1
|
Shi H, Zhang X, Ge P, Meliopoulos V, Freiden P, Livingston B, Schultz-Cherry S, Ross TM. Inactivated influenza virus vaccines expressing COBRA hemagglutinin elicited broadly reactive, long-lived protective antibodies. Hum Vaccin Immunother 2024; 20:2356269. [PMID: 38826029 PMCID: PMC11152115 DOI: 10.1080/21645515.2024.2356269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024] Open
Abstract
The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Victoria Meliopoulos
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Pam Freiden
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Brandi Livingston
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
3
|
Ontiveros-Padilla L, Bachelder EM, Ainslie KM. Microparticle and nanoparticle-based influenza vaccines. J Control Release 2024; 376:880-898. [PMID: 39427775 DOI: 10.1016/j.jconrel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally, we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Uno N, Ebensen T, Guzman CA, Ross TM. Intranasal administration of octavalent next-generation influenza vaccine elicits protective immune responses against seasonal and pre-pandemic viruses. J Virol 2024; 98:e0035424. [PMID: 39171925 PMCID: PMC11406897 DOI: 10.1128/jvi.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/27/2024] [Indexed: 08/23/2024] Open
Abstract
Development of next-generation influenza virus vaccines is crucial to improve protection against circulating and emerging viruses. Current vaccine formulations have to be updated annually due to mutations in seasonal strains and do not offer protection against strains with pandemic potential. Computationally optimized broadly reactive antigen (COBRA) methodology has been utilized by our group to generate broadly reactive immunogens for individual influenza subtypes, which elicit protective immune responses against a broad range of strains over numerous seasons. Octavalent mixtures of COBRA hemagglutinin (HA) (H1, H2, H3, H5, H7, and influenza B virus) plus neuraminidase (NA) (N1 and N2) recombinant proteins mixed with c-di-AMP adjuvant were administered intranasally to naive or pre-immune ferrets in prime-boost fashion. Four weeks after final vaccination, collected sera were analyzed for breadth of antibody response, and the animals were challenged with seasonal or pre-pandemic strains. The octavalent COBRA vaccine elicited antibodies that recognized a broad panel of strains representing different subtypes, and these vaccinated animals were protected against influenza virus challenges. Overall, this study demonstrated that the mixture of eight COBRA HA/NA proteins mixed with an intranasal adjuvant is a promising candidate for a universal influenza vaccine. IMPORTANCE Influenza is a respiratory virus which infects around a billion people globally every year, with millions experiencing severe illness. Commercial vaccine efficacy varies year to year and can be low due to mismatch of circulating virus strains. Thus, the formulation of current vaccines has to be adapted accordingly every year. The development of a broadly reactive influenza vaccine would lessen the global economic and public health burden caused by the different types of influenza viruses. The significance of our research is producing a promising universal vaccine candidate which provides protection against a wider range of virus strains over a wider range of time.
Collapse
Affiliation(s)
- Naoko Uno
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Nagashima KA, Dzimianski JV, Yang M, Abendroth J, Sautto GA, Ross TM, DuBois RM, Edwards TE, Mousa JJ. Structural basis for the broad antigenicity of the computationally optimized influenza hemagglutinin X6. Structure 2024; 32:1079-1089.e6. [PMID: 38810648 PMCID: PMC11316637 DOI: 10.1016/j.str.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Influenza causes significant morbidity and mortality. As an alternative approach to current seasonal vaccines, the computationally optimized broadly reactive antigen (COBRA) platform has been previously applied to hemagglutinin (HA). This approach integrates wild-type HA sequences into a single immunogen to expand the breadth of accessible antibody epitopes. Adding to previous studies of H1, H3, and H5 COBRA HAs, we define the structural features of another H1 subtype COBRA, X6, that incorporates HA sequences from before and after the 2009 H1N1 influenza pandemic. We determined structures of this antigen alone and in complex with COBRA-specific as well as broadly reactive and functional antibodies, analyzing its antigenicity. We found that X6 possesses features representing both historic and recent H1 HA strains, enabling binding to both head- and stem-reactive antibodies. Overall, these data confirm the integrity of broadly reactive antibody epitopes of X6 and contribute to design efforts for a next-generation vaccine.
Collapse
MESH Headings
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Humans
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Models, Molecular
- Antigens, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Epitopes/immunology
- Epitopes/chemistry
- Influenza Vaccines/immunology
- Influenza Vaccines/chemistry
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza, Human/immunology
- Influenza, Human/virology
- Crystallography, X-Ray
- Protein Binding
Collapse
Affiliation(s)
- Kaito A Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Meng Yang
- UCB BioSciences, Bainbridge Island, WA, USA; Seattle Structural Genomics Center for Infectious Diseases (SSGCID), Seattle, WA, USA
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, WA, USA; Seattle Structural Genomics Center for Infectious Diseases (SSGCID), Seattle, WA, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, WA, USA; Seattle Structural Genomics Center for Infectious Diseases (SSGCID), Seattle, WA, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Huang Y, Shi H, Forgacs D, Ross TM. Flu-COVID combo recombinant protein vaccines elicited protective immune responses against both influenza and SARS-CoV-2 viruses infection. Vaccine 2024; 42:1184-1192. [PMID: 38296701 PMCID: PMC11157428 DOI: 10.1016/j.vaccine.2023.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
SARS-CoV-2 and Influenza viruses are both highly transmissible airborne viruses and causing high morbidity and mortality. Co-infection of these two viruses results in severe disease that have been observed when influenza and SARS-CoV-2 viruses cocirculated in the past three years, and vaccination is still the effective way to prevent these two diseases. However, influenza and COVID-19 vaccines are designed and manufactured in different platforms, all the individuals will need to get two shots in order to prevent those two severe respiratory diseases. Therefore, it is urgent to develop a Flu-COVID combo vaccine to provide an efficient way for receiving immunization against those two diseases. In this study, we developed a flu-COVID combo vaccine that includes both influenza virus haemagglutinin (HA) proteins and SARS-CoV-2 Spike (S) protein which formulated with AddaVax. K18-hACE-2 transgenic mice were intramuscularly vaccinated with either combo vaccine or mono Flu (HA) or COVID (S) recombinant protein vaccine in a prime-boost-boost regimen, and then were challenged with lethal doses of influenza virus or SARS-CoV-2 to evaluate vaccine efficacy. The results showed that Flu-COVID combo vaccine protected mice from both Influenza and SARS-CoV-2 challenge by preventing body weight loss and clinical signs progression. The protective immune responses elicited by Flu-COVID combo vaccine were equivalent to those elicited by mono flu or COVID recombinant protein vaccines. In conclusion, our study highlights the effectiveness of the FLU-COVID combo recombinant protein vaccine in preventing both influenza and COVID-19 infections.
Collapse
Affiliation(s)
- Ying Huang
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA
| | - Hua Shi
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Forgacs
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA
| | - Ted M Ross
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA; Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Yu J, Sreenivasan C, Sheng Z, Zhai SL, Wollman JW, Luo S, Huang C, Gao R, Wang Z, Kaushik RS, Christopher-Hennings J, Nelson E, Hause BM, Li F, Wang D. A recombinant chimeric influenza virus vaccine expressing the consensus H3 hemagglutinin elicits broad hemagglutination inhibition antibodies against divergent swine H3N2 influenza viruses. Vaccine 2023; 41:6318-6326. [PMID: 37689544 DOI: 10.1016/j.vaccine.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The global distribution and ongoing evolution of type A swine influenza virus (IAV-S) continue to pose significant challenges against developing broadly protective vaccines to control swine influenza. This study focuses on the hemagglutinin (HA) consensus-based approach towards developing a more broadly protective swine influenza vaccine against various H3 strains circulating in domestic pig populations. By computationally analyzing >1000 swine H3 full-length HA sequences, we generated a consensus H3 and expressed it in the context of influenza A WSN/33 reverse genetics system. The derived recombinant chimeric swine influenza virus with the consensus H3 was inactivated and further evaluated as a potential universal vaccine in pigs. The consensus H3 vaccine elicited broadly active hemagglutination inhibition (HI) antibodies against divergent swine H3N2 influenza viruses including human H3N2 variant of concern, and strains belong to genetic clusters IV, IV-A, IV-B, IV-C, IV-D and IV-F. Importantly, vaccinated pigs were completely protected against challenge with a clinical swine H3N2 isolate in that neither viral shedding nor replication in lungs of vaccinated pigs were observed. These findings warrant further study of the consensus H3 vaccine platform for broad protection against diverse swine influenza viruses.
Collapse
Affiliation(s)
- Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Chithra Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Zhizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Shao-Lun Zhai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jared W Wollman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Chen Huang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
8
|
Carlock MA, Ross TM. A computationally optimized broadly reactive hemagglutinin vaccine elicits neutralizing antibodies against influenza B viruses from both lineages. Sci Rep 2023; 13:15911. [PMID: 37741893 PMCID: PMC10517972 DOI: 10.1038/s41598-023-43003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza B viruses (IBV) can cause severe disease and death much like influenza A viruses (IAV), with a disproportionate number of infections in children. Despite moving to a quadrivalent vaccine to include strains from both the B/Victoria and B/Yamagata lineages, vaccine effectiveness rates continue to be variable and low in many past seasons. To develop more effective influenza B virus vaccines, three novel IBV hemagglutinin (HA) vaccines were designed using a computationally optimized broadly reactive antigen (COBRA) methodology. These IBV HA proteins were expressed on the surface of a virus-like particle (VLP) and used to vaccinate ferrets that were pre-immune to historical B/Victoria or B/Yamagata lineage viruses. Ferrets vaccinated with B-COBRA HA vaccines had neutralizing antibodies with high titer HAI titer against all influenza B viruses regardless of pre-immunization history. Conversely, VLPs expressing wild-type IBV HA antigens preferentially boosted titers against viruses from the same lineage and there was little-to-no seroprotective antibodies detected in ferrets with mismatched IBV pre-immune infections. Overall, a single IBV HA developed using the COBRA methodology elicited protective broadly-reactive antibodies against current and future drifted IBVs from both lineages.
Collapse
Affiliation(s)
- Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA.
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port Saint Lucie, FL, 34987, USA.
| |
Collapse
|
9
|
Dzimianski JV, Han J, Sautto GA, O'Rourke SM, Cruz JM, Pierce SR, Ecker JW, Carlock MA, Nagashima KA, Mousa JJ, Ross TM, Ward AB, DuBois RM. Structural insights into the broad protection against H1 influenza viruses by a computationally optimized hemagglutinin vaccine. Commun Biol 2023; 6:454. [PMID: 37185989 PMCID: PMC10126545 DOI: 10.1038/s42003-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and future influenza viruses. Though effective in preclinical studies, the mechanistic basis driving the broad reactivity of COBRA proteins remains to be elucidated. Here, we report the crystal structure of the COBRA HA termed P1 and identify antigenic and glycosylation properties that contribute to its immunogenicity. We further report the cryo-EM structure of the P1-elicited broadly neutralizing antibody 1F8 bound to COBRA P1, revealing 1F8 to recognize an atypical receptor binding site epitope via an unexpected mode of binding.
Collapse
Affiliation(s)
- John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joseph M Cruz
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Spencer R Pierce
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jeffrey W Ecker
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kaito A Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
10
|
Nagashima K, Abbadi N, Vyas V, Roegner A, Ross TM, Mousa JJ. Adjuvant-Mediated Differences in Antibody Responses to Computationally Optimized Hemagglutinin and Neuraminidase Vaccines. Viruses 2023; 15:v15020347. [PMID: 36851561 PMCID: PMC9960755 DOI: 10.3390/v15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Computationally optimized broadly reactive antigens (COBRAs) are a next-generation universal influenza vaccine candidate. However, how these COBRAs induce antibody responses when combined with different adjuvants has not previously been well-characterized. Therefore, we performed in vivo studies with an HA-based H1 COBRA, Y2, and an NA-based N1 COBRA, N1-I, to assess this effect for the H1N1 subtype. We tested the adjuvants AddaVax, AddaS03, CpG, and Alhydrogel. AddaS03 performed the best, eliciting high IgG titers and hemagglutination inhibition (HAI) activity for Y2 immunizations. Interestingly, serum antibody epitopes were relatively similar across adjuvant groups. Moreover, following N1-I immunization with these adjuvants, AddaS03 also elicited the highest IgG and neuraminidase inhibition (NAI) titers against the 2009 pandemic virus, A/California/07/2009 (A/CA/09). These results inform adjuvant selection efforts for H1 and N1 COBRA HA and NA antigens in a mouse model.
Collapse
Affiliation(s)
- Kaito Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nada Abbadi
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ved Vyas
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Abigail Roegner
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
11
|
Ge P, Ross TM. Evaluation of Pre-Pandemic Trivalent COBRA HA Vaccine in Mice Pre-Immune to Historical H1N1 and H3N2 Influenza Viruses. Viruses 2023; 15:203. [PMID: 36680243 PMCID: PMC9861495 DOI: 10.3390/v15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Initial exposure to influenza virus(es) during early childhood produces protective antibodies that may be recalled following future exposure to subsequent viral infections or vaccinations. Most influenza vaccine research studies use immunologically naïve animal models to assess vaccine effectiveness. However, most people have an extensive influenza immune history, with memory cells produced by viruses or vaccines representing multiple influenza viruses. In this study, we explored the effect influenza seasonal virus-induced immunity has on pre-pandemic influenza virus vaccination. The mice that were pre-immune to historical H1N1 and H3N2 seasonal influenza viruses were vaccinated with adjuvanted pre-pandemic (H2, H5, and H7) HA-based computationally optimized broadly reactive antigen (COBRA) vaccines, and were fully protected from lethal challenge, whereas the mock-vaccinated mice, with or without pre-immunity, were not protected from morbidity or mortality. Detectable antibody titers were present in the pre-immune mice vaccinated with a single dose of vaccine, but not in the immunologically naïve mice. The mice vaccinated twice with the trivalent COBRA HA vaccine had similar antibody titers regardless of their pre-immune status. Overall, seasonal pre-immunity did not interfere with the immune responses elicited by pre-pandemic COBRA HA vaccines or the protection against pre-pandemic viruses.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Abbadi N, Nagashima K, Pena-Briseno A, Ross TM, Mousa JJ. Differential Recognition of Computationally Optimized H3 Hemagglutinin Influenza Vaccine Candidates by Human Antibodies. J Virol 2022; 96:e0089622. [PMID: 35916534 PMCID: PMC9400492 DOI: 10.1128/jvi.00896-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Among circulating influenza viruses in humans, H3N2 viruses typically evolve faster than other subtypes and have caused disease in millions of people since emerging in 1968. Computationally optimized broadly reactive antigen (COBRA) technology is one strategy to broaden vaccine-elicited antibody responses among influenza subtypes. In this study, we determined the structural integrity of an H3N2 COBRA hemagglutinin (HA), TJ5, and we probed the antigenic profile of several H3N2 COBRA HAs by assessing recognition of these immunogens by human B cells from seasonally vaccinated human subjects. Of three recently described COBRA H3 HA antigens (TJ5, NG2, and J4), we determined that TJ5 and J4 HA proteins recognize pre-existing B cells more effectively than NG2 HA and a wild-type Hong Kong/4801/2014 protein. We also isolated a panel of 12 H3 HA-specific human monoclonal antibodies (MAbs) and identified that most MAbs recognize both wild-type and COBRA HA proteins and have functional activity against a broad panel of H3N2 viruses. Most MAbs target the receptor-binding site, and one MAb targets the HA stem. MAb TJ5-5 recognizes TJ5 and J4 COBRA HA proteins but has poor recognition of NG2 HA, similar to the global B-cell analysis. We determined a 3.4 Å structure via cryo-electron microscopy of Fab TJ5-5 complexed with the H3 COBRA TJ5, which revealed residues important to the differential binding. Overall, these studies determined that COBRA H3 HA proteins have correct antigenic and structural features, and the proteins are recognized by B cells and MAbs isolated from seasonally vaccinated humans. IMPORTANCE Vaccine development for circulating influenza viruses, particularly for the H3N2 subtype, remains challenging due to consistent antigenic drift. Computationally optimized broadly reactive antigen (COBRA) technology has proven effective for broadening influenza hemagglutinin (HA)-elicited antibody responses compared to wild-type immunogens. Here, we determined the structural features and antigenic profiles of H3 COBRA HA proteins. Two H3 COBRA HA proteins, TJ5 and J4, are better recognized by pre-existing B cells and monoclonal antibodies from the 2017 to 2018 vaccine season compared to COBRA NG2 and a wild-type A/Hong Kong/2014 HA protein. We determined a cryo-electron microscopy (cryo-EM) structure of one MAb that poorly recognizes NG2, MAb TJ5-5, in complex with the TJ5 COBRA HA protein and identified residues critical to MAb recognition. As NG2 is more effective than TJ5 for the recent Hong Kong/2019 virus, these data provide insights into the diminished effectiveness of influenza vaccines across vaccine seasons.
Collapse
Affiliation(s)
- Nada Abbadi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kaito Nagashima
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Alma Pena-Briseno
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jarrod J. Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
14
|
Nagashima K, Dzimianski JV, Han J, Abbadi N, Gingerich AD, Royer F, O'Rourke S, Sautto GA, Ross TM, Ward AB, DuBois RM, Mousa JJ. The Pre-Existing Human Antibody Repertoire to Computationally Optimized Influenza H1 Hemagglutinin Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:5-15. [PMID: 35697384 PMCID: PMC9246865 DOI: 10.4049/jimmunol.2101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 05/28/2023]
Abstract
Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.
Collapse
Affiliation(s)
- Kaito Nagashima
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA; and
| | - Nada Abbadi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Aaron D Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sara O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA; and
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Jarrod J Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA;
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA
| |
Collapse
|
15
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. J Virol 2022; 96:e0165221. [PMID: 35289635 DOI: 10.1128/jvi.01652-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N2 vaccine strain and circulating H3N2 influenza strains led to a vaccine efficacy of ∼9%. Modern methods of developing computationally optimized broadly reactive antigens (COBRAs) for H3N2 influenza viruses utilize current viral surveillance information to design more broadly reactive vaccine antigens. Here, 7 new recombinant hemagglutinin (rHA) H3 COBRA hemagglutinin (HA) antigens were evaluated in mice. Subsequently, two candidates, J4 and NG2, were selected for further testing in influenza-preimmune animals based on their ability to elicit broadly reactive antibodies against antigenically drifted H3N2 viral isolates. In the preimmune model, monovalent formulations of J4 and NG2 elicited broadly reactive antibodies against recently circulating H3N2 influenza viruses from 2019. Bivalent mixtures of COBRA H1 and H3 rHA, Y2 + J4, and Y2 + NG2 outperformed multiple WT H1+H3 bivalent rHA mixtures by eliciting seroprotective antibodies against H1N1 and H3N2 isolates from 2009 to 2019. Overall, the newly generated COBRA HA antigens, namely, Y2, J4, and NG2, had the ability to induce broadly reactive antibodies in influenza-naive and preimmune animals in both monovalent and bivalent formulations, and these antigens outperformed H1 and H3 WT rHA vaccine antigens by eliciting seroprotective antibodies against panels of antigenically drifted historical H1N1 and H3N2 vaccine strains from 2009 to 2019. IMPORTANCE Standard-of-care influenza virus vaccines are composed of a mixture of antigens from different influenza viral subtypes. For the first time, lead COBRA H1 and H3 HA antigens, formulated as a bivalent vaccine, have been investigated in animals with preexisting immunity to influenza viruses. The cocktail of COBRA HA antigens elicited more broadly reactive anti-HA antibodies than those elicited by a comparator bivalent wild-type HA vaccine against H1 and H3 influenza viruses isolated between 2009 and 2019.
Collapse
|
17
|
Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines 2021; 6:154. [PMID: 34921149 PMCID: PMC8683408 DOI: 10.1038/s41541-021-00417-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Antibody immunodominance refers to the preferential and asymmetric elicitation of antibodies against specific epitopes on a complex protein antigen. Traditional vaccination approaches for rapidly evolving pathogens have had limited success in part because of this phenomenon, as elicited antibodies preferentially target highly variable regions of antigens, and thus do not confer long lasting protection. While antibodies targeting functionally conserved epitopes have the potential to be broadly protective, they often make up a minority of the overall repertoire. Here, we discuss recent protein engineering strategies used to favorably alter patterns of immunodominance, and selectively focus antibody responses toward broadly protective epitopes in the pursuit of next-generation vaccines for rapidly evolving pathogens.
Collapse
Affiliation(s)
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
A Competitive Hemagglutination Inhibition Assay for Dissecting Functional Antibody Activity against Influenza Virus. J Virol 2021; 95:e0237920. [PMID: 34523961 DOI: 10.1128/jvi.02379-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza remains one of the most contagious infectious diseases. Approximately, 25 to 50 million people suffer from influenza-like illness in the United States annually, leading to almost 1 million hospitalizations. Globally, the World Health Organization (WHO) estimates 250,000 to 500,000 mortalities associated with secondary respiratory complications due to influenza virus infection every year. Currently, seasonal vaccination represents the best countermeasure to prevent influenza virus spread and transmission in the general population. However, presently licensed influenza vaccines are about 60% effective on average, and their effectiveness varies from season to season and among age groups, as well as between different influenza subtypes within a single season. The hemagglutination inhibition (HAI) assay represents the gold standard method for measuring the functional antibody response elicited following standard-of-care vaccination, along with evaluating the efficacy of under-development influenza vaccines in both animal models and clinical trial settings. However, using the classical HAI approach, it is not possible to dissect the complexities of variable epitope recognition within a polyclonal antibody response. In this paper, we describe a straightforward competitive HAI-based method using a combination of influenza virus and recombinant hemagglutinin (HA) proteins to dissect the HAI functional activity of HA-specific antibody populations in a single assay format. IMPORTANCE The hemagglutination inhibition (HAI) assay is a well-established and reproducible method that quantifies functional antibody activity against influenza viruses and, in particular, the capability of an antibody formulation to inhibit the binding of hemagglutinin (HA) to sialic acid. However, the HAI assay does not provide full insights on the breadth and epitope recognition of the antibody formulation, especially in the context of polyclonal sera, where multiple antibody specificities contribute to the overall observed functional activity. In this report we introduce the use of Y98F point-mutated recombinant HA (HAΔSA) proteins, which lack sialic acid binding activity, in the context of the HAI assay as a means to absorb out certain HA-directed (i.e., strain-specific or cross-reactive) antibody populations. This modification to the classical HAI assay, referred to as the competitive HAI assay, represents a new tool to dissect the magnitude and breadth of polyclonal antibodies elicited through vaccination or natural infection.
Collapse
|
19
|
Allen JD, Ross TM. Evaluation of Next-Generation H3 Influenza Vaccines in Ferrets Pre-Immune to Historical H3N2 Viruses. Front Immunol 2021; 12:707339. [PMID: 34475872 PMCID: PMC8406686 DOI: 10.3389/fimmu.2021.707339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Each person has a unique immune history to past influenza virus infections. Exposure to influenza viruses early in life establishes memory B cell populations that influence future immune responses to influenza vaccination. Current influenza vaccines elicit antibodies that are typically strain specific and do not offer broad protection against antigenically drifted influenza strains in all age groups of people. This is particularly true for vaccine antigens of the A(H3N2) influenza virus subtype, where continual antigenic drift necessitates frequent vaccine reformulation. Broadly-reactive influenza virus vaccine antigens offer a solution to combat antigenic drift, but they also need to be equally effective in all populations, regardless of prior influenza virus exposure history. This study examined the role that pre-existing immunity plays on influenza virus vaccination. Ferrets were infected with historical A(H3N2) influenza viruses isolated from either the 1970’s, 1980’s, or 1990’s and then vaccinated with computationally optimized broadly reactive antigens (COBRA) or wild-type (WT) influenza virus like particles (VLPs) expressing hemagglutinin (HA) vaccine antigens to examine the expansion of immune breadth. Vaccines with the H3 COBRA HA antigens had more cross-reactive antibodies following a single vaccination in all three pre-immune regimens than vaccines with WT H3 HA antigens against historical, contemporary, and future drifted A(H3N2) influenza viruses. The H3 COBRA HA vaccines also induced antibodies capable of neutralizing live virus infections against modern drifted A(H3N2) strains at higher titers than the WT H3 HA vaccine comparators.
Collapse
Affiliation(s)
- James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
21
|
Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. J Virol 2021; 95:e0075921. [PMID: 34160258 DOI: 10.1128/jvi.00759-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.
Collapse
|
22
|
Huang Y, França MS, Allen JD, Shi H, Ross TM. Next Generation of Computationally Optimized Broadly Reactive HA Vaccines Elicited Cross-Reactive Immune Responses and Provided Protection against H1N1 Virus Infection. Vaccines (Basel) 2021; 9:vaccines9070793. [PMID: 34358209 PMCID: PMC8310220 DOI: 10.3390/vaccines9070793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.
Collapse
Affiliation(s)
- Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (Y.H.); (J.D.A.); (H.S.)
| | - Monique S. França
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA;
| | - James D. Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (Y.H.); (J.D.A.); (H.S.)
| | - Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (Y.H.); (J.D.A.); (H.S.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (Y.H.); (J.D.A.); (H.S.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-9708; Fax: +1-706-583-0297
| |
Collapse
|
23
|
Nagashima KA, Mousa JJ. Next-Generation Influenza HA Immunogens and Adjuvants in Pursuit of a Broadly Protective Vaccine. Viruses 2021; 13:v13040546. [PMID: 33805245 PMCID: PMC8064354 DOI: 10.3390/v13040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kaito A. Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
24
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
25
|
Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. mSphere 2021; 6:6/2/e00052-21. [PMID: 33692193 PMCID: PMC8546680 DOI: 10.1128/msphere.00052-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.
Collapse
|
26
|
Next generation methodology for updating HA vaccines against emerging human seasonal influenza A(H3N2) viruses. Sci Rep 2021; 11:4554. [PMID: 33654128 PMCID: PMC7925519 DOI: 10.1038/s41598-020-79590-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 01/31/2023] Open
Abstract
While vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.
Collapse
|
27
|
Computationally Optimized Broadly Reactive H2 HA Influenza Vaccines Elicited Broadly Cross-Reactive Antibodies and Protected Mice from Viral Challenges. J Virol 2020; 95:JVI.01526-20. [PMID: 33115871 DOI: 10.1128/jvi.01526-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023] Open
Abstract
Influenza viruses have caused numerous pandemics throughout human history. The 1957 influenza pandemic was initiated by an H2N2 influenza virus. This H2N2 influenza virus was the result of a reassortment event between a circulating H2N2 avian virus and the seasonal H1N1 viruses in humans. Previously, our group has demonstrated the effectiveness of hemagglutinin (HA) antigens derived using computationally optimized broadly reactive antigen (COBRA) methodology against H1N1, H3N2, and H5N1 viruses. Using the COBRA methodology, H2 HA COBRA antigens were designed using sequences from H2N2 viruses isolated from humans in the 1950s and 1960s, as well as H2Nx viruses isolated from avian and mammalian species between the 1950s and 2016. In this study, the effectiveness of H2 COBRA HA antigens (Z1, Z3, Z5, and Z7) was evaluated in DBA/2J mice and compared to that of wild-type H2 HA antigens. The COBRA HA vaccines elicited neutralizing antibodies to the majority of viruses in our H2 HA panel and across all three clades as measured by hemagglutination inhibition (HAI) and neutralization assays. Comparatively, several wild-type HA vaccines elicited antibodies against a majority of the viruses in the H2 HA panel. DBA/2J mice vaccinated with COBRA vaccines showed increase survival for all three viral challenges compared to the wild-type H2 vaccines. In particular, the Z1 COBRA is a promising candidate for future work toward a pandemic H2 influenza vaccine.IMPORTANCE H2N2 influenza has caused at least one pandemic in the past. Given that individuals born after 1968 have not been exposed to H2N2 influenza viruses, a future pandemic caused by H2 influenza is likely. An effective H2 influenza vaccine would need to elicit broadly cross-reactive antibodies to multiple H2 influenza viruses. Choosing a wild-type virus to create a vaccine may elicit a narrow immune response and not protect against multiple H2 influenza viruses. COBRA H2 HA vaccines were developed and evaluated in mice along with wild-type H2 HA vaccines. Multiple COBRA H2 HA vaccines protected mice from all three viral challenges and produced broadly cross-reactive neutralizing antibodies to H2 influenza viruses.
Collapse
|
28
|
Ecker JW, Kirchenbaum GA, Pierce SR, Skarlupka AL, Abreu RB, Cooper RE, Taylor-Mulneix D, Ross TM, Sautto GA. High-Yield Expression and Purification of Recombinant Influenza Virus Proteins from Stably-Transfected Mammalian Cell Lines. Vaccines (Basel) 2020; 8:vaccines8030462. [PMID: 32825605 PMCID: PMC7565037 DOI: 10.3390/vaccines8030462] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses infect millions of people each year, resulting in significant morbidity and mortality in the human population. Therefore, generation of a universal influenza virus vaccine is an urgent need and would greatly benefit public health. Recombinant protein technology is an established vaccine platform and has resulted in several commercially available vaccines. Herein, we describe the approach for developing stable transfected human cell lines for the expression of recombinant influenza virus hemagglutinin (HA) and recombinant influenza virus neuraminidase (NA) proteins for the purpose of in vitro and in vivo vaccine development. HA and NA are the main surface glycoproteins on influenza virions and the major antibody targets. The benefits for using recombinant proteins for in vitro and in vivo assays include the ease of use, high level of purity and the ability to scale-up production. This work provides guidelines on how to produce and purify recombinant proteins produced in mammalian cell lines through either transient transfection or generation of stable cell lines from plasmid creation through the isolation step via Immobilized Metal Affinity Chromatography (IMAC). Collectively, the establishment of this pipeline has facilitated large-scale production of recombinant HA and NA proteins to high purity and with consistent yields, including glycosylation patterns that are very similar to proteins produced in a human host.
Collapse
Affiliation(s)
- Jeffrey W. Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Spencer R. Pierce
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - R. Ethan Cooper
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Dawn Taylor-Mulneix
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Correspondence: ; Tel.: +1-706-542-6711
| |
Collapse
|
29
|
Skarlupka AL, Handel A, Ross TM. Dataset of antigenic distance measures, hemagglutination inhibition, viral lung titers, and weight loss in mice and ferrets when exposed to HA-based vaccination or sub-lethal A(H1) influenza infection. Data Brief 2020; 32:106118. [PMID: 32793786 PMCID: PMC7412860 DOI: 10.1016/j.dib.2020.106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 10/28/2022] Open
Affiliation(s)
- Amanda L Skarlupka
- Center for Vaccines and Immunology, University of Georgia, United States
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, and Health Informatics Institute and Center for the Ecology of Infectious Diseases, University of Georgia, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, United States.,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
30
|
Skarlupka AL, Handel A, Ross TM. Influenza hemagglutinin antigenic distance measures capture trends in HAI differences and infection outcomes, but are not suitable predictive tools. Vaccine 2020; 38:5822-5830. [PMID: 32682618 DOI: 10.1016/j.vaccine.2020.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023]
Abstract
Vaccination is the most effective method to combat influenza. Vaccine effectiveness is influenced by the antigenic distance between the vaccine strain and the actual circulating virus. Amino acid sequence based methods of quantifying the antigenic distance were designed to predict influenza vaccine effectiveness in humans. The use of these antigenic distance measures has been proposed as an additive method for seasonal vaccine selection. In this report, several antigenic distance measures were evaluated as predictors of hemagglutination inhibition titer differences and clinical outcomes following influenza vaccination or infection in mice or ferrets. The antigenic distance measures described the increasing trend in the change of HAI titer, lung viral titer and percent weight loss in mice and ferrets. However, the variability of outcome variables produced wide prediction intervals for any given antigenic distance value. The amino acid substitution based antigenic distance measures were no better predictors of viral load and weight loss than HAI titer differences, the current predictive measure of immunological correlate of protection for clinical signs after challenge.
Collapse
Affiliation(s)
- Amanda L Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
31
|
De Jong NMC, Aartse A, Van Gils MJ, Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev Vaccines 2020; 19:563-577. [PMID: 32510256 DOI: 10.1080/14760584.2020.1777861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Influenza virus infections cause serious illness in millions of people each year. Although influenza virus vaccines are available, they are not optimally effective due to mismatches between the influenza virus strains used for the vaccine and the circulating strains. To improve protection by vaccines, a broadly protective or universal vaccine may be required. Strategies to develop universal vaccines aim to elicit broadly reactive antibodies, which target regions on the viral hemagglutinin (HA) protein which are conserved between strains. Broadly reactive antibodies have helped to identify such targets and can guide the design of such a vaccine. AREAS COVERED The first part of this review provides an in-depth overview of broadly reactive anti-HA antibodies, discussing their origin, breadth and their mechanisms of protection. The second part discusses the technical design and mode of action of potential universal vaccine candidates that aim to elicit these broadly reactive antibodies and provide protection against a majority of influenza strains. EXPERT OPINION While great strides have been made in the development of universal influenza vaccine candidates, real-life use still requires improvement of stability, enhancement of their breadth of protection and ease of production, while efficacies need to be determined in human trials.
Collapse
Affiliation(s)
- Nina M C De Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands.,Department of Virology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Marit J Van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
32
|
Abreu RB, Clutter EF, Attari S, Sautto GA, Ross TM. IgA Responses Following Recurrent Influenza Virus Vaccination. Front Immunol 2020; 11:902. [PMID: 32508822 PMCID: PMC7249748 DOI: 10.3389/fimmu.2020.00902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Influenza is a highly contagious viral respiratory disease that affects millions of people worldwide each year. Annual vaccination is recommended by the World Health Organization to reduce influenza severity and limit transmission through elicitation of antibodies targeting mainly the hemagglutinin glycoprotein of the influenza virus. Antibodies elicited by current seasonal influenza vaccines are predominantly strain-specific. However, continuous antigenic drift by circulating influenza viruses facilitates escape from pre-existing antibodies requiring frequent reformulation of the seasonal influenza vaccine. Traditionally, immunological responses to influenza vaccination have been largely focused on IgG antibodies, with almost complete disregard of other isotypes. In this report, young adults (18–34 years old) and elderly (65–85 years old) subjects were administered the split inactivated influenza vaccine for 3 consecutive seasons and their serological IgA and IgG responses were profiled. Moreover, correlation analysis showed a positive relationship between vaccine-induced IgA antibody titers and traditional immunological endpoints, exposing vaccine-induced IgA antibodies as an important novel immune correlate during influenza vaccination.
Collapse
Affiliation(s)
- Rodrigo B Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Emily F Clutter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Sara Attari
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
33
|
Ross TM. Universal Influenza Vaccine Approaches Using Full-Length or Head-Only Hemagglutinin Proteins. J Infect Dis 2020; 219:S57-S61. [PMID: 30715379 DOI: 10.1093/infdis/jiz004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently an unmet need to develop an effective broadly reactive or universal vaccine against influenza viruses capable of conferring protection against both seasonal and prepandemic strains. Influenza vaccines elicit immune responses that are protective against antigenically similar viruses within a subtype. These vaccines elicit antibodies that target the surface viral glycoproteins hemagglutinin and neuraminidase. If there is an antigenic mismatch between these proteins in the influenza vaccines and cocirculating influenza isolates, there is a decrease in the vaccine effectiveness in vaccinated persons. Various novel influenza vaccine candidates are being evaluated in animal studies and clinical human trials. This article focuses on the advantages and potential shortcomings of broadly reactive or universal vaccine candidates based on the hemagglutinin globular head and the thoughts about using this antigen as the basis for future influenza vaccine strategies.
Collapse
Affiliation(s)
- Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens.,Department of Infectious Diseases, University of Georgia, Athens
| |
Collapse
|
34
|
Skarlupka AL, Ross TM. Immune Imprinting in the Influenza Ferret Model. Vaccines (Basel) 2020; 8:vaccines8020173. [PMID: 32276530 PMCID: PMC7348859 DOI: 10.3390/vaccines8020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
The initial exposure to influenza virus usually occurs during childhood. This imprinting has long-lasting effects on the immune responses to subsequent infections and vaccinations. Animal models that are used to investigate influenza pathogenesis and vaccination do recapitulate the pre-immune history in the human population. The establishment of influenza pre-immune ferret models is necessary for understanding infection and transmission and for designing efficacious vaccines.
Collapse
Affiliation(s)
- Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-9708
| |
Collapse
|
35
|
An Influenza Virus Hemagglutinin Computationally Optimized Broadly Reactive Antigen Elicits Antibodies Endowed with Group 1 Heterosubtypic Breadth against Swine Influenza Viruses. J Virol 2020; 94:JVI.02061-19. [PMID: 31996430 DOI: 10.1128/jvi.02061-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Huang Y, Owino SO, Crevar CJ, Carter DM, Ross TM. N-Linked Glycans and K147 Residue on Hemagglutinin Synergize To Elicit Broadly Reactive H1N1 Influenza Virus Antibodies. J Virol 2020; 94:e01432-19. [PMID: 31852790 PMCID: PMC7158744 DOI: 10.1128/jvi.01432-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Vaccination is the most effective way to prevent influenza virus infections. However, the diversity of antigenically distinct isolates is a challenge for vaccine development. In order to overcome the antigenic variability and improve the protective efficacy of influenza vaccines, our research group has pioneered the development of computationally optimized broadly reactive antigens (COBRA) for hemagglutinin (HA). Two candidate COBRA HA vaccines, P1 and X6, elicited antibodies with differential patterns of hemagglutination inhibition (HAI) activity against a panel of H1N1 influenza viruses. In order to better understand how these HA antigens elicit broadly reactive immune responses, epitopes in the Cb, Sa, or Sb antigenic sites of seasonal-like and pandemic-like wild-type or COBRA HA antigens were exchanged with homologous regions in the COBRA HA proteins to determine which regions and residues were responsible for the elicited antibody profile. Mice were vaccinated with virus-like particles (VLPs) expressing one of the 12 modified HA antigens (designated V1 to V12), COBRA HA antigens, or wild-type HA antigens. The elicited antisera was assessed for hemagglutination inhibition activity against a panel of historical seasonal-like and pandemic-like H1N1 influenza viruses. Primarily, the pattern of glycosylation sites and residues in the Sa antigenic region, around the receptor binding site (RBS), served as signatures for the elicitation of broadly reactive antibodies by these HA immunogens. Mice were vaccinated with VLPs expressing HA antigens that lacked a glycosylation site at residue 144 and a deleted lysine at position 147 residue were more effective at protecting against morbidity and mortality following infection with pandemic-like and seasonal-like H1N1 influenza viruses.IMPORTANCE There is a great need to develop broadly reactive or universal vaccines against influenza viruses. Advanced, next-generation hemagglutinin (HA) head-based vaccines that elicit protective antibodies against H1N1 influenza viruses have been developed. This study focused on understanding the specific amino acids around the receptor binding site (RBS) that were important in elicitation of these broadly reactive antibodies. Specific glycan sites and amino acids located at the tip of the HA molecule enhanced the elicitation of these broadly reactive antibodies. A better understanding of the HA structures around the RBS will lead to more effective HA immunogens.
Collapse
Affiliation(s)
- Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Simon O Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Corey J Crevar
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Donald M Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
37
|
Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR, Kleanthous H, Ross TM. A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2019; 204:375-385. [PMID: 31811019 DOI: 10.4049/jimmunol.1900379] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Computationally optimized broadly reactive Ags (COBRA) targeting H1 elicit a broad cross-reactive and cross-neutralizing Ab response against multiple H1N1 viral strains. To assess B cell breadth, Mus musculus (BALB/c) Ab-secreting cells elicited by a candidate COBRA hemagglutinin (HA) (termed P1) were compared with Ab-secreting cells elicited by historical H1N1 vaccine strains. In addition, to evaluate the Ab response elicited by P1 HA at increased resolution, a panel of P1 HA-specific B cell hybridomas was generated following immunization of mice with COBRA P1 and the corresponding purified mAbs were characterized for Ag specificity and neutralization activity. Both head- and stem-directed mAbs were elicited by the P1 HA Ag, with some mAbs endowed with Ab-dependent cell-mediated cytotoxicity activity. P1 HA-elicited mAbs exhibited a wide breadth of HA recognition, ranging from narrowly reactive to broadly reactive mAbs. Interestingly, we identified a P1 HA-elicited mAb (1F8) exhibiting broad hemagglutination inhibition activity against both seasonal and pandemic H1N1 influenza strains. Furthermore, mAb 1F8 recognized an overlapping, but distinct, epitope compared with other narrowly hemagglutination inhibition-positive mAbs elicited by the P1 or wild-type HA Ags. Finally, P1 HA-elicited mAbs were encoded by distinct H chain variable and L chain variable gene segment rearrangements and possessed unique CDR3 sequences. Collectively, the functional characterization of P1 HA-elicited mAbs sheds further insights into the underlying mechanism(s) of expanded Ab breadth elicited by a COBRA HA-based immunogen and advances efforts toward design and implementation of a more broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Greg A Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Rodrigo B Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Jeffrey W Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Spencer R Pierce
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; .,Department of Infectious Diseases, University of Georgia, Athens, GA 30602
| |
Collapse
|
38
|
Abstract
Introduction: High variance is associated with influenza vaccine effectiveness (VE). Accumulating evidence suggests that preexisting influenza-specific immunity results in the variance in VE and skews overall immune response to vaccination. Nevertheless, the investigation of preexisting immunity is highly limited due to the lack of proper methodology to explore the complex individual immune history.Areas covered: Retrospective observational studies have shown that the preexisting influenza specific immunity influences on VE. To simplify a discussion, we summarized important findings from the observational studies based on the transition of the individual immune history: the first exposure to influenza virus, the first vaccination, and repetitive exposure throughout life. We also discussed the prospectus of pre-immunized animal models to investigate the interaction between preexisting immunity and vaccine efficacy.Expert opinion: A better understanding in the underlying mechanisms on preexisting immunity is critical to improve VE and to help develop novel vaccine strategies. Using animals pre-immunized with historical influenza strains is a promising approach to verify the underlying immunologic mechanism of interaction between preexisting immunity and vaccine antigen. Also, pre-immunized animal models will be better able to evaluate the efficacy of novel vaccine strategies than naïve animals.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
Bissel SJ, Carter CE, Wang G, Johnson SK, Lashua LP, Kelvin AA, Wiley CA, Ghedin E, Ross TM. Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2389-2399. [PMID: 31585069 DOI: 10.1016/j.ajpath.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/29/2022]
Abstract
Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Chalise E Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Lauren P Lashua
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York
| | - Alyson A Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Centre for Vaccinology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York; Department of Epidemiology, College of Global Public Health, New York University, New York, New York
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia; Department of Infectious Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
40
|
Historical H1N1 Influenza Virus Imprinting Increases Vaccine Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at Vaccination in Ferrets. Vaccines (Basel) 2019; 7:vaccines7040133. [PMID: 31569351 PMCID: PMC6963198 DOI: 10.3390/vaccines7040133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.
Collapse
|
41
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Kanekiyo M, Joyce MG, Gillespie RA, Gallagher JR, Andrews SF, Yassine HM, Wheatley AK, Fisher BE, Ambrozak DR, Creanga A, Leung K, Yang ES, Boyoglu-Barnum S, Georgiev IS, Tsybovsky Y, Prabhakaran MS, Andersen H, Kong WP, Baxa U, Zephir KL, Ledgerwood JE, Koup RA, Kwong PD, Harris AK, McDermott AB, Mascola JR, Graham BS. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol 2019; 20:362-372. [PMID: 30742080 PMCID: PMC6380945 DOI: 10.1038/s41590-018-0305-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cross Reactions/drug effects
- Cross Reactions/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hadi M Yassine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaroslav Tsybovsky
- Electron Microscope Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Madhu S Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Baxa
- Electron Microscope Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Cryo-EM facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathryn L Zephir
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Elicitation of Protective Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in Ferrets Preimmune to Historical H3N2 Influenza Viruses. J Virol 2019; 93:JVI.00946-18. [PMID: 30429350 DOI: 10.1128/jvi.00946-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
The vast majority of people already have preexisting immune responses to influenza viruses from one or more subtypes. However, almost all preclinical studies evaluate new influenza vaccine candidates in immunologically naive animals. Recently, our group demonstrated that priming naive ferrets with broadly reactive H1 COBRA HA-based vaccines boosted preexisting antibodies induced by wild-type H1N1 virus infections. These H1 COBRA hemagglutinin (HA) antigens induced antibodies with HAI activity against multiple antigenically different H1N1 viral variants. In this study, ferrets, preimmune to historical H3N2 viruses, were vaccinated with virus-like particle (VLP) vaccines expressing either an HA from a wild-type H3 influenza virus or a COBRA H3 HA antigen (T6, T7, T10, or T11). The elicited antisera had the ability to neutralize virus infection against either a panel of viruses representing vaccine strains selected by the World Health Organization or a set of viral variants that cocirculated during the same time period. Preimmune animals vaccinated with H3 COBRA T10 HA antigen elicited sera with higher hemagglutination inhibition (HAI) antibody titers than antisera elicited by VLP vaccines with wild-type HA VLPs in preimmune ferrets. However, while the T11 COBRA vaccine did not elicit HAI activity, the elicited antibodies did neutralize antigenically distinct H3N2 influenza viruses. Overall, H3 COBRA-based HA vaccines were able to neutralize both historical H3 and contemporary, as well as future, H3N2 viruses with higher titers than vaccines with wild-type H3 HA antigens. This is the first report demonstrating the effectiveness of a broadly reactive H3N3 vaccine in a preimmune ferret model.IMPORTANCE After exposure to influenza virus, the host generates neutralizing anti-hemagglutinin (anti-HA) antibodies against that specific infecting influenza strain. These antibodies can also neutralize some, but not all, cocirculating strains. The goal of next-generation influenza vaccines, such as HA head-based COBRA, is to stimulate broadly protective neutralizing antibodies against all strains circulating within a subtype, in particular those that persist over multiple influenza seasons, without requiring an update to the vaccine. To mimic the human condition, COBRA HA virus-like particle vaccines were tested in ferrets that were previously exposed to historical H3N2 influenza viruses. In this model, these vaccines elicited broadly protective antibodies that neutralized cocirculating H3N2 influenza viruses isolated over a 20-year period. This is the first study to show the effectiveness of H3N3 COBRA HA vaccines in a host with preexisting immunity to influenza.
Collapse
|
44
|
Skarlupka AL, Owino SO, Suzuki-Williams LP, Crevar CJ, Carter DM, Ross TM. Computationally optimized broadly reactive vaccine based upon swine H1N1 influenza hemagglutinin sequences protects against both swine and human isolated viruses. Hum Vaccin Immunother 2019; 15:2013-2029. [PMID: 31448974 PMCID: PMC6773400 DOI: 10.1080/21645515.2019.1653743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Swine H1 influenza viruses were stable within pigs for nearly 70 years until in 1998 when a classical swine virus reassorted with avian and human influenza viruses to generate the novel triple reassortant H1N1 strain that eventually led to the 2009 influenza pandemic. Previously, our group demonstrated broad protection against a panel of human H1N1 viruses using HA antigens derived by the COBRA methodology. In this report, the effectiveness of COBRA HA antigens (SW1, SW2, SW3 and SW4), which were designed using only HA sequences from swine H1N1 and H1N2 isolates, were tested in BALB/c mice. The effectiveness of these vaccines were compared to HA sequences designed using both human and swine H1 HA sequences or human only sequences. SW2 and SW4 elicited antibodies that detected the pandemic-like virus, A/California/07/2009 (CA/09), had antibodies with HAI activity against almost all the classical swine influenza viruses isolated from 1973-2015 and all of the Eurasian viruses in our panel. However, sera collected from mice vaccinated with SW2 or SW4 had HAI activity against ~25% of the human seasonal-like influenza viruses isolated from 2009-2015. In contrast, the P1 COBRA HA vaccine (derived from both swine and human HA sequences) elicited antibodies that had HAI activity against both swine and human H1 viruses and protected against CA/09 challenge, but not a human seasonal-like swine H1N2 virus challenge. However, the SW1 vaccine protected against this challenge as well as the homologous vaccine. These results support the idea that a pan-swine-human H1 influenza virus vaccine is possible.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Computers, Molecular
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Swine
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
| | - Simon O. Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Corey J. Crevar
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Donald M. Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ Vaccines 2018; 3:40. [PMID: 30302282 PMCID: PMC6167326 DOI: 10.1038/s41541-018-0076-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023] Open
Abstract
Immune responses to inactivated vaccines against avian influenza are poor due in part to lack of immune memory. Adjuvants significantly increased virus neutralizing titers. We performed comprehensive analyses of polyclonal antibody responses following FDA-approved adjuvanted H5N1-A/Indonesia vaccine, administered in presence or absence of AS03. Using Whole Genome Fragment Phage Display Libraries, we observed that AS03 induced antibody epitope diversity to viral hemagglutinin (HA) and neuraminidase compared with unadjuvanted vaccine. Furthermore, AS03 promoted significant antibody affinity maturation to properly folded H5-HA1 (but not to HA2) domain, which correlated with neutralization titers against both vaccine and heterologous H5N1 strains. However, no increase in heterosubtypic cross-neutralization of Group1-H1N1 seasonal strains was observed. AS03-H5N1 vaccine also induced higher neuraminidase inhibition antibody titers. This study provides insight into the differential impacts of AS03 adjuvant on H5N1 vaccine-induced antibody responses that may help optimize vaccine platforms for future vaccines with improved protection against seasonal and pandemic influenza strains.
Collapse
|
46
|
Allen JD, Ray S, Ross TM. Split inactivated COBRA vaccine elicits protective antibodies against H1N1 and H3N2 influenza viruses. PLoS One 2018; 13:e0204284. [PMID: 30265682 PMCID: PMC6161894 DOI: 10.1371/journal.pone.0204284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Development of broadly reactive or universal influenza vaccines will be a paradigm shifting event for the influenza vaccine field. These next generation vaccines could replace the current standard of care with vaccines that elicit broadly cross-protective immune responses. However, a variety of in vitro and in vivo models are necessary to make the best assessments of these vaccine formulations to determine their mechanisms of action, and allow for downselection of candidates prior to human clinical trials. Our group has developed the computationally optimized broadly reactive antigen (COBRA) technology to develop HA head-based strategies to elicit antibodies against H1, H3, and H5 influenza strains. These vaccines elicit broadly reactive antibody responses that neutralize not only historical and contemporary vaccine strains, but also co-circulating variants in mice. In this study, we used H1 and H3 HA antigens in a split, inactivated vaccine (IIV) formulation in combination with the AF03 squalene-in-water emulsion adjuvant in ferrets immunologically naïve to influenza virus. The H3 COBRA IIV vaccine T11 elicited antibodies with HAI activity against more H3N2 influenza strains compared to IIV expressing wild-type H3 HA antigens, except for IIV vaccines expressing the HA from A/Texas/50/2012 (Tx/12) virus. H1 COBRA IIV vaccines, P1 and X6, elicited antibodies that recognized a similar number of H1N1 viruses as those antibodies elicited by IIV expressing the A/California/07/2009 (CA/09) HA. Ferrets vaccinated with the P1 or X6 COBRA IIV were protected against CA/09 challege and cleared virus from the lungs of the ferrets, similar to ferrets vaccinated with the CA/09 IIV.
Collapse
Affiliation(s)
- James D. Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Satyajit Ray
- Sanofi-Pasteur, Inc., Cambridge, MA, United States of America
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
47
|
Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol 2018; 53:88-95. [DOI: 10.1016/j.coi.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
|
48
|
Development of next generation hemagglutinin-based broadly protective influenza virus vaccines. Curr Opin Immunol 2018; 53:51-57. [DOI: 10.1016/j.coi.2018.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 11/24/2022]
|
49
|
Mohn KGI, Zhou F. Clinical Expectations for Better Influenza Virus Vaccines-Perspectives from the Young Investigators' Point of View. Vaccines (Basel) 2018; 6:E32. [PMID: 29861454 PMCID: PMC6027204 DOI: 10.3390/vaccines6020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination-aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.
Collapse
Affiliation(s)
- Kristin G-I Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- Emergency Care clinic, Haukeland University Hospital, Bergen 5021, Norway.
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| |
Collapse
|
50
|
Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J 2018; 15:17. [PMID: 29370862 PMCID: PMC5785881 DOI: 10.1186/s12985-017-0918-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5–30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current vaccine and circulating influenza isolates, vaccinated people may not be afforded complete protection. There is currently an unmet need to develop an effective “broadly-reactive” or “universal” influenza vaccine capable of conferring protection against both seasonal and newly emerging pre-pandemic strains. A number of novel influenza vaccine approaches are currently under evaluation. One approach is the elicitation of an immune response against the “Achille’s heel” of the virus, i.e. conserved viral proteins or protein regions shared amongst seasonal and pre-pandemic strains. Alternatively, other approaches aim toward eliciting a broader immune response capable of conferring protection against the diversity of currently circulating seasonal influenza strains. In this review, the most promising under-development universal vaccine approaches are discussed with an emphasis on those targeting the HA glycoprotein. In particular, their strengths and potential short-comings are discussed. Ultimately, the upcoming clinical evaluation of these universal vaccine approaches will be fundamental to determine their effectiveness against preventing influenza virus infection and/or reducing transmission and disease severity.
Collapse
Affiliation(s)
- Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Greg A Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|