1
|
Hessell AJ, Li L, Malherbe DC, Barnette P, Pandey S, Sutton W, Spencer D, Wang XH, Gach JS, Hunegnaw R, Tuen M, Jiang X, Luo CC, LaBranche CC, Shao Y, Montefiori DC, Forthal DN, Duerr R, Robert-Guroff M, Haigwood NL, Gorny MK. Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine-Induced Anti-V2 Antibodies Alone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1266-1283. [PMID: 33536254 PMCID: PMC7946713 DOI: 10.4049/jimmunol.2001010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - William Sutton
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ruth Hunegnaw
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, NC 27710; and
| | - Yongzhao Shao
- Department of Population Health, New York University School of Medicine, New York, NY 10016
| | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
2
|
Basu M, Piepenbrink MS, Francois C, Roche F, Zheng B, Spencer DA, Hessell AJ, Fucile CF, Rosenberg AF, Bunce CA, Liesveld J, Keefer MC, Kobie JJ. Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans. Cell Rep Med 2020; 1:100015. [PMID: 32577626 PMCID: PMC7311075 DOI: 10.1016/j.xcrm.2020.100015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 04/23/2020] [Indexed: 01/21/2023]
Abstract
Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.
Collapse
Affiliation(s)
- Madhubanti Basu
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Bo Zheng
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Catherine A. Bunce
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Jane Liesveld
- Division of Hematology/Oncology, University of Rochester, Rochester, NY, USA
| | - Michael C. Keefer
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - James J. Kobie
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded. J Virol 2018; 92:JVI.00841-17. [PMID: 29118121 DOI: 10.1128/jvi.00841-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities.IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV's envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein.
Collapse
|
4
|
Hessell AJ, McBurney S, Pandey S, Sutton W, Liu L, Li L, Totrov M, Zolla-Pazner S, Haigwood NL, Gorny MK. Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine 2016; 34:2713-21. [PMID: 27102818 DOI: 10.1016/j.vaccine.2016.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
RV144 vaccinees with low HIV-1 Envelope-specific IgA antibodies (Abs) also had Abs directed to the hypervariable region 3 (V3) that inversely correlated with infection risk. Thus, anti-V3 HIV-1 Abs may contribute to protection from HIV-1 infection. The V3 region contains two dominant clusters of epitopes; one is preferentially recognized by mAbs encoded by VH5-51 and VL lambda genes, while the second one is recognized by mAbs encoded by other VH genes. We designed a study in rhesus macaques to induce anti-V3 Abs specific to each of these two dominant clusters of V3 epitopes to test whether the usage of the VH5-51 gene results in different characteristics of antibodies. The two C4-V3 immunogens used for immunization were each comprised of a fusion of the C4 peptide containing the T cell epitope and a V3 mimotope peptide mimicking the V3 epitope. The C4-447 peptide was designed to target B cells with several VH1-VH4 genes, the C4-VH5-51 peptide was designed to specifically target B cells with the VH5-51 gene. Six animals in two groups were immunized five times with these two immunogens, and screening of 10 sequential plasma samples post immunization demonstrated that C4-447 induced higher titers of plasma anti-V3 Abs and significantly more potent neutralizing activities against tier 1 and some tier 2 pseudoviruses than C4-VH5-51. Levels of anti-V3 Abs in buccal secretions were significantly higher in sequential samples derived from C4-447- than from C4-VH5-51-immunized animals. The titers of anti-V3 Abs in plasma strongly correlated with their levels in mucosal secretions. The results show that high titers of vaccine-induced anti-V3 Abs in plasma determine the potency and breadth of neutralization, as well as the rate of transduction of Abs to mucosal tissues, where they can play a role in preventing HIV-1 infection.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Sean McBurney
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lily Liu
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Hessell AJ, Malherbe DC, Pissani F, McBurney S, Krebs SJ, Gomes M, Pandey S, Sutton WF, Burwitz BJ, Gray M, Robins H, Park BS, Sacha JB, LaBranche CC, Fuller DH, Montefiori DC, Stamatatos L, Sather DN, Haigwood NL. Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. THE JOURNAL OF IMMUNOLOGY 2016; 196:3064-78. [PMID: 26944928 DOI: 10.4049/jimmunol.1500527] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022]
Abstract
Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Franco Pissani
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; Military HIV Research Program, Silver Spring, MD 20889
| | - Sean McBurney
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shelly J Krebs
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239
| | - Michelle Gomes
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Benjamin J Burwitz
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239
| | | | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Byung S Park
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27708
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195; and
| | | | | | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
6
|
Nakatani-Webster E, Hu SL, Atkins WM, Catalano CE. Assembly and characterization of gp160-nanodiscs: A new platform for biochemical characterization of HIV envelope spikes. J Virol Methods 2015; 226:15-24. [PMID: 26424619 DOI: 10.1016/j.jviromet.2015.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 01/12/2023]
Abstract
The human immunodeficiency virus (HIV) is the causative agent of acquired immune deficiency syndrome (AIDS) and is thus responsible for significant morbidity and mortality worldwide. Despite considerable effort, preparation of an effective vaccine for AIDS has been elusive and it has become clear that a fundamental understanding of the relevant antigenic targets on HIV is essential. The Env trimer spike is the only viral antigen present on the surface of the viral particle and it is the target of all broadly neutralizing antibodies isolated to date. Thus, a soluble, homogeneous, and well-defined preparation of Env trimers is an important first step toward biochemical and structural characterization of the antigenic spike. Phospholipid bilayer nanodiscs represent a relatively new technology that can serve as a platform for the assembly of membrane proteins into a native membrane-like environment. Here we describe the preparation and characterization of unprocessed full-length, natively glycoslyated gp160 Env proteins incorporated into nanodiscs (gp160-ND). The particles are soluble and well defined in the absence of detergent, and possess a morphology anticipated of Env incorporated into a lipid ND. Importantly, the gp160-NDs retain CD4 and Env antibody binding characteristics expected of a functional trimer spike and their incorporation into a lipid membrane allows interrogation of epitopes associated with the membrane-proximal ectodomain region of gp41. These studies provide the groundwork for the use of gp160-ND in more detailed biochemical and structural studies that may set the stage for their use in vaccine development.
Collapse
Affiliation(s)
- Eri Nakatani-Webster
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, School of Pharmacy, University of Washington, H272 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - William M Atkins
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Carlos Enrique Catalano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States.
| |
Collapse
|
7
|
Krebs SJ, McBurney SP, Kovarik DN, Waddell CD, Jaworski JP, Sutton WF, Gomes MM, Trovato M, Waagmeester G, Barnett SJ, DeBerardinis P, Haigwood NL. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA. PLoS One 2014; 9:e113463. [PMID: 25514675 PMCID: PMC4267727 DOI: 10.1371/journal.pone.0113463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.
Collapse
Affiliation(s)
- Shelly J. Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Sean P. McBurney
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Dina N. Kovarik
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
| | - Chelsea D. Waddell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - J. Pablo Jaworski
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - William F. Sutton
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Michelle M. Gomes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Maria Trovato
- Institute of Protein Biochemistry, C.N.R., Naples, Italy
| | - Garret Waagmeester
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Susan J. Barnett
- Novartis Vaccines & Diagnostics, Emeryville, CA, United States of America
| | | | - Nancy L. Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Li Y, Yang D, Wang JY, Yao Y, Zhang WZ, Wang LJ, Cheng DC, Yang FK, Zhang FM, Zhuang M, Ling H. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry. PLoS One 2014; 9:e86083. [PMID: 24465884 PMCID: PMC3897638 DOI: 10.1371/journal.pone.0086083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
The importance of the fourth variable (V4) region of the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein (Env) in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS). In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS), greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain) resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Yuan Yao
- Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, China
| | - Wei-Zhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Lu-Jing Wang
- Department of Biochemistry, Harbin Medical University, Harbin, China
| | - De-Chun Cheng
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Kun Yang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| |
Collapse
|
9
|
Unraveling the entry mechanism of baculoviruses and its evolutionary implications. J Virol 2013; 88:2301-11. [PMID: 24335309 DOI: 10.1128/jvi.03204-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry of baculovirus budded virus into host cells is mediated by two distinct types of envelope fusion proteins (EFPs), GP64 and F protein. Phylogenetic analysis suggested that F proteins were ancestral baculovirus EFPs, whereas GP64 was acquired by progenitor group I alphabaculovirus more recently and may have stimulated the formation of the group I lineage. This study was designed to experimentally recapitulate a possible major step in the evolution of baculoviruses. We demonstrated that the infectivity of an F-null group II alphabaculovirus (Helicoverpa armigera nucleopolyhedrovirus [HearNPV]) can be functionally rescued by coinsertion of GP64 along with the nonfusogenic F(def) (furin site mutated HaF) from HearNPV. Interestingly, HearNPV enters cells by endocytosis and, less efficiently, by direct membrane fusion at low pH. However, this recombinant HearNPV coexpressing F(def) and GP64 mimicked group I virus not only in its EFP composition but also in its abilities to enter host cells via low-pH-triggered direct fusion pathway. Neutralization assays indicated that the nonfusogenic F proteins contribute mainly to binding to susceptible cells, while GP64 contributes to fusion. Coinsertion of GP64 with an F-like protein (Ac23) from group I virus led to efficient rescue of an F-null group II virus. In summary, these recombinant viruses and their entry modes are considered to resemble an evolutionary event of the acquisition of GP64 by an ancestral group I virus and subsequent adaptive inactivation of the original F protein. The study described here provides the first experimental evidence to support the hypothesis of the evolution of baculovirus EFPs.
Collapse
|
10
|
HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans. PLoS One 2013; 8:e75277. [PMID: 24040404 PMCID: PMC3767832 DOI: 10.1371/journal.pone.0075277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Envelope (Env) protein is the sole target of neutralizing antibodies (NAbs) that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS). Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIV(SF162P4) infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs) B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways.
Collapse
|
11
|
Tso FY, Abrahamyan L, Hu SL, Ruprecht RM, Wood C. Variations in the Biological Functions of HIV-1 Clade C Envelope in a SHIV-Infected Rhesus Macaque during Disease Progression. PLoS One 2013; 8:e66973. [PMID: 23840566 PMCID: PMC3694120 DOI: 10.1371/journal.pone.0066973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
A better understanding of how the biological functions of the HIV-1 envelope (Env) changes during disease progression may aid the design of an efficacious anti-HIV-1 vaccine. Although studies from patient had provided some insights on this issue, the differences in the study cohorts and methodology had make it difficult to reach a consensus of the variations in the HIV-1 Env functions during disease progression. To this end, an animal model that can be infected under controlled environment and reflect the disease course of HIV-1 infection in human will be beneficial. Such an animal model was previously demonstrated by the infection of macaque with SHIV, expressing HIV-1 clade C Env V1-V5 region. By using this model, we examined the changes in biological functions of Env in the infected animal over the entire disease course. Our data showed an increase in the neutralization resistance phenotype over time and coincided with the decrease in the net charges of the V1-V5 region. Infection of PBMC with provirus expressing various Env clones, isolated from the infected animal over time, showed a surprisingly better replicative fitness for viruses expressing the Env from early time point. Biotinylation and ELISA data also indicated a decrease of cell-surface-associated Env and virion-associated gp120 content with disease progression. This decrease did not affect the CD4-binding capability of Env, but were positively correlated with the decrease of Env fusion ability. Interestingly, some of these changes in biological functions reverted to the pre-AIDS level during advance AIDS. These data suggested a dynamic relationship between the Env V1-V5 region with the host immune pressure. The observed changes of biological functions in this setting might reflect and predict those occurring during natural disease progression in human.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Levon Abrahamyan
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
- The Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Ruth M. Ruprecht
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
12
|
HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob Agents Chemother 2012; 56:4257-67. [PMID: 22615295 DOI: 10.1128/aac.00639-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.
Collapse
|
13
|
Mansouri S, Kutky M, Hudak KA. Pokeweed antiviral protein increases HIV-1 particle infectivity by activating the cellular mitogen activated protein kinase pathway. PLoS One 2012; 7:e36369. [PMID: 22563495 PMCID: PMC3341375 DOI: 10.1371/journal.pone.0036369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.
Collapse
Affiliation(s)
- Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Meherzad Kutky
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Katalin A. Hudak
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant. Virology 2012; 427:25-33. [PMID: 22369748 DOI: 10.1016/j.virol.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/22/2011] [Accepted: 02/03/2012] [Indexed: 12/27/2022]
Abstract
Neutralization properties of human immunodeficiency virus (HIV-1) are often defined using pseudoviruses grown in transformed cells, which are not biologically relevant HIV-1 producer cells. Little information exists on how these viruses compare to viruses produced in primary lymphocytes, particularly for globally relevant HIV-1 strains. Therefore, replication-competent chimeras encoding envelope variants from the dominant HIV-1 subtypes (A, C, and D) obtained early after infection were generated and the neutralization properties explored. Pseudoviruses generated in 293T cells were the most sensitive to antibody neutralization. Replicating viruses generated in primary lymphocytes were most resistant to neutralization by plasma antibodies and most monoclonal antibodies (b12, 4E10, 2F5, VRC01). These differences were not associated with differences in envelope content. Surprisingly, the virus source did not impact neutralization sensitivity of most viruses to PG9. These findings suggest that producer cell type has a major effect on neutralization sensitivity, but in an antibody dependent manner.
Collapse
|
15
|
Lovelace E, Xu H, Blish CA, Strong R, Overbaugh J. The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology 2011; 421:235-44. [PMID: 22029936 DOI: 10.1016/j.virol.2011.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
The detailed interactions between antibodies and the HIV-1 envelope protein that lead to neutralization are not well defined. Here, we show that several conservative substitutions in the envelope gp41 led to a ~100 fold increase in neutralization sensitivity to monoclonal antibodies (MAbs) that target gp41: 4E10 and 2F5. Substitution at position 675 alone did not impact neutralization susceptibility to MAbs that recognize more distal sites in gp120 (b12, VRC01, PG9). However, changes at position 675 in conjunction with Thr to Ala at position 569 increased the neutralization sensitivity to all gp41 and gp120 MAbs and plasma, in some cases by more than 1000-fold. Interestingly, the T569A change had a dramatic effect on b12 binding, but no effect on neutralization sensitivity. This finding suggests that antibody neutralization may occur through a multi-step pathway that includes distinct changes in envelope conformation that may affect binding but not neutralization susceptibility.
Collapse
Affiliation(s)
- Erica Lovelace
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
16
|
Binding interactions between soluble HIV envelope glycoproteins and quaternary-structure-specific monoclonal antibodies PG9 and PG16. J Virol 2011; 85:7095-107. [PMID: 21543501 DOI: 10.1128/jvi.00411-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PG9 and PG16 are antibodies isolated from a subject infected with HIV-1 and display broad anti-HIV neutralizing activities. They recognize overlapping epitopes, which are preferentially expressed on the membrane-anchored trimeric form of the HIV envelope glycoprotein (Env). PG9 and PG16 were reported not to bind to soluble mimetics of Env. The engineering of soluble Env proteins on which the PG9 and PG16 epitopes are optimally exposed will support efforts to elicit broad anti-HIV neutralizing antibodies by immunization. Here, we identified several soluble gp140 Env proteins that are recognized by PG9 and PG16, and we investigated the molecular details of those binding interactions. The IgG versions of PG9 and PG16 recognize the soluble trimeric gp140 form less efficiently than the corresponding monomeric gp140 form. In contrast, the Fab versions of PG9 and PG16 recognized the monomeric and trimeric gp140 forms with identical binding kinetics and with binding affinities similar to the high binding affinity of the anti-V3 antibody 447D to its epitope. Our data also indicate that, depending on the Env backbone, the interactions of PG9 and PG16 with gp140 may be facilitated by the presence of the gp41 ectodomain and are independent of the proper enzymatic cleavage of gp140 into gp120 and gp41. The identification of soluble Env proteins that express the PG9 and PG16 epitopes and the detailed characterization of the molecular interactions between these two antibodies and their ligands provide important and novel information that will assist in improving the engineering of future Env immunogens.
Collapse
|
17
|
Sellhorn G, Caldwell Z, Mineart C, Stamatatos L. Improving the expression of recombinant soluble HIV Envelope glycoproteins using pseudo-stable transient transfection. Vaccine 2009; 28:430-6. [PMID: 19857451 DOI: 10.1016/j.vaccine.2009.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/01/2009] [Accepted: 10/07/2009] [Indexed: 11/24/2022]
Abstract
The Envelope glycoprotein (Env) of the human immunodeficiency virus (HIV) is the target of neutralizing antibodies (NAbs). So far, HIV Env-derived immunogens have not been able to elicit broad neutralizing antibody responses against primary isolates. Identifying conditions that will permit the efficient production of different soluble HIV Env proteins will facilitate a high throughput comparative analysis of the immunogenicity of diverse Env constructs, potentially identifying Env forms that are more conducive to the elicitation of anti-HIV NAbs. Here we compared different cell types, transfection reagents, transfection conditions and different DNA expression vectors on soluble HIV Envelope expression levels. We identified optimal expression conditions and developed a protocol to streamline and maximize production of diverse HIV Env constructs. Using this optimized platform, milligram quantities of purified soluble HIV Env trimer can be routinely achieved in a rapid and cost-effective manner.
Collapse
Affiliation(s)
- George Sellhorn
- Seattle Biomedical Research Institute, Seattle, WA 98109, United States
| | | | | | | |
Collapse
|
18
|
The infectious molecular clone and pseudotyped virus models of human immunodeficiency virus type 1 exhibit significant differences in virion composition with only moderate differences in infectivity and inhibition sensitivity. J Virol 2009; 83:9002-7. [PMID: 19535443 DOI: 10.1128/jvi.00423-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two frequently employed methods for generating well-characterized, genetically defined infectious human immunodeficiency virus type 1 in vitro include the use of infectious molecular clones (IMCs) and pseudoviruses (PVs) competent for single-round infection. We compared six matched pairs of IMCs and PVs. The relative amounts of Env incorporated and efficiency of cleavage differed substantially between the two systems. Altering the ratio of proviral genome and env expression plasmids can produce pseudovirions that are structurally more similar to the matched IMCs. Differences in Env incorporation and cleavage translated into moderate differences in assays infectivity and sensitivity to neutralizing antibodies and entry inhibitors.
Collapse
|
19
|
Balancing reversion of cytotoxic T-lymphocyte and neutralizing antibody escape mutations within human immunodeficiency virus type 1 Env upon transmission. J Virol 2009; 83:8986-92. [PMID: 19515763 DOI: 10.1128/jvi.00599-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.
Collapse
|