1
|
Cimato G, Zhou X, Brune W, Frascaroli G. Human cytomegalovirus glycoprotein variants governing viral tropism and syncytium formation in epithelial cells and macrophages. J Virol 2024; 98:e0029324. [PMID: 38837351 PMCID: PMC11265420 DOI: 10.1128/jvi.00293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Human cytomegalovirus (HCMV) displays a broad cell tropism, and the infection of biologically relevant cells such as epithelial, endothelial, and hematopoietic cells supports viral transmission, systemic spread, and pathogenesis in the human host. HCMV strains differ in their ability to infect and replicate in these cell types, but the genetic basis of these differences has remained incompletely understood. In this study, we investigated HCMV strain VR1814, which is highly infectious for epithelial cells and macrophages and induces cell-cell fusion in both cell types. A VR1814-derived bacterial artificial chromosome (BAC) clone, FIX-BAC, was generated many years ago but has fallen out of favor because of its modest infectivity. By sequence comparison and genetic engineering of FIX, we demonstrate that the high infectivity of VR1814 and its ability to induce syncytium formation in epithelial cells and macrophages depends on VR1814-specific variants of the envelope glycoproteins gB, UL128, and UL130. We also show that UL130-neutralizing antibodies inhibit syncytium formation, and a FIX-specific mutation in UL130 is responsible for its low infectivity by reducing the amount of the pentameric glycoprotein complex in viral particles. Moreover, we found that a VR1814-specific mutation in US28 further increases viral infectivity in macrophages, possibly by promoting lytic rather than latent infection of these cells. Our findings show that variants of gB and the pentameric complex are major determinants of infectivity and syncytium formation in epithelial cells and macrophages. Furthermore, the VR1814-adjusted FIX strains can serve as valuable tools to study HCMV infection of myeloid cells.IMPORTANCEHuman cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. HCMV infects various cell types, including epithelial cells and macrophages, and some strains induce the fusion of neighboring cells, leading to the formation of large multinucleated cells called syncytia. This process may limit the exposure of the virus to host immune factors and affect pathogenicity. However, the reason why some HCMV strains exhibit a broader cell tropism and why some induce cell fusion more than others is not well understood. We compared two closely related HCMV strains and provided evidence that small differences in viral envelope glycoproteins can massively increase or decrease the virus infectivity and its ability to induce syncytium formation. The results of the study suggest that natural strain variations may influence HCMV infection and pathogenesis in humans.
Collapse
Affiliation(s)
| | - Xuan Zhou
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | |
Collapse
|
2
|
Bonavita CM, White TM, Francis J, Farrell HE, Davis-Poynter NJ, Cardin RD. The Viral G-Protein-Coupled Receptor Homologs M33 and US28 Promote Cardiac Dysfunction during Murine Cytomegalovirus Infection. Viruses 2023; 15:711. [PMID: 36992420 PMCID: PMC10054303 DOI: 10.3390/v15030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
He H, Tan Y, Tang Z, Wang L, Liu S, Wu G. ADAM9: A regulator between HCMV infection and function of smooth muscle cells. J Med Virol 2023; 95:e28352. [PMID: 36437481 DOI: 10.1002/jmv.28352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Lots of epidemiological and clinical studies have shown that human cytomegalovirus (HCMV) is related to the pathogenesis of atherosclerosis. Released by inflammatory cells and vascular smooth muscle cell (VSMCs), metalloproteinases are observed in many pathological vessel conditions, including atherosclerosis and restenosis. This study was designed to investigate the effect of HCMV infection on the expression of metalloproteinases and their involvements in the HCMV-induced functional changes of VSMCs. Differential metalloproteinase after HCMV infection was assayed using reverse transcription-polymerase chain reaction (RT-PCR) microarray. The most significant increased a disintegrin and metalloprotease 9 (ADAM9) was chosen to investigate the mechanism of its specific increase after infection using the treatment of UV-irradiated replication-deficient HCMV, HCMV-infected cell lysate filters or Foscarnet. The function of proliferation, migration, production of inflammatoty factors and phenotypic transformation were determined by using cell counting kit-8, transwell, Enzyme-linked immunosorbent assay, RT-quantitative PCR (qPCR) and Western blot, respectively. Moreover, the effect of ADAM9 deficiency on HCMV replication was also determined using RT-qPCR and immunofluorescence. The expression levels of 6 genes were upregulated and 14 genes were downregulated at different time points after HCMV infection. Among these, the expression level of ADAM9 increased most significantly at each time point and the abnormal expression of ADAM9 might be induced by the early gene products of HCMV. Further studies found that ADAM9 promoted the proliferation, the migration, the production of inflammatory factors and the transit from the contractile phenotype (decreased ACTA2 expression) to the synthetic phenotype (increased osteopontin [OPN] expression). Knockdown theADAM9 expression could rescue the decreased ACTA2 expression, but has no effect on OPN expression. ADAM-9 deficiency didn't affect the replication of HCMV. The findings of our study suggest that HCMV infection changed VSMC function through ADAM9 expression, which may contribute to the understanding of the underlying pathological mechanisms of HCMV-induced atherosclerosis.
Collapse
Affiliation(s)
- Hanlin He
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuiping Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,School of Basic Medical Sciences, China-Africa Research Centre of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory Breast Cancer: The Secretome of HCMV+ Tumor-Associated Macrophages Enhances Proliferation, Invasion, Colony Formation, and Expression of Cancer Stem Cell Markers. Front Oncol 2022; 12:899622. [PMID: 35847899 PMCID: PMC9281473 DOI: 10.3389/fonc.2022.899622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive phenotype of breast cancer that is characterized by a high incidence early metastasis. We previously reported a significant association of human cytomegalovirus (HCMV) DNA in the carcinoma tissues of IBC patients but not in the adjacent normal tissues. HCMV-infected macrophages serve as “mobile vectors” for spreading and disseminating virus to different organs, and IBC cancer tissues are highly infiltrated by tumor-associated macrophages (TAMs) that enhance IBC progression and promote breast cancer stem cell (BCSC)-like properties. Therefore, there is a need to understand the role of HCMV-infected TAMs in IBC progression. The present study aimed to test the effect of the secretome (cytokines and secreted factors) of TAMs derived from HCMV+ monocytes isolated from IBC specimens on the proliferation, invasion, and BCSC abundance when tested on the IBC cell line SUM149. HCMV+ monocytes were isolated from IBC patients during modified radical mastectomy surgery and tested in vitro for polarization into TAMs using the secretome of SUM149 cells. MTT, clonogenic, invasion, real-time PCR arrays, PathScan Intracellular Signaling array, and cytokine arrays were used to characterize the secretome of HCMV+ TAMs for their effect on the progression of SUM149 cells. The results showed that the secretome of HCMV+ TAMs expressed high levels of IL-6, IL-8, and MCP-1 cytokines compared to HCMV- TAMs. In addition, the secretome of HCMV+ TAMs induced the proliferation, invasion, colony formation, and expression of BCSC-related genes in SUM149 cells compared to mock untreated cells. In addition, the secretome of HCMV+ TAMs activated the phosphorylation of intracellular signaling molecules p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK in SUM149 cells. In conclusion, this study shows that the secretome of HCMV+ TAMs enhances the proliferation, invasion, colony formation, and BCSC properties by activating the phosphorylation of p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK intracellular signaling molecules in IBC cells.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- *Correspondence: Hossam Taha Mohamed,
| | | | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Suez, Egypt
| | - Robert J. Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Sector of International Cooperation, Galala University, Suez, Egypt
| |
Collapse
|
5
|
Tan JS, Ren JM, Fan L, Wei Y, Hu S, Zhu SS, Yang Y, Cai J. Genetic Predisposition of Anti-Cytomegalovirus Immunoglobulin G Levels and the Risk of 9 Cardiovascular Diseases. Front Cell Infect Microbiol 2022; 12:884298. [PMID: 35832381 PMCID: PMC9272786 DOI: 10.3389/fcimb.2022.884298] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating evidence has indicated that persistent human cytomegalovirus (HCMV) infection is associated with several cardiovascular diseases including atherosclerosis and coronary artery disease. However, whether there is a causal association between the level of anti-HCMV immune response and the risk of cardiovascular diseases remains unknown. Methods Single-nucleotide polymorphisms associated with anti-cytomegalovirus immunoglobulin (Ig) G levels were used as instrumental variables to estimate the causal effect of anti-cytomegalovirus IgG levels on 9 cardiovascular diseases (including atrial fibrillation, coronary artery disease, hypertension, heart failure, peripheral artery disease, pulmonary embolism, deep vein thrombosis of the lower extremities, rheumatic valve diseases, and non-rheumatic valve diseases). For each cardiovascular disease, Mendelian randomization (MR) analyses were performed. Inverse variance-weighted meta-analysis (IVW) with a random-effects model was used as a principal analysis. In addition to this, the weighted median approach and MR-Egger method were used for further sensitivity analysis. Results In the IVW analysis, genetically predicted anti-cytomegalovirus IgG levels were suggestively associated with coronary artery disease with an odds ratio (OR) of 1.076 [95% CI, 1.009–1.147; p = 0.025], peripheral artery disease (OR 1.709; 95% CI, 1.039–2.812; p = 0.035), and deep vein thrombosis (OR 1.002; 95% CI, 1.000–1.004; p = 0.025). In the further analysis, similar causal associations were obtained from weighted median analysis and MR-Egger analysis with lower precision. No notable heterogeneities and horizontal pleiotropies were observed (p > 0.05). Conclusions/Interpretation Our findings first provide direct evidence that genetic predisposition of anti-cytomegalovirus IgG levels increases the risk of coronary artery disease, peripheral artery disease, and deep vein thrombosis.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Meng Ren
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Luyun Fan
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Song Hu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Song Zhu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmin Yang
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| | - Jun Cai
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| |
Collapse
|
6
|
Musikant D, Higa R, Rodríguez CE, Edreira MM, Campetella O, Jawerbaum A, Leguizamón MS. Sialic acid removal by trans-sialidase modulates MMP-2 activity during Trypanosoma cruzi infection. Biochimie 2021; 186:82-93. [PMID: 33891967 PMCID: PMC8187320 DOI: 10.1016/j.biochi.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases (MMPs) not only play a relevant role in homeostatic processes but are also involved in several pathological mechanisms associated with infectious diseases. As their clinical relevance in Chagas disease has recently been highlighted, we studied the modulation of circulating MMPs by Trypanosoma cruzi infection. We found that virulent parasites from Discrete Typing Units (DTU) VI induced higher proMMP-2 and MMP-2 activity in blood, whereas both low (DTU I) and high virulence parasites induced a significant decrease in proMMP-9 plasma activity. Moreover, trans-sialidase, a relevant T. cruzi virulence factor, is involved in MMP-2 activity modulation both in vivo and in vitro. It removes α2,3-linked sialyl residues from cell surface glycoconjugates, which then triggers the PKC/MEK/ERK signaling pathway. Additionally, bacterial sialidases specific for this sialyl residue linkage displayed similar MMP modulation profiles and triggered the same signaling pathways. This novel pathogenic mechanism, dependent on sialic acid removal by the neuraminidase activity of trans-sialidase, can be exploited by different pathogens expressing sialidases with similar specificity. Thus, here we present a new pathogen strategy through the regulation of the MMP network.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Romina Higa
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Cristina E Rodríguez
- Departamento de Microbiología, IMPAM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN-CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160 C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina
| | - Alicia Jawerbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - María S Leguizamón
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina.
| |
Collapse
|
7
|
Vasilieva E, Gianella S, Freeman ML. Novel Strategies to Combat CMV-Related Cardiovascular Disease. Pathog Immun 2020; 5:240-274. [PMID: 33089035 PMCID: PMC7556413 DOI: 10.20411/pai.v5i1.382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV), a ubiquitous human pathogen that is never cleared from the host, has long been thought to be relatively innocuous in immunocompetent adults, but causes severe complications including blindness, end-organ disease, and death in newborns and in immuno-compromised individuals, such as organ transplant recipients and those suffering from AIDS. Yet even in persons with intact immunity, CMV infection is associated with profound stimulation of immune and inflammatory pathways. Carriers of CMV infection also have an elevated risk of developing cardiovascular complications. In this review, we define the proposed mechanisms of how CMV contributes to cardiovascular disease (CVD), describe current approaches to target CMV, and discuss how these strategies may or may not alleviate cardiovascular complications in those with CMV infection. In addition, we discuss the special situation of CMV coinfection in people with HIV infection receiving antiretroviral therapy, and describe how these 2 viral infections may interact to potentiate CVD in this especially vulnerable population.
Collapse
Affiliation(s)
- Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine; Department of Medicine; Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
8
|
Abstract
Cytomegalovirus (CMV) reactivation has been described in adults with critical illness caused by diverse etiologies, especially severe sepsis, and observational studies have linked CMV reactivation with worse clinical outcomes in this setting. In this study, we review observational clinical data linking development of CMV reactivation with worse outcomes in patients in the intensive care unit, discuss potential biologically plausible mechanisms for a causal association, and summarize results of initial interventional trials that examined the effects of CMV prevention. These data, taken together, highlight the need for a randomized, placebo-controlled efficacy trial (1) to definitively determine whether prevention of CMV reactivation improves clinical outcomes of patients with critical illness and (2) to define the underlying mechanism(s).
Collapse
Affiliation(s)
- Hannah Imlay
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Lebedeva A, Maryukhnich E, Grivel JC, Vasilieva E, Margolis L, Shpektor A. Productive Cytomegalovirus Infection Is Associated With Impaired Endothelial Function in ST-Elevation Myocardial Infarction. Am J Med 2020; 133:133-142. [PMID: 31295440 PMCID: PMC6940528 DOI: 10.1016/j.amjmed.2019.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND An association between productive cytomegalovirus infection and atherosclerosis was shown recently in several trials, including a previous study of ours. However, the mechanism involved in this association is still under investigation. Here, we addressed the interaction between productive cytomegalovirus infection and endothelial function in patients with ST-elevation myocardial infarction (STEMI). METHODS We analyzed the presence of cytomegaloviral DNA in plasma and endothelial function in 33 patients with STEMI and 33 volunteers without cardiovascular diseases, using real-time polymerase chain reaction (PCR) and a noninvasive test of flow-mediated dilation. RESULTS Both the frequency of presence and the load of cytomegaloviral DNA were higher in plasma of patients with STEMI than those in controls. This difference was independent of other cardiovascular risk factors (7.38 [1.36-40.07]; P = 0.02). The results of the flow-mediated dilation test were lower in patients in STEMI than in controls (5.0% [2.65%-3.09%] vs 12. %5 [7.5%-15.15%]; P = 0.004) and correlated negatively with the cytomegaloviral DNA load (Spearman R = -0.407; P = 0.019) independently of other cardiovascular risk factors. CONCLUSIONS Productive cytomegalovirus infection in patients with STEMI correlated negatively with endothelial function independently of other cardiovascular risk factors. The impact of cytomegalovirus on endothelial function may explain the role of cytomegalovirus in cardiovascular prognosis.
Collapse
Affiliation(s)
- Anna Lebedeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Maryukhnich
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md.
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
10
|
Singh N, Shaik FA, Myal Y, Chelikani P. Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells. Mol Cell Biochem 2020; 465:199-214. [PMID: 31894529 DOI: 10.1007/s11010-019-03679-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
The emerging significance of the bitter taste receptors (T2Rs) role in the extraoral tissues alludes to their potential role in many pathophysiological conditions. The dysregulation of T2R expression and function in disease conditions has now been demonstrated in airways diseases, neurological disorders, and in some cancers. However, the role of T2Rs in the pathophysiology of breast cancer is unexplored thus far. Previously, we demonstrated differential expression of the 25 T2Rs in breast cancer (BC) cells. Based on our previous findings we selected two T2Rs, T2R4 and T2R14 for this work. The objective of the current study is to investigate the expression of T2R4 and T2R14 in BC clinical samples and to examine their physiological role using highly metastatic BC and non-cancerous cell lines. Using approaches, which involve receptor knockdown, pharmacological activation and biochemical assays we report that (i) T2R4 and T2R14 expression patterns are dissimilar, with decreased levels of T2R4 and increased levels of T2R14 in BC clinical samples compared to non-cancerous controls. (ii) Activation of T2Rs with their respective agonist elicited physiological responses in metastatic breast cancer cells, and no responses were seen in non-tumorigenic breast epithelial cells. (iii) Agonist activation of T2Rs (irrespective of T2R subtype) induced anti-proliferative, pro-apoptotic, and anti-migratory responses in highly metastatic breast cancer cells. Taken together, our findings demonstrate that the chemosensory T2R signaling network is involved in evoking physiological responses in the metastatic breast cancer cell line.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada
| | - Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada
| | - Yvonne Myal
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|
11
|
Lebedeva AM, Shpektor AV, Vasilieva EY, Margolis LB. Cytomegalovirus Infection in Cardiovascular Diseases. BIOCHEMISTRY (MOSCOW) 2019; 83:1437-1447. [PMID: 30878019 DOI: 10.1134/s0006297918120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atherosclerosis underlies the development of many cardiovascular diseases that continue to hold a leading place among the causes of death in developed countries. The role of activated immune cells in atherosclerosis progression has been convincingly demonstrated, but the mechanism of their action remains poorly investigated. Since atherosclerosis is associated with chronic inflammatory response, involvement of viral and bacterial infections in atherogenesis has been examined. A special place among the infectious agents is held by human herpesviruses as the most common persistent viruses in human population coupled to chronic inflammation during atherosclerosis. We found that activation of cytomegalovirus (CMV, human herpesvirus 5) infection is associated with the emergence of acute coronary syndrome, which is in a good agreement with the data on productive CMV infection published elsewhere. In this review, we discuss the data obtained by us and other researchers regarding the role of cytomegalovirus infection and related potential mechanisms resulting in the expansion of atherosclerotic plaques during ischemic heart disease and stroke, including virus transfer to immune and endothelial cells via extracellular vesicles. In particular, the data presented in the review demonstrate that virus spreading in the vascular wall triggers immune system activation in atherosclerotic plaques and causes endothelial dysfunction. Moreover, productive CMV infection in patients with acute myocardial infarction correlates with the extent of endothelial dysfunction. The mechanisms described by us and other researchers may explain the role of CMV infection in atherosclerosis and development of ischemic heart disease.
Collapse
Affiliation(s)
- A M Lebedeva
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia.
| | - A V Shpektor
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia
| | - E Yu Vasilieva
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia
| | - L B Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Rådestad AF, Estekizadeh A, Cui HL, Kostopoulou ON, Davoudi B, Hirschberg AL, Carlson J, Rahbar A, Söderberg-Naucler C. Impact of Human Cytomegalovirus Infection and its Immune Response on Survival of Patients with Ovarian Cancer. Transl Oncol 2018; 11:1292-1300. [PMID: 30172882 PMCID: PMC6121833 DOI: 10.1016/j.tranon.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been detected in various types of tumors. We studied the prevalence of HCMV in ovarian cancer and its relation to clinical outcome. Paraffin-embedded tissues obtained prospectively from 45 patients with ovarian cancer and 30 patients with benign ovarian cystadenoma were analyzed for expression of HCMV immediate-early protein (IE) and HCMV tegument protein (pp65) by immunohistochemistry. Plasma was analyzed for HCMV serology. HCMV-IgG levels were higher in patients with ovarian cancer or benign cystadenoma than in age-matched controls (P = .002, P < .0001, respectively). HCMV IgM was detected in 12% of ovarian cancer patients and 3% of patients with benign tumors but was absent in controls. In patients with ovarian cancer, higher IgG levels were associated with better outcomes (P = .04). Extensive HCMV-IE protein expression was detected in 75% of ovarian cancers and 26% of benign tumors; pp65 was detected in 67% of ovarian cancers and 14% of benign tumors. A higher grade of HCMV infection was associated with higher stage of disease. Extensive HCMV-pp65 expression was associated with shorter median overall survival than focal expression (39 versus 42.5 months, P = .03). At study closure, 58% of ovarian cancer patients with focal pp65 expression were alive versus 27% of patients with extensive pp65 expression (P = .03). Thus, HCMV proteins are detected at different levels in ovarian tumors and benign cystadenomas. Ovarian cancer patients with focal HCMV-pp65 expression in their tumors and high IgG levels against HCMV lived longer, highlighting a need for in-depth studies of the oncomodulatory role of HCMV in ovarian cancer.
Collapse
Affiliation(s)
- Angelique Flöter Rådestad
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - Atosa Estekizadeh
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Huanhuan L Cui
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ourania N Kostopoulou
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Belghis Davoudi
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Joseph Carlson
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogens Unit and Department of Neurology, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
13
|
Glaser K, Silwedel C, Fehrholz M, Henrich B, Waaga-Gasser AM, Claus H, Speer CP. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes. PLoS One 2018; 13:e0194514. [PMID: 29558521 PMCID: PMC5860755 DOI: 10.1371/journal.pone.0194514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 11/25/2022] Open
Abstract
Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus.
Collapse
Affiliation(s)
- Kirsten Glaser
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Christine Silwedel
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Markus Fehrholz
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, University Clinic of Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology & Immunology, University of Würzburg, Würzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christian P. Speer
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Ólafsson EB, Varas-Godoy M, Barragan A. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix. Cell Microbiol 2017; 20. [PMID: 29119662 DOI: 10.1111/cmi.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Zhang T, Suryawanshi YR, Szymczyna BR, Essani K. Neutralization of matrix metalloproteinase-9 potentially enhances oncolytic efficacy of tanapox virus for melanoma therapy. Med Oncol 2017; 34:129. [PMID: 28593604 DOI: 10.1007/s12032-017-0988-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs), which are involved in degradation of extracellular matrix, are critical regulators in tumor progression, metastasis and angiogenesis. Although induction of MMPs is frequently observed during the viral infection, the effect of MMPs on viral replication varies between viruses. MMP-9, for instance, is upregulated and promotes the replication of some viruses, such as herpes simplex virus, but inhibits the replication of others. Here, we report that infection with tanapox virus (TPV) promotes the expression of MMP-9 in the melanoma cells. In addition, we show that MMP-9 exerts an anti-viral effect on TPV replication and plays a protective role in TPV-infected melanoma cells in vitro. Moreover, the neutralization of MMP-9 in melanoma cells remarkably enhances the TPV infection and leads to a significant reduction in cell survival. In summary, this study contributes to understanding of the role played by MMP-9 in TPV infectivity and provides more insights for using TPV as cancer virotherapy in future studies. Since TPV has shown substantial oncolytic efficacy in promoting melanoma tumor regression in animal models, identifying mechanisms that suppress MMP-9 expression upon TPV infection can potentially improve its use as a melanoma virotherapy.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Yogesh R Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Blair R Szymczyna
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
16
|
Li L, Liu M, Kang L, Li Y, Dai Z, Wang B, Liu S, Chen L, Tan Y, Wu G. HHEX: A Crosstalker between HCMV Infection and Proliferation of VSMCs. Front Cell Infect Microbiol 2016; 6:169. [PMID: 27965937 PMCID: PMC5127840 DOI: 10.3389/fcimb.2016.00169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Objective: The study was designed to evaluate the role of Human cytomegalovirus (HCMV) infection on homebox (HOX) gene expression and the effects of overexpression of HOX genes on proliferation and apoptosis of vascular smooth muscle cells (VSMCs). Methods: Viral infection was verified by observation of cytopathic effects through inverted microscopy, viral particles by electron microscopy and HCMV IE gene amplification by RT-PCR. cDNA profiling technology was used to screen expression of HOX genes after HCMV infection in VSMCs. Abnormal expression of Haematopoietically-expressed homeobox (HHEX) was selected to construct over-expressed vector and transfected into VSMCs. The effects of over expression of HHEX on cell proliferation and apoptosis of VSMCs were assayed by flow cytometry. Apoptosis and proliferation-associated genes were also assayed by RT-PCR. Results: Multiple HOX gene expression levels had obvious changes after HCMV infection, among which expression of HHEX gene increased obviously at 24, 48, and 72 h after infection. Over expression of HHEX can promote VSMCs proliferation by promoting G0/G1 phase cells into S phase and inhibit VSMCs apoptosis. HHEX inhibited the expression of apoptosis-associated caspase 2 and caspase3 and promoted the expression of cell cycle-related genes such as CDK2 and CDK6, CyclinB2 and CyclinD2. Conclusion: HHEX over expression induced by HCMV infection closely associated with vascular proliferative diseases.
Collapse
Affiliation(s)
- Lingfang Li
- Department of Vasculocardiology, Xiangya Hospital, Central South University Changsha, China
| | - Meitong Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Leitao Kang
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Yifan Li
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Ziyu Dai
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Bing Wang
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Yurong Tan
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Sciences, Central South University Changsha, China
| |
Collapse
|
17
|
Cai ZZ, Xu JG, Zhou YH, Zheng JH, Lin KZ, Zheng SZ, Ye MS, He Y, Liu CB, Xue ZX. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer. World J Gastroenterol 2016; 22:2789-2798. [PMID: 26973417 PMCID: PMC4778001 DOI: 10.3748/wjg.v22.i9.2789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess human cytomegalovirus-encoded US28 gene function in colorectal cancer (CRC) pathogenesis.
METHODS: Immunohistochemical analysis was performed to determine US28 expression in 103 CRC patient samples and 98 corresponding adjacent noncancerous samples. Patient data were compared by age, sex, tumor location, histological grade, Dukes’ stage, and overall mean survival time. In addition, the US28 gene was transiently transfected into the CRC LOVO cell line, and cell proliferation was assessed using a cell counting kit-8 assay. Cell cycle analysis by flow cytometry and a cell invasion transwell assay were also carried out.
RESULTS: US28 levels were clearly higher in CRC tissues (38.8%) than in adjacent noncancerous samples (7.1%) (P = 0.000). Interestingly, elevated US28 amounts in CRC tissues were significantly associated with histological grade, metastasis, Dukes’ stage, and overall survival (all P < 0.05); meanwhile, US28 expression was not significantly correlated with age, sex or tumor location. In addition, multivariate Cox regression data revealed US28 level as an independent CRC prognostic marker (P = 0.000). LOVO cells successfully transfected with the US28 gene exhibited higher viability, greater chemotherapy resistance, accelerated cell cycle progression, and increased invasion ability.
CONCLUSION: US28 expression is predictive of poor prognosis and may promote CRC.
Collapse
|
18
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
19
|
Poole E, Juss JK, Krishna B, Herre J, Chilvers ER, Sinclair J. Alveolar Macrophages Isolated Directly From Human Cytomegalovirus (HCMV)-Seropositive Individuals Are Sites of HCMV Reactivation In Vivo. J Infect Dis 2015; 211:1936-42. [PMID: 25552371 PMCID: PMC4442624 DOI: 10.1093/infdis/jiu837] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes significant morbidity in the immunocompromised host. Following primary infection, the virus establishes latent infection in progenitor cells of the myeloid lineage. These cells exhibit limited viral gene transcription and no evidence of de novo virion production. It is well recognized that differentiation of latently infected myeloid progenitor cells to dendritic or macrophage-like cells permits viral reactivation in vitro. This has been used to support the concept that viral reactivation in HCMV carriers routinely occurs from such terminally differentiated myeloid cells in vivo. However, to date this has not been shown for in vivo-differentiated macrophages. This study is the first to demonstrate that alveolar macrophages from HCMV carriers express immediate early lytic genes and produce infectious virus. This supports the view, until now based on in vitro data, that terminally differentiated myeloid cells in vivo are sites of HCMV reactivation and potential centers of viral dissemination in latently infected individuals with no evidence of virus disease or dissemination.
Collapse
Affiliation(s)
| | | | | | - Jurgen Herre
- Department of Medicine,University of Cambridge,United Kingdom
| | | | - John Sinclair
- Department of Medicine,University of Cambridge,United Kingdom
| |
Collapse
|
20
|
Wilkerson I, Laban J, Mitchell JM, Sheibani N, Alcendor DJ. Retinal pericytes and cytomegalovirus infectivity: implications for HCMV-induced retinopathy and congenital ocular disease. J Neuroinflammation 2015; 12:2. [PMID: 25573478 PMCID: PMC4314746 DOI: 10.1186/s12974-014-0219-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/09/2014] [Indexed: 01/25/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) is the leading infectious cause of vision loss among congenitally infected children. Retinal pericytes play an essential role in maintaining retinal vascular and endothelial cell proliferation. However, the role of retinal pericytes in ocular HCMV pathogenesis is unknown. Methods Retinal pericytes were exposed to clinical (SBCMV) and lab strains of HCMV; infectivity was analyzed by microscopy, immunofluorescence and qRT-PCR (reverse transcription polymerase chain reaction). Cytokine expression was examined by Luminex assay. Recombinant HCMV-GPF was used to examine viral replication kinetics. A Tricell culture model of the inner blood-retinal barrier (IBRB) was examined for cell type infectivity using immunohistochemistry. Results Retinal pericytes expressed the biomarker neuron-glial antigen 2. Antigenic expression profiles for several cytoskeletal, cell adhesion and inflammatory proteins were shared by both retinal and brain pericytes. Infected pericytes showed cytomegalic cytopathology and expressed mRNAs for the major immediate protein (MIE) and HCMV phosphorylated envelop protein 65. qRT-PCR analysis showed full lytic replication of HCMV in retinal pericytes. Pericytes exposed to SBCMV for 9 days expressed higher levels of vascular endothelial cell growth factor mRNA compared to controls. Luminex analysis of supernatants from SBCMV-infected retinal pericytes had increased levels of macrophage inflammatory protein-1α, beta-2 microglobulin (B2-m), matrix metalloproteinase-3 and -9 (MMP3/9), and lower levels of IL-6 and IL-8 compared to controls. At 24 hours post infection, pericytes expressed higher levels of IL-8, TIMP-1 (tissue inhibitor of metalloproteinase-1), and RANTES (regulated upon activation normal T cell-expressed and presumably secreted) but lower levels of MMP9. Time course analysis showed that both brain and retinal pericytes were more permissive for HCMV infection than other cellular components of the BBB (blood-brain barrier) and IBRB. Using a Tricell culture model of the IBRB (retinal endothelial, pericytes, Müller cells), retinal pericytes were most permissive for SBCMV infection. SBCMV infection of this IBRB Tricell mixture for 96 hours resulted in increased levels of IL-6, MMP9, and stem cell factor with a concomitant decrease in granulocyte-macrophage colony-stimulating factor and TNF-alpha. Conclusion In retinal pericytes, HCMV induces proinflammatory and angiogenic cytokines. In the IBRB, pericytes likely serve as an amplification reservoir which contributes to retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Irene Wilkerson
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Joshua Laban
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Johnathan M Mitchell
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| | - Donald J Alcendor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
21
|
Seanpong P, Srisaowakarn C, Thammaporn A, Leardkamolkarn V, Kumkate S. Different Responses in MMP/TIMP Expression of U937 and HepG2 Cells to Dengue Virus Infection. Jpn J Infect Dis 2015; 68:221-9. [DOI: 10.7883/yoken.jjid.2013.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Vijittra Leardkamolkarn
- Center for Emerging and Neglected Infectious Diseases, Mahidol University
- Department of Anatomy, Faculty of Science, Mahidol University
| | | |
Collapse
|
22
|
Chen HP, Chan YJ. The oncomodulatory role of human cytomegalovirus in colorectal cancer: implications for clinical trials. Front Oncol 2014; 4:314. [PMID: 25452935 PMCID: PMC4233914 DOI: 10.3389/fonc.2014.00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/21/2014] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that human cytomegalovirus (HCMV), a beta-herpes virus that chronically infects human beings, is associated with colorectal cancer (CRC). The viral nucleic acids specifically localized to the neoplastic mucosal epithelium of CRC, while tumoral presence of HCMV independently predicted a poor outcome in elderly patients. In the past decade, the concept of “oncomodulation” of HCMV in human cancers has been formulated. In CRC, changes in the tumor microenvironment are closely related to cancer behavior and prognosis, while the underlying mechanism driving these changes remains unclear. As HCMV affects multiple cellular functions, including signal pathways that regulate angiogenesis, apoptosis, cell invasiveness, and anti-cancer immunity, the virus potentially exerts oncomodulatory effects in the tumor microenvironment of CRC. Here, we summarize the current knowledge about the association between HCMV and CRC and suggest future perspectives on both research and anti-cancer therapy of CRC.
Collapse
Affiliation(s)
- Hsin-Pai Chen
- Department of Medicine, National Yang-Ming University Hospital , Yilan , Taiwan ; School of Medicine, National Yang-Ming University , Taipei , Taiwan ; Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Yu-Jiun Chan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan ; Institute of Public Health, School of Medicine, National Yang-Ming University , Taipei , Taiwan ; Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| |
Collapse
|
23
|
Esteso G, Luzón E, Sarmiento E, Gómez-Caro R, Steinle A, Murphy G, Carbone J, Valés-Gómez M, Reyburn HT. Altered microRNA expression after infection with human cytomegalovirus leads to TIMP3 downregulation and increased shedding of metalloprotease substrates, including MICA. THE JOURNAL OF IMMUNOLOGY 2014; 193:1344-52. [PMID: 24973455 DOI: 10.4049/jimmunol.1303441] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteolytic shedding of ligands for the NK group 2D (NKG2D) receptor is a strategy used by tumors to modulate immune recognition by NK cells and cytotoxic T cells. A number of metalloproteases, especially those of the A disintegrin and metalloprotease (ADAM) family, can mediate NKG2D ligand cleavage and this process can be modulated by expression of the thiol isomerase ERp5. In this article, we describe that an increased shedding of the NKG2D ligand MICA is observed postinfection with several strains of human CMV due to an enhanced activity of ADAM17 (TNF-α converting enzyme) and matrix metalloprotease 14 caused by a reduction in the expression of the endogenous inhibitor of metalloproteases tissue inhibitors of metalloproteinase 3 (TIMP3). This decrease in TIMP3 expression correlates with increased expression of a cellular miRNA known to target TIMP3, and we also identify a human CMV-encoded microRNA able to modulate TIMP3 expression. These observations characterize a novel viral strategy to influence the shedding of cell-surface molecules involved in immune response modulation. They also provide an explanation for previous reports of increased levels of various ADAM17 substrates in the serum from patients with CMV disease. Consistent with this hypothesis, we detected soluble MICA in serum of transplant recipients with CMV disease. Finally, these data suggest that it might be worthwhile to prospectively study ADAM17 activity in a larger group of patients to assay whether this might be a useful biomarker to identify patients at risk for development of CMV disease.
Collapse
Affiliation(s)
- Gloria Esteso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Elisa Luzón
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Elisabeth Sarmiento
- Transplant Immunology Group, Clinical Immunology Department, University Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Ruth Gómez-Caro
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University, D-60590 Frankfurt am Main, Germany; and
| | - Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research United Kingdom, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Javier Carbone
- Transplant Immunology Group, Clinical Immunology Department, University Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain;
| |
Collapse
|
24
|
|
25
|
Esteki-Zadeh A, Karimi M, Strååt K, Ammerpohl O, Zeitelhofer M, Jagodic M, Mehrab-Mohseni M, Sjöholm L, Rahbar A, Söderberg-Nauclér C, Ekström TJ. Human cytomegalovirus infection is sensitive to the host cell DNA methylation state and alters global DNA methylation capacity. Epigenetics 2012; 7:585-93. [PMID: 22595877 DOI: 10.4161/epi.20075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that infects and establishes latency in the majority of the human population and may cause fatal infections in immunocompromised patients. Recent data implies a close interaction between HCMV encoded proteins and cellular epigenetic mechanisms such as histone acetylation and deacetylation. In this study, we investigated the interactions between HCMV infection and the DNA methylation machinery in different host cells using several approaches. We found that colon cancer cell line HCT-116 lacking the DNMT1 and DNMT3b methyltransferases was susceptible to HCMV-AD169 infection, while wild-type cells were non-susceptible. Treatment of wild-type HCT-116 cells with 5-azacytidine rendered them susceptible to infection. Further investigation of HCMV infected MRC-5 fibroblasts demonstrated significant global hypomethylation, a phenomenon that was virus strain-specific and associated with the re-localization of DNMT1 and DNMT3b from the nucleus to the cytoplasm. The cytoplasmic accumulation of DNMT1 was also evident in in vitro infected macrophages and in epithelial cells in tissue samples from patients with inflammatory bowel disease and concomitant HCMV infection. Foscavir treatment of virus infected fibroblasts did not affect the majority of the virus induced nuclear exclusion of DNMT1, which suggest that it is dependent on viral IE gene products. In conclusion, HCMV infection results in profound effects on the host cell DNA methylation machinery and is associated with inflammation in vivo. Our results improve the understanding of cytomegalovirus pathogenesis and open the search for new antiviral therapy targets. These findings may also contribute to the further understanding of mechanisms involved in DNA methylation abnormalities in physiological and pathological conditions.
Collapse
Affiliation(s)
- Atosa Esteki-Zadeh
- Department of Clinical Neuroscience; Karolinska Institutet; Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M, Soroceanu L, Cobbs CS. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol 2012; 14:246-55. [PMID: 22319219 DOI: 10.1093/neuonc/nor227] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human cytomegalovirus (HCMV) and glioma symposium was convened on April 17, 2011 in Washington, DC, and was attended by oncologists and virologists involved in studying the relationship between HCMV and gliomas. The purpose of the meeting was to reach a consensus on the role of HCMV in the pathology of gliomas and to clarify directions for future research. First, the group summarized data that describe how HCMV biology overlaps with the key pathways of cancer. Then, on the basis of published data and ongoing research, a consensus was reached that there is sufficient evidence to conclude that HCMV sequences and viral gene expression exist in most, if not all, malignant gliomas, that HCMV could modulate the malignant phenotype in glioblastomas by interacting with key signaling pathways; and that HCMV could serve as a novel target for a variety of therapeutic strategies. In summary, existing evidence supports an oncomodulatory role for HCMV in malignant gliomas, but future studies need to focus on determining the role of HCMV as a glioma-initiating event.
Collapse
Affiliation(s)
- Kristine Dziurzynski
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Unit 442, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Romo N, Magri G, Muntasell A, Heredia G, Baía D, Angulo A, Guma M, López-Botet M. Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J Leukoc Biol 2011; 90:717-26. [PMID: 21742939 DOI: 10.1189/jlb.0311171] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MΦ comprise a heterogeneous population of cells, which contribute to host defense and maintenance of immune homeostasis. MΦ may be infected by human cytomegalovirus (HCMV), which has evolved different strategies to subvert the immune response. In the present study, we comparatively analyzed the natural killer (NK) cell response against HCMV (TB40E)-infected proinflammatory (M1) and antinflammatory (M2) MΦ, derived from autologous monocytes, cultured in the presence of GM-CSF and M-CSF, respectively. M1 MΦ were more resistant to infection and secreted IL-6, TNF-α, IFN-α, and IL-12; by contrast, in HCMV-infected M2 MΦ, proinflammatory cytokines, IL-10, and IFN-α production were limited and IL-12 was undetectable. NK cell degranulation was triggered by interaction with HCMV-infected M1 and M2 MΦ at 48 h postinfection. The response was partially inhibited by specific anti-NKp46, anti-DNAM-1, and anti-2B4 mAb, thus supporting a dominant role of these activating receptors. By contrast, only HCMV-infected M1 MΦ efficiently promoted NK cell-mediated IFN-γ secretion, an effect partially related to IL-12 production. These observations reveal differences in the NK cell response triggered by distinct, HCMV-infected, monocyte-derived cell types, which may be relevant in the immunopathology of this viral infection.
Collapse
Affiliation(s)
- Neus Romo
- Immunology Unit, Pompeu Fabra University, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Human cytomegalovirus increases HUVEC sensitivity to thrombin and modulates expression of thrombin receptors. J Thromb Thrombolysis 2010; 30:164-71. [PMID: 20155436 DOI: 10.1007/s11239-010-0447-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human cytomegalovirus (HCMV) establishes a life-long persistent infection. HCMV infection could be associated with chronic inflammatory diseases, such as cardiovascular disease and atherosclerosis. Here we observed that in HCMV (AD-169) pre-exposed human umbilical vein endothelial cells (HUVEC), thrombin-induced expression of IL-1alpha and M-CSF is markedly enhanced compared to the un-exposed cells. Study of the expression of thrombin receptor genes in HUVEC showed that HCMV triggered a time- and concentration-dependent expression of the thrombin receptors PAR1, PAR3 and PAR4 at the mRNA level. Induction of PAR1 and PAR3 mRNA expression is due to transcriptional activation of their promoters as shown by gene reporter assay. Furthermore, the virus induced expression of PAR1 and PAR3 but not PAR4 proteins, as analyzed by Western immunoblotting. However, flow cytometric analysis revealed that only PAR3, expressed at very low level in control HUVEC, is induced at the surface during the exposure to the virus. Our data suggest that although exposure to HCMV induces a minor increase of cell-surface receptors expression, it does make endothelial cells more responsive to additional thrombin stimulation.
Collapse
|
29
|
Lee JY, Song JJ, Wooming A, Li X, Zhou H, Bottje WG, Kong BW. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus. BMC Genomics 2010; 11:445. [PMID: 20663125 PMCID: PMC3091642 DOI: 10.1186/1471-2164-11-445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 07/21/2010] [Indexed: 01/04/2023] Open
Abstract
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Harangi M, Szodoray P, Paragh G. Atherosclerosis: a complex interplay of inflammatory processes. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 551] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|