. RECENT FINDINGS Recent research has confirmed that HLA is a major driver of individual and population-level HIV evolution, that HIV strains are adapting to the immunogenetic profiles of the different human ethnic groups in which they circulate, and that HIV adaptation has substantial clinical and immunologic consequences. As such, adaptation represents a major challenge to HIV prevention and cure. At the same time, there are opportunities: Studies of HIV adaptation are revealing why certain HLA alleles are protective in some populations and not others; they are identifying immunogenic viral epitopes that harbor high mutational barriers to escape, and they may help illuminate novel, vaccine-relevant HIV epitopes in regions where circulating adaptation is extensive. Elucidation of HLA-driven adapted and nonadapted viral forms in different human populations and HIV subtypes also renders 'personalized' immunogen selection, as a component of HIV cure strategies, conceptually feasible. SUMMARY Though adaptation represents a major challenge to HIV prevention and cure, achieving an in-depth understanding of this phenomenon can help move the design of such strategies forward.
Collapse
|
6
|
Hanke T. Aiming for protective T-cell responses: a focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev Vaccines 2019; 18:1029-1041. [PMID: 31613649 DOI: 10.1080/14760584.2019.1675518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite life-saving antiretroviral drugs, an effective HIV-1 vaccine is the best solution and likely a necessary component of any strategy for halting the AIDS epidemic. The currently prevailing aim is to pursue antibody-mediated vaccine protection. With ample evidence for the ability of T cells to control HIV-1 replication, their protective potential should be also harnessed by vaccination. The challenge is to elicit not just any, but protective T cells.Areas covered: This article reviews the clinical experience with the first-generation conserved-region immunogen HIVconsv delivered by combinations of plasmid DNA, simian adenovirus, and poxvirus MVA. The aim of our strategy is to induce strong and broad T cells targeting functionally important parts of HIV-1 proteins common to global variants. These vaccines were tested in eight phase 1/2 preventive and therapeutic clinical trials in Europe and Africa, and induced high frequencies of broadly specific CD8+ T cells capable of in vitro inhibition of four major HIV-1 clades A, B, C and D, and in combination with latency-reactivating agent provided a signal of drug-free virological control in early treated patients.Expert opinion: A number of critical T-cell traits have to come together at the same time to achieve control over HIV-1.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Li L, Liu Y, Gorny MK. Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Front Immunol 2018; 9:2735. [PMID: 30534128 PMCID: PMC6275200 DOI: 10.3389/fimmu.2018.02735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disease progression among HIV-1-infected individuals varies widely, but the mechanisms underlying this variability remains unknown. Distinct disease outcomes are the consequences of many factors working in concert, including innate and adaptive immune responses, cell-mediated and humoral immunity, and both genetic and phenotypic factors. Current data suggest that these multifaceted aspects in infected individuals should be considered as a whole, rather than as separate unique elements, and that analyses must be performed in greater detail in order to meet the requirements of personalized medicine and guide optimal vaccine design. However, the wide adoption of antiretroviral therapy (ART) influences the implementation of systematic analyses of the HIV-1-infected population. Consequently, fewer data will be available for acquisition in the future, preventing the comprehensive investigations required to elucidate the underpinnings of variability in disease outcome. This review seeks to recapitulate the distinct genotypic and phenotypic features of the immune system, focusing in particular on comparing the surface proteins of immune cells among individuals with different HIV infection outcomes.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Yan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Caetano DG, Côrtes FH, Bello G, Teixeira SLM, Hoagland B, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. Next-generation sequencing analyses of the emergence and maintenance of mutations in CTL epitopes in HIV controllers with differential viremia control. Retrovirology 2018; 15:62. [PMID: 30201008 PMCID: PMC6131818 DOI: 10.1186/s12977-018-0444-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/05/2018] [Indexed: 01/10/2023] Open
Abstract
Background Despite the low level of viral replication in HIV controllers (HICs), studies have reported viral mutations related to escape from cytotoxic T-lymphocyte (CTL) response in HIV-1 plasma sequences. Thus, evaluating the dynamics of the emergence of CTL-escape mutants in HICs reservoirs is important for understanding viremia control. To analyze the HIV-1 mutational profile and dynamics of CTL-escape mutants in HICs, we selected 11 long-term non-progressor individuals and divided them into the following groups: (1) viremic controllers (VCs; n = 5) and (2) elite controllers (ECs; n = 6). For each individual, we used HIV-1 proviral DNA from PBMCs related to earliest (VE) and latest (VL) visits to obtain gag and nef sequences using the Illumina HiSeq system. The consensus of each mapped gene was used to assess viral divergence, and next-generation sequencing data were employed to identify SNPs and variations within and flanking CTL epitopes. Results Divergence analysis showed higher values for nef compared to gag among the HICs. EC and VC groups showed similar divergence rates for both genes. Analysis of the number of SNPs showed that VCs present more variability in both genes. Synonymous/non-synonymous mutation ratios were < 1 for gag among ECs and for nef among ECs and VCs, exhibiting a predominance of non-synonymous mutations. Such mutations were observed in regions encoding CTL-restricted epitopes in all individuals. All ECs presented non-synonymous mutations in CTL epitopes but generally at low frequency (< 1%); all VCs showed a high number of mutations, with significant frequency changes between VE and VL visits. A higher frequency of internal mutations was observed for gag epitopes, with significant changes across visits compared to Nef epitopes, indicating a pattern associated with differential genetic pressure. Conclusions The high genetic conservation of HIV-1 gag and nef among ECs indicates that the higher level of viremia control restricts the evolution of both genes. Although viral replication levels in HICs are low or undetectable, all individuals exhibited CTL epitope mutations in proviral gag and nef variants, indicating that potential CTL escape mutants are present in HIC reservoirs and that situations leading to a disequilibrium of the host-virus relationship can result in the spread of CTL-escape variants. Electronic supplementary material The online version of this article (10.1186/s12977-018-0444-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sylvia Lopes Maia Teixeira
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea Gonçalves Veloso
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
9
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
10
|
Arcia D, Acevedo-Sáenz L, Rugeles MT, Velilla PA. Role of CD8 + T Cells in the Selection of HIV-1 Immune Escape Mutations. Viral Immunol 2016; 30:3-12. [PMID: 27805477 DOI: 10.1089/vim.2016.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection represents one of the biggest public health problems worldwide. The immune response, mainly the effector mechanisms mediated by CD8+ T cells, induces the selection of mutations that allows the virus to escape the immune control. These mutations are generally selected within CD8+ T cell epitopes restricted to human leukocyte antigen class I (HLA-I), leading to a decrease in the presentation and recognition of the epitope, decreasing the activation of CD8+ T cells. However, these mutations may also affect cellular processing of the peptide or recognition by the T cell receptor. Escape mutations often carry a negative impact in viral fitness that is partially or totally compensated by the selection of compensatory mutations. The selection of either escape mutations or compensatory mutations may negatively affect the course of the infection. In addition, these mutations are a major barrier for the development of new therapeutic strategies focused on the induction of specific CD8+ T cell responses.
Collapse
Affiliation(s)
- David Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Paula A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
11
|
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2016; 6:665. [PMID: 26834742 PMCID: PMC4716577 DOI: 10.3389/fimmu.2015.00665] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023] Open
Abstract
Killing of HIV-infected cells by CD8+ T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Sakai K, Chikata T, Brumme ZL, Brumme CJ, Gatanaga H, Gatanag H, Oka S, Takiguchi M. Lack of a significant impact of Gag-Protease-mediated HIV-1 replication capacity on clinical parameters in treatment-naive Japanese individuals. Retrovirology 2015; 12:98. [PMID: 26585907 PMCID: PMC4653850 DOI: 10.1186/s12977-015-0223-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/08/2015] [Indexed: 01/29/2023] Open
Abstract
Background HLA class I-associated escape mutations in HIV-1 Gag can reduce viral replication, suggesting that associated fitness costs could impact HIV-1 disease progression. Previous studies in North American and African cohorts have reported reduced Gag-Protease mediated viral replication capacity (Gag-Pro RC) in individuals expressing protective HLA class I alleles including HLA-B*57:01, B*27:05, and B*81:01. These studies also reported significant positive associations between Gag-Pro RCs and plasma viral load (pVL). However, these HLA alleles are virtually absent in Japan, and the importance of Gag as an immune target is not clearly defined in this population. Results We generated chimeric NL4-3 viruses carrying patient-derived Gag-Protease from 306 treatment-naive Japanese individuals chronically infected with HIV-1 subtype B. We analyzed associations between Gag-Pro RC and clinical markers of HIV-1 infection and host HLA expression. We observed no significant correlation between Gag-Pro RC and pVL in Japan in the overall cohort. However, upon exclusion of individuals expressing Japanese protective alleles HLA-B*52:01 and B*67:01, Gag-Pro RC correlated positively with pVL and negatively with CD4 T-cell count. Our results thus contrast with studies from other global cohorts reporting significantly lower Gag-Pro RC among persons expressing protective HLA alleles, and positive relationships between Gag-Pro RC and pVL in the overall study populations. We also identified five amino acids in Gag-Protease significantly associated with Gag-Pro RC, whose effects on RC were confirmed by site-directed mutagenesis. However, of the four mutations that decreased Gag-Pro RC, none were associated with reductions in pVL in Japan though two were associated with lower pVL in North America. Conclusions These data indicate that Gag fitness does not affect clinical outcomes in subjects with protective HLA class I alleles as well as the whole Japanese population. Moreover, the impact of Gag fitness costs on HIV-1 clinical parameters in chronic infection is likely low in Japan compared to other global populations. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | | | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan. .,Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Bansal A, Mann T, Sterrett S, Peng BJ, Bet A, Carlson JM, Goepfert PA. Enhanced Recognition of HIV-1 Cryptic Epitopes Restricted by HLA Class I Alleles Associated With a Favorable Clinical Outcome. J Acquir Immune Defic Syndr 2015; 70:1-8. [PMID: 26322665 DOI: 10.1097/qai.0000000000000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cryptic epitopes (CEs) are peptides derived from the translation of 1 or more of the 5 alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1-specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. METHODS Peptides (9mer to 11mer) were designed based on HLA-I-binding algorithms for B*27, B*57, or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (nonprotective allele) in all 5 ARFs of the 9 HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n = 231) were tested for T-cell responses in an IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay. Peripheral blood mononuclear cell samples from HIV-1 seronegative donors (n = 42) and HIV-1 seropositive patients with chronic clade B infections (n = 129) were used. RESULTS Overall, 16%, 2%, and 2% of chronic HIV infected patients had CE responses by IFN-γ ELISpot in the protective, nonprotective, and seronegative groups, respectively (P = 0.009, Fischer exact test). Twenty novel CE-specific responses were mapped (median magnitude of 95 spot forming cells/10 peripheral blood mononuclear cells), and most were both antisense derived (90%) and represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. CONCLUSIONS CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection, suggesting that they may contribute to viral control in this group of patients.
Collapse
Affiliation(s)
- Anju Bansal
- *Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and †Microsoft Research, Redmond, WA
| | | | | | | | | | | | | |
Collapse
|
14
|
Adland E, Paioni P, Thobakgale C, Laker L, Mori L, Muenchhoff M, Csala A, Clapson M, Flynn J, Novelli V, Hurst J, Naidoo V, Shapiro R, Huang KHG, Frater J, Prendergast A, Prado JG, Ndung’u T, Walker BD, Carrington M, Jooste P, Goulder PJR. Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection. PLoS Pathog 2015; 11:e1004954. [PMID: 26076345 PMCID: PMC4468173 DOI: 10.1371/journal.ppat.1004954] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Paolo Paioni
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Christina Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Leana Laker
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Luisa Mori
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Maximilian Muenchhoff
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anna Csala
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Margaret Clapson
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Jacquie Flynn
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Vas Novelli
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Jacob Hurst
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Oxford National Institute of Health Research, Biomedical Research Centre, Oxford, United Kingdom
| | - Vanessa Naidoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Kuan-Hsiang Gary Huang
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - John Frater
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Oxford National Institute of Health Research, Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
| | - Mary Carrington
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| |
Collapse
|
15
|
Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23:212-24. [PMID: 25613992 DOI: 10.1016/j.tim.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
Collapse
Affiliation(s)
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|