1
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM, Taylor GS. Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog 2024; 20:e1012177. [PMID: 38843296 PMCID: PMC11156336 DOI: 10.1371/journal.ppat.1012177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alison Leese
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Yolanda Van Wijck
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Michael R. Douglas
- Dudley Group of Hospitals NHS Foundation Trust, Dudley, United Kingdom
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jill M. Brooks
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
3
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
4
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
5
|
Dheekollu J, Wiedmer A, Soldan SS, Castro- Muñoz LJ, Chen C, Tang HY, Speicher DW, Lieberman PM. Regulation of EBNA1 protein stability and DNA replication activity by PLOD1 lysine hydroxylase. PLoS Pathog 2023; 19:e1010478. [PMID: 37262099 PMCID: PMC10263308 DOI: 10.1371/journal.ppat.1010478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.
Collapse
Affiliation(s)
- Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Christopher Chen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Apcher S, Vojtesek B, Fahraeus R. In search of the cell biology for self- versus non-self- recognition. Curr Opin Immunol 2023; 83:102334. [PMID: 37210933 DOI: 10.1016/j.coi.2023.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
Several of today's cancer treatments are based on the immune system's capacity to detect and destroy cells expressing neoantigens on major histocompatibility class-I molecules (MHC-I). Despite this, we still do not know the cell biology behind how antigenic peptide substrates (APSs) for the MHC-I pathway are produced. Indeed, there are few research fields with so many divergent views as the one concerning the source of APSs. This is quite remarkable considering their fundamental role in the immune systems' capacity to detect and destroy virus-infected or transformed cells. A better understanding of the processes generating APSs and how these are regulated will shed light on the evolution of self-recognition and provide new targets for therapeutic intervention. We discuss the search for the elusive source of MHC-I peptides and highlight the cell biology that is still missing to explain how they are synthesised and where they come from.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Borek Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, France; Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
7
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
8
|
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Sénéchal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, Blondel M, Fahraeus R. The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA. Nucleic Acids Res 2022; 50:10110-10122. [PMID: 36107769 PMCID: PMC9508830 DOI: 10.1093/nar/gkac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
Abstract
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine–alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Collapse
Affiliation(s)
- Alice J L Zheng
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Aikaterini Thermou
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Chrysoula Daskalogianni
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Laurence Malbert-Colas
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Konstantinos Karakostis
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Ronan Le Sénéchal
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Van Trang Dinh
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Maria C Tovar Fernandez
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d’immunologie , 114, rue Edouard Vaillant , 94805 Villejuif , France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Robin Fahraeus
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
- RECAMO, Masaryk Memorial Cancer Institute , Zluty kopec 7 , 65653 Brno , Czech Republic
| |
Collapse
|
9
|
Kanduc D. The Role of Codon Usage, tRNA Availability, and Cell Proliferation in EBV Latency and (Re)Activation. Glob Med Genet 2022; 9:219-225. [PMID: 36118264 PMCID: PMC9477563 DOI: 10.1055/s-0042-1751301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Epstein–Barr nuclear antigen 1 (EBNA1) protein synthesis is inhibited during Epstein–Barr virus (EBV) latency and is resumed in EBV (re)activation. In analyzing the molecular mechanisms underpinning the translation of
EBNA1
in the human host, this article deals with two orders of data. First, it shows that the heavily biased codon usage of the
EBNA1
open reading frame cannot be translated due to its noncompliance with the human codon usage pattern and the corresponding tRNA pool. The
EBNA1
codon bias resides in the sequence composed exclusively of glycine and alanine, i.e., the Gly-Ala repeat (GAR). Removal of the nucleotide sequence coding for GAR results in an
EBNA1
codon usage pattern with a lower codon bias, thus conferring translatability to EBNA1. Second, the data bring cell proliferation to the fore as a conditio sine qua non for qualitatively and quantitatively modifying the host's tRNA pool as required by the translational needs of EBNA1, thus enabling viral reactivation. Taken together, the present work provides a biochemical mechanism for the pathogen's shift from latency to (re)activation and confirms the role of human codon usage as a first-line tool of innate immunity in inhibiting pathogens' expression. Immunologically, this study cautions against using codon optimization and proliferation-inducing substances such as glucocorticoids and adjuvants, which can (re)activate the otherwise quiescent, asymptomatic, and innocuous EBV infection. Lastly, the data pose the question whether the causal pathogenic role attributed to EBV should instead be ascribed to the carcinogenesis-associated cellular proliferation.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Characterization of an immune-evading doxycycline-inducible lentiviral vector for gene therapy in the spinal cord. Exp Neurol 2022; 355:114120. [DOI: 10.1016/j.expneurol.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
11
|
Laurynenka V, Ding L, Kaufman KM, James JA, Harley JB. A High Prevalence of Anti-EBNA1 Heteroantibodies in Systemic Lupus Erythematosus (SLE) Supports Anti-EBNA1 as an Origin for SLE Autoantibodies. Front Immunol 2022; 13:830993. [PMID: 35251022 PMCID: PMC8892314 DOI: 10.3389/fimmu.2022.830993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background That Epstein–Barr virus (EBV) infection is associated with systemic lupus erythematosus (SLE) is established. The challenge is to explain mechanistic roles EBV has in SLE pathogenesis. Previous studies identify four examples of autoantibody cross-reactions between SLE autoantigens and Epstein–Barr nuclear antigen 1 (EBNA1). For two of these examples, the earliest detected autoantibody specifically cross-reacts with EBNA1; thereby, defined EBNA1 epitopes induce a robust autoantibody response in animals. These results suggest that the autoantibodies initiating the process leading to SLE may emerge from the anti-EBNA1 heteroimmune response. If this hypothesis is true, then anti-EBNA1 responses would be more frequent in EBV-infected SLE patients than in EBV-infected controls. We tested this prediction. Methods We evaluated published East Asian data by selecting those with a positive anti-viral capsid antigen (VCA) antibody immunoglobulin G (IgG) test and determining whether anti-EBNA1 was more common among the EBV-infected SLE cases than among matched EBV-infected controls with conditional logistic regression analysis. Results All the qualifying SLE patients (100%) in this dataset were EBV-infected compared to age- and sex-matched controls (92.2%) [odds ratio (OR) = 28.6, 95% CI 6.4–∞, p = 8.83 × 10-8], confirming the known close association of EBV infection with SLE. Furthermore, virtually all the SLE cases have both anti-VCA IgG and anti-EBNA1 IgG antibodies [124 of 125 (99.2%)], which are more frequently present than in age- and sex-matched EBV-infected controls [232 of 250 (93.2%)] (OR = 9.7, 95% CI 1.5–414, p = 0.0078) for an 89.7% SLE attributable risk from anti-EBNA1, which is in addition to the 100% SLE risk attributable to EBV infection in these data. Conclusions The association of EBV infection with SLE is reconfirmed. The prediction that anti-EBNA1 is more frequent in these SLE cases than in EBV-infected controls is true, consistent with the hypothesis that anti-EBNA1 contributes to SLE. This second EBV-dependent risk factor is consistent with a molecular mimicry model for the generation of SLE, starting with EBV infection, progressing to anti-EBNA1 response; then molecular mimicry leads to anti-EBNA1 antibodies cross-reacting with an SLE autoantigen, causing autoantibody epitope spreading, and culminating in clinical SLE. These results support the anti-EBNA1 heteroimmune response being a foundation from which pathogenic SLE autoimmunity emerges.
Collapse
Affiliation(s)
- Viktoryia Laurynenka
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, United States.,Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - John B Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States.,Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
| |
Collapse
|
12
|
Tovar Fernandez MC, Sroka EM, Lavigne M, Thermou A, Daskalogianni C, Manoury B, Prado Martins R, Fahraeus R. Substrate-specific presentation of MHC class I-restricted antigens via autophagy pathway. Cell Immunol 2022; 374:104484. [DOI: 10.1016/j.cellimm.2022.104484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022]
|
13
|
Zheng AJL, Thermou A, Guixens Gallardo P, Malbert-Colas L, Daskalogianni C, Vaudiau N, Brohagen P, Granzhan A, Blondel M, Teulade-Fichou MP, Martins RP, Fahraeus R. The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Sci Alliance 2021; 5:5/2/e202101232. [PMID: 34785537 PMCID: PMC8605322 DOI: 10.26508/lsa.202101232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.
Collapse
Affiliation(s)
- Alice J-L Zheng
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Aikaterini Thermou
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France.,ICCVS, University of Gdańsk, Science, Gdańsk, Poland
| | - Pedro Guixens Gallardo
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Malbert-Colas
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Chrysoula Daskalogianni
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France.,ICCVS, University of Gdańsk, Science, Gdańsk, Poland
| | - Nathan Vaudiau
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Petter Brohagen
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Marc Blondel
- Inserm UMR1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Brest, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | | | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France .,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, Umeå, Sweden.,ICCVS, University of Gdańsk, Science, Gdańsk, Poland
| |
Collapse
|
14
|
Gnanasundram SV, Malbert-Colas L, Chen S, Fusée L, Daskalogianni C, Muller P, Salomao N, Fåhraeus R. MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities. Nucleic Acids Res 2020; 48:6775-6787. [PMID: 32453417 PMCID: PMC7337897 DOI: 10.1093/nar/gkaa431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.
Collapse
Affiliation(s)
| | - Laurence Malbert-Colas
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
| | - Leila Fusée
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Chrysoula Daskalogianni
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Norman Salomao
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | | |
Collapse
|
15
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Wojtak K, Perales-Puchalt A, Weiner DB. Novel Synthetic DNA Immunogens Targeting Latent Expressed Antigens of Epstein-Barr Virus Elicit Potent Cellular Responses and Inhibit Tumor Growth. Vaccines (Basel) 2019; 7:vaccines7020044. [PMID: 31137606 PMCID: PMC6631996 DOI: 10.3390/vaccines7020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are linked to 15%-20% of cancers worldwide. Among them, Epstein-Barr virus (EBV) is an oncogenic herpesvirus that chronically infects over 90% of the adult population, with over 200,000 cases of cancer and 150,000 cancer-related deaths attributed to it yearly. Acute EBV infection can present as infectious mononucleosis, and lead to the future onset of multiple cancers, including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. Many of these cancers express latent viral genes, including Epstein-Barr virus nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2). Previous attempts to create potent immunogens against EBV have been reported but generated mixed success. We designed novel Synthetic Consensus (SynCon) DNA vaccines against EBNA1, LMP1 and LMP2 to improve on the immune potency targeting important antigens expressed in latently infected cells. These EBV tumor antigens are hypothesized to be useful targets for potential immunotherapy of EBV-driven cancers. We optimized the genetic sequences for these three antigens, studied them for expression, and examined their immune profiles in vivo. We observed that these immunogens generated unique profiles based on which antigen was delivered as the vaccine target. EBNA1vax and LMP2Avax generated the most robust T cell immunity. Interestingly, LMP1vax was a very weak immunogen, generating very low levels of CD8 T cell immunity both as a standalone vaccine and as part of a trivalent vaccine cocktail. LMP2Avax was able to drive immunity that impacted EBV-antigen-positive tumor growth. These studies suggest that engineered EBV latent protein vaccines deserve additional study as potential agents for immunotherapy of EBV-driven cancers.
Collapse
Affiliation(s)
- Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
- Cell and Molecular Biology Graduate Program, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fåhraeus R. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 2019; 47:3086-3100. [PMID: 30624716 PMCID: PMC6451098 DOI: 10.1093/nar/gky1296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
Collapse
Affiliation(s)
| | | | - María José Lista
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Chrysoula Daskalogianni
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Marika Pla
- Université Paris 7, IUH, Inserm, UMR-S-1131, Paris, France
| | | | - Marc Blondel
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Robin Fåhraeus
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
18
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
20
|
PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun 2017; 8:2103. [PMID: 29235459 PMCID: PMC5727396 DOI: 10.1038/s41467-017-02282-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
The c-myc oncogene stimulates ribosomal biogenesis and protein synthesis to promote cellular growth. However, the pathway by which cells sense and restore dysfunctional mRNA translation and how this is linked to cell proliferation and growth is not known. We here show that mRNA translation stress in cis triggered by the gly-ala repeat sequence of Epstein–Barr virus (EBV)-encoded EBNA1, results in PI3Kδ-dependent induction of E2F1 mRNA translation with the consequent activation of c-Myc and cell proliferation. Treatment with a specific PI3Kδ inhibitor Idelalisib (CAL-101) suppresses E2F1 and c-Myc levels and causes cell death in EBNA1-induced B cell lymphomas. Suppression of PI3Kδ prevents E2F1 activation also in non-EBV-infected cells. These data illustrate an mRNA translation stress–response pathway for E2F1 activation that is exploited by EBV to promote cell growth and proliferation, offering new strategies to treat EBV-carrying cancers. The oncogenic activity of EBNA1 protein is unknown; it contains a glycine and alanine repeat sequence (GAr) which regulates its own translation in cis. Here the authors show that GAr stimulates PI3Kδ-mediated induction of E2F1 translation, leading to c-Myc induction and stimulation of proliferation.
Collapse
|
21
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
22
|
Sorel O, Chen T, Myster F, Javaux J, Vanderplasschen A, Dewals BG. Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain. PLoS Pathog 2017; 13:e1006691. [PMID: 29059246 PMCID: PMC5695634 DOI: 10.1371/journal.ppat.1006691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/02/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Ting Chen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Françoise Myster
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
23
|
Lista MJ, Martins RP, Billant O, Contesse MA, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, Teulade-Fichou MP, Fåhraeus R, Voisset C, Blondel M. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 2017; 8:16043. [PMID: 28685753 PMCID: PMC5504353 DOI: 10.1038/ncomms16043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1, which is essential for viral genome maintenance but highly antigenic. EBV has seemingly evolved a system in which the mRNA sequence encoding the glycine-alanine repeats (GAr) of the EBNA1 protein limits its expression to the minimal level necessary for function while minimizing immune recognition. Here, we identify nucleolin (NCL) as a host factor required for this process via a direct interaction with G-quadruplexes formed in GAr-encoding mRNA sequence. Overexpression of NCL enhances GAr-based inhibition of EBNA1 protein expression, whereas its downregulation relieves the suppression of both expression and antigen presentation. Moreover, the G-quadruplex ligand PhenDC3 prevents NCL binding to EBNA1 mRNA and reverses GAr-mediated repression of EBNA1 expression and antigen presentation. Hence the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to trigger an immune response against EBV-carrying cancers.
Collapse
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Rodrigo Prado Martins
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Olivier Billant
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marie-Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Sarah Findakly
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Pierre Pochard
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Chrysoula Daskalogianni
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Claire Beauvineau
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Corinne Guetta
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Christophe Jamin
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Marie-Paule Teulade-Fichou
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Robin Fåhraeus
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| |
Collapse
|
24
|
Subang MC, Fatah R, Wu Y, Hannaman D, Rice J, Evans CF, Chernajovsky Y, Gould D. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle. Curr Gene Ther 2015; 15:3-14. [PMID: 25545919 PMCID: PMC4443798 DOI: 10.2174/1566523214666141114204943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/16/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Gould
- Bone & Joint Research Unit, Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
25
|
Lista MJ, Voisset C, Contesse M, Friocourt G, Daskalogianni C, Bihel F, Fåhraeus R, Blondel M. The long‐lasting love affair between the budding yeast
Saccharomyces cerevisiae
and the Epstein‐Barr virus. Biotechnol J 2015; 10:1670-81. [DOI: 10.1002/biot.201500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marie‐Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Chrysoula Daskalogianni
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Illkirch, France
| | - Robin Fåhraeus
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
26
|
Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog 2015; 11:e1004906. [PMID: 26067064 PMCID: PMC4465838 DOI: 10.1371/journal.ppat.1004906] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms. Epstein-Barr virus (EBV) is carried by most humans. It can cause several types of cancer. In healthy infected people, EBV persists for life in a "latent" state in white blood cells called B cells. For infected persons to remain healthy, it is crucial that they harbor CD8-positive "killer" T cells that recognize and destroy precancerous EBV-infected cells. However, this protection is imperfect, because the virus is not eliminated from the body, and the danger of EBV-associated cancer remains. How does the virus counteract CD8+ T cell control? Here we study the effects of latent membrane protein 2A (LMP2A), which is an important viral molecule because it is present in several types of EBV-associated cancers, and in latently infected cells in healthy people. We show that LMP2A counteracts the recognition of EBV-infected B cells by antiviral killer cells. We found a number of mechanisms that are relevant to this effect. Notably, LMP2A disturbs expression of molecules on B cells that interact with NKG2D, a molecule on the surface of CD8+ T cells that aids their activation. In this way, LMP2A weakens important immune responses against EBV. Similar mechanisms may operate in different types of LMP2A-expressing cancers caused by EBV.
Collapse
|
27
|
Apcher S, Daskalogianni C, Fåhraeus R. Pioneer translation products as an alternative source for MHC-I antigenic peptides. Mol Immunol 2015; 68:68-71. [PMID: 25979818 DOI: 10.1016/j.molimm.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
The notion that alternative peptide substrates can be processed and presented to the MHC class I pathway has opened for new aspects on how the immune system detects infected or damaged cells. Recent works show that antigenic peptides are derived from intron sequences in pre-mRNAs target for the nonsense-mediated degradation pathway. Introns are spliced out co-transcriptionally suggesting that such pioneer translation products (PTPs) are synthesized on the nascent RNAs in the nuclear compartment to ensure that the first peptides to emerge from an mRNA are destined for the class I pathway. This illustrates an independent translation event during mRNA maturation that give rise to specific peptide products with a specific function in the immune system. The characterization of the translation apparatus responsible for PTP synthesis will pave the way for understanding how PTP production is regulated in different tissues under different conditions and will help designing new vaccine strategies.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d'immunologie, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| | - Chrysoula Daskalogianni
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France
| | - Robin Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
28
|
Daskalogianni C, Pyndiah S, Apcher S, Mazars A, Manoury B, Ammari N, Nylander K, Voisset C, Blondel M, Fåhraeus R. Epstein-Barr virus-encoded EBNA1 and ZEBRA: targets for therapeutic strategies against EBV-carrying cancers. J Pathol 2015; 235:334-41. [PMID: 25186125 DOI: 10.1002/path.4431] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 12/27/2022]
Abstract
The EBV-encoded EBNA1 was first discovered 40 years ago, approximately 10 years after the presence of EBV had been demonstrated in Burkitt's lymphoma cells. It took another 10 years before the functions of EBNA1 in maintaining the viral genome were revealed, and it has since been shown to be an essential viral factor expressed in all EBV-carrying cells. Apart from serving to maintain the viral episome and to control viral replication and gene expression, EBNA1 also harbours a cis-acting mechanism that allows virus-carrying host cells to evade the immune system. This relates to a particular glycine-alanine repeat (GAr) within EBNA1 that has the capacity to suppress antigen presentation to the major histocompatibility complex (MHC) class I pathway. We discuss the role of the GAr sequence at the level of mRNA translation initiation, rather than at the protein level, as at least part of the mechanism to avoid MHC presentation. Interfering with this mechanism has become the focus of the development of immune-based therapies against EBV-carrying cancers, and some lead compounds that affect translation of GAr-carrying mRNAs have been identified. In addition, we describe the EBV-encoded ZEBRA factor and the switch from the latent to the lytic cycle as an alternative virus-specific target for treating EBV-carrying cancers. Understanding the molecular mechanisms of how EBNA1 and ZEBRA interfere with cellular pathways not only opens new therapeutic approaches but continues to reveal new cell-biological insights on the interplay between host and virus. This review is a tale of discoveries relating to how EBNA1 and ZEBRA have emerged as targets for specific cancer therapies against EBV-carrying diseases, and serves as an illustration of how mRNA translation can play roles in future immune-based strategies to target viral disease.
Collapse
|
29
|
Abstract
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Collapse
Affiliation(s)
- Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; , , , ,
| | | | | | | | | |
Collapse
|
30
|
Ressing ME, van Gent M, Gram AM, Hooykaas MJG, Piersma SJ, Wiertz EJHJ. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol 2015; 391:355-81. [PMID: 26428381 DOI: 10.1007/978-3-319-22834-1_12] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.
Collapse
Affiliation(s)
- Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna M Gram
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sytse J Piersma
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1) plays multiple important roles in EBV latent infection and has also been shown to impact EBV lytic infection. EBNA1 is required for the stable persistence of the EBV genomes in latent infection and activates the expression of other EBV latency genes through interactions with specific DNA sequences in the viral episomes. EBNA1 also interacts with several cellular proteins to modulate the activities of multiple cellular pathways important for viral persistence and cell survival. These cellular effects are also implicated in oncogenesis, suggesting a direct role of EBNA1 in the development of EBV-associated tumors.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
32
|
Tellam JT, Zhong J, Lekieffre L, Bhat P, Martinez M, Croft NP, Kaplan W, Tellam RL, Khanna R. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog 2014; 10:e1004423. [PMID: 25299404 PMCID: PMC4192603 DOI: 10.1371/journal.ppat.1004423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1) comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8+ T cell epitopes by CD11c+ dendritic cells in draining lymph nodes and early priming of antigen-specific CD8+ T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8+ T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection. Maintenance proteins of viruses establishing latent infections regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The Epstein-Barr virus maintenance protein, EBNA1, has recently been shown to contain unusual G-quadruplex structures within its repeat mRNA that reduces its translational efficiency. In this study we assess how modification of the EBNA1 mRNA repeat sequence to destabilize the native G-quadruplex structures and thereby increase translation, impacts on the activation of EBNA1-specific T cells in vivo. Mice primed with viral vectors encoding a more efficiently translated EBNA1 mRNA revealed increased trafficking of EBNA1-specific T cells, an enhanced functional profile and increased expression of transcription factors providing evidence for a potential link between mRNA translational efficiency and antigen presentation in vivo and the resultant impact on the functional programming of effector T cells. These findings suggest a novel approach to therapeutic development through the use of antisense strategies or small molecules targeting EBNA1 mRNA structure.
Collapse
Affiliation(s)
- Judy T. Tellam
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| | - Jie Zhong
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Purnima Bhat
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michelle Martinez
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatic Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ross L. Tellam
- CSIRO Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| |
Collapse
|
33
|
Modelling the structure of full-length Epstein–Barr virus nuclear antigen 1. Virus Genes 2014; 49:358-72. [DOI: 10.1007/s11262-014-1101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/27/2014] [Indexed: 12/27/2022]
|
34
|
Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 2014; 10:358-64. [PMID: 24633353 PMCID: PMC4188979 DOI: 10.1038/nchembio.1479] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cis-acting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals for translational control and immune evasion. Furthermore, these findings suggest alternative therapeutic strategies focused on targeting RNA structure within viral ORFs.
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jie Zhong
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P Cowieson
- Centre for Synchrotron Science, Monash University, Melbourne, Victoria, Australia
| | - Jennifer L Clancy
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cambridge Institute, Cancer Research UK, Li Ka Shing Center, Cambridge, UK
- School of Clinical Medicine, The University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Rajiv Khanna
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Judy Tellam
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Hoyng SA, Gnavi S, de Winter F, Eggers R, Ozawa T, Zaldumbide A, Hoeben RC, Malessy MJA, Verhaagen J. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 2014; 21:549-57. [PMID: 24694534 DOI: 10.1038/gt.2014.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/18/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Viral vector-mediated gene transfer of neurotrophic factors is an emerging and promising strategy to promote the regeneration of injured peripheral nerves. Unfortunately, the chronic exposure to neurotrophic factors results in local trapping of regenerating axons or other unwanted side effects. Therefore, tight control of therapeutic gene expression is required. The tetracycline/doxycycline-inducible system is considered to be one of the most promising systems for regulating heterologous gene expression. However, an immune response directed against the transactivator protein rtTA hampers further translational studies. Immunogenic proteins fused with the Gly-Ala repeat of the Epstein-Barr virus Nuclear Antigen-1 protein have been shown to successfully evade the immune system. In this article, we used this strategy to demonstrate that a chimeric transactivator, created by fusing the Gly-Ala repeat with rtTA and embedded in a lentiviral vector (i) retained its transactivator function in vitro, in muscle explants, and in vivo following injection into the rat peripheral nerve, (ii) exhibited a reduced leaky expression, and (iii) had an immune-evasive advantage over rtTA as shown in a novel bioassay for human antigen presentation. The current findings are an important step toward creating a clinically applicable potentially immune-evasive tetracycline-regulatable viral vector system.
Collapse
Affiliation(s)
- S A Hoyng
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S Gnavi
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - F de Winter
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Tokyo, Japan
| | - A Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J A Malessy
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Verhaagen
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 2014; 35:159-69. [PMID: 24589417 DOI: 10.1016/j.it.2014.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus with potent B cell growth transforming ability, induces multiple cellular immune responses in the infected host. How these host responses work together to prevent virus pathogenicity, and how immune imbalance predisposes to disease, remain poorly understood. Here, we describe three ongoing lines of enquiry that are shedding new light on these issues. These focus on: (i) patients with infectious mononucleosis or its fatal equivalent, X-linked lymphoproliferative disease; (ii) EBV infection in a range of new, genetically defined, primary immune deficiency states; and (iii) experimental infection in two complementary animal models, the rhesus macaque and the human haemopoietic stem cell reconstituted mouse.
Collapse
|
37
|
Voisset C, Daskalogianni C, Contesse MA, Mazars A, Arbach H, Le Cann M, Soubigou F, Apcher S, Fåhraeus R, Blondel M. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus. Dis Model Mech 2014; 7:435-44. [PMID: 24558096 PMCID: PMC3974454 DOI: 10.1242/dmm.014308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.
Collapse
Affiliation(s)
- Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR 1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Feng P, Moses A, Früh K. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses. Curr Opin Virol 2013; 3:285-95. [PMID: 23735334 DOI: 10.1016/j.coviro.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
Abstract
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
39
|
Tellam JT, Lekieffre L, Zhong J, Lynn DJ, Khanna R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog 2012; 8:e1003112. [PMID: 23300450 PMCID: PMC3531512 DOI: 10.1371/journal.ppat.1003112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure. Viruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.
Collapse
Affiliation(s)
- Judy T Tellam
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre and Australian Centre for Vaccine Development, Queensland Institute of Medical Research, Herston, Queensland, Australia.
| | | | | | | | | |
Collapse
|
40
|
Williams LR, Taylor GS. Autophagy and immunity - insights from human herpesviruses. Front Immunol 2012; 3:170. [PMID: 22783253 PMCID: PMC3389338 DOI: 10.3389/fimmu.2012.00170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
The herpesviruses are a family of double-stranded DNA viruses that infect a wide variety of organisms. Having co-evolved with their hosts over millennia, herpesviruses have developed a large repertoire of mechanisms to manipulate normal cellular processes for their own benefit. Consequently, studies on these viruses have made important contributions to our understanding of fundamental biological processes. Here we describe recent research on the human herpesviruses that has contributed to our understanding of, and interactions between, viruses, autophagy, and the immune system. The ability of autophagy to degrade proteins located within the nucleus, the site of herpesvirus latency and replication, is also considered.
Collapse
Affiliation(s)
- Luke R Williams
- School of Cancer Sciences, University of Birmingham, Vincent Drive, Birmingham, UK
| | | |
Collapse
|
41
|
Martorelli D, Coppotelli G, Muraro E, Dolcetti R, Masucci MG. Remodeling of the epitope repertoire of a candidate idiotype vaccine by targeting to lysosomal degradation in dendritic cells. Cancer Immunol Immunother 2012; 61:881-92. [PMID: 22089857 PMCID: PMC11028998 DOI: 10.1007/s00262-011-1157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/03/2011] [Indexed: 02/05/2023]
Abstract
The generation of efficacious vaccines against self-antigens expressed in tumor cells requires breakage of tolerance, and the refocusing of immune responses toward epitopes for which tolerance may not be established. While the presentation of tumor antigens by mature dendritic cells (mDC) may surpass tolerance, broadening of the antigenic repertoire remains an issue. We report that fusion of the candidate idiotype vaccine IGKV3-20 to the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen (EBNA)-1 inhibits degradation by the proteasome and redirects processing to the lysosome. mDCs transduced with a recombinant lentivirus encoding the chimeric idiotype efficiently primed CD4+ and CD8+ cytotoxic T-cell (CTL) responses that lysed autologous blasts expressing IGKV3-20 or pulsed with IGKV3-20 synthetic peptides, and HLA-matched IGKV3-20-positive tumor cell lines. Comparison of the cytotoxic response of CD4+ and CD8+ T lymphocytes activated by mDCs expressing the wild-type or chimeric IGKV3-20 reveled largely non-overlapping epitope repertoires in both CD4+ and CD8+ effectors. Thus, fusion to the GAr may provide an effective means to broaden the immune response to an endogenous protein by promoting the presentation of antigenic epitopes that require a lysosome-dependent processing step.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| | - Elena Muraro
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Riccardo Dolcetti
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| |
Collapse
|
42
|
Apcher S, Manoury B, Fåhraeus R. The role of mRNA translation in direct MHC class I antigen presentation. Curr Opin Immunol 2012; 24:71-6. [DOI: 10.1016/j.coi.2012.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 12/31/2022]
|
43
|
Frappier L. The Epstein-Barr Virus EBNA1 Protein. SCIENTIFICA 2012; 2012:438204. [PMID: 24278697 PMCID: PMC3820569 DOI: 10.6064/2012/438204] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/28/2012] [Indexed: 05/06/2023]
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
- *Lori Frappier:
| |
Collapse
|
44
|
Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 2011; 108:11572-7. [PMID: 21709220 DOI: 10.1073/pnas.1104104108] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MHC class I antigen presentation pathway allows the immune system to distinguish between self and nonself. Despite extensive research on the processing of antigenic peptides, little is known about their origin. Here, we show that mRNAs carrying premature stop codons that prevent the production of full-length proteins via the nonsense-mediated decay pathway still produce a majority of peptide substrates for the MHC class I pathway by a noncanonical mRNA translation process. Blocking the interaction of the translation initiation factor eIF4E with the cap structure suppresses the synthesis of full-length proteins but has only a limited effect on the production of antigenic peptides. These results reveal an essential cell biological function for a class of translation products derived during the pioneer round of mRNA translation and will have important implications for understanding how the immune system detects cells harboring pathogens and generates tolerance.
Collapse
|
45
|
Coppotelli G, Mughal N, Marescotti D, Masucci MG. High avidity binding to DNA protects ubiquitylated substrates from proteasomal degradation. J Biol Chem 2011; 286:19565-75. [PMID: 21471195 DOI: 10.1074/jbc.m111.224782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein domains that act as degradation and stabilization signals regulate the rate of turnover of proteasomal substrates. Here we report that the bipartite Gly-Arg repeat of the Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 acts as a stabilization signal that inhibits proteasomal degradation in the nucleus by promoting binding to cellular DNA. Protection can be transferred by grafting the domain to unrelated proteasomal substrates and does not involve changes of ubiquitylation. Protection is also afforded by other protein domains that, similar to the Gly-Arg repeat, mediate high avidity binding to DNA, as exemplified by resistance to detergent extraction. Our findings identify high avidity binding to DNA as a portable inhibitory signal that counteracts proteasomal degradation.
Collapse
Affiliation(s)
- Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Taylor GS, Blackbourn DJ. Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 2011; 305:263-78. [PMID: 21470769 DOI: 10.1016/j.canlet.2010.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 01/13/2023]
Abstract
Members of the herpesvirus family have evolved the ability to persist in their hosts by establishing a reservoir of latently infected cells each carrying the viral genome with reduced levels of viral protein synthesis. In order to spread within and between hosts, in some cells, the quiescent virus will reactivate and enter lytic cycle replication to generate and release new infectious virus particles. To allow the efficient generation of progeny viruses, all herpesviruses have evolved a wide variety of immunomodulatory mechanisms to limit the exposure of cells undergoing lytic cycle replication to the immune system. Here we have focused on the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) that, uniquely among the eight human herpesviruses identified to date, have growth transforming potential. Most people infected with these viruses will not develop cancer, viral growth-transforming activity being kept under control by the host's antigen-specific immune responses. Nonetheless, EBV and KSHV are associated with several malignancies in which various viral proteins, either predominantly or exclusively latency-associated, are expressed; at least some of these proteins also have immunomodulatory activities. Of these malignancies, some are the result of a disrupted virus/immune balance through genetic, infectious or iatrogenic immune suppression. Others develop in people that are not overtly immune suppressed and likely modulate the immunological response. This latter aspect of immune modulation by EBV and KSHV forms the basis of this review.
Collapse
Affiliation(s)
- Graham S Taylor
- CR UK Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | |
Collapse
|
47
|
Destro F, Sforza F, Sicurella M, Marescotti D, Gallerani E, Baldisserotto A, Marastoni M, Gavioli R. Proteasome inhibitors induce the presentation of an Epstein-Barr virus nuclear antigen 1-derived cytotoxic T lymphocyte epitope in Burkitt's lymphoma cells. Immunology 2011; 133:105-14. [PMID: 21342184 DOI: 10.1111/j.1365-2567.2011.03416.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is generally expressed in all EBV-associated tumours and is therefore an interesting target for immunotherapy. However, evidence for the recognition and elimination of EBV-transformed and Burkitt's lymphoma (BL) cells by cytotoxic T lymphocytes (CTLs) specific for endogenously presented EBNA1-derived epitopes remains elusive. We confirm here that CTLs specific for the HLA-B35/B53-presented EBNA1-derived HPVGEADYFEY (HPV) epitope are detectable in the majority of HLA-B35 individuals, and recognize EBV-transformed B lymphocytes, thereby demonstrating that the GAr domain does not fully inhibit the class I presentation of the HPV epitope. In contrast, BL cells are not recognized by HPV-specific CTLs, suggesting that other mechanisms contribute to providing a full protection from EBNA1-specific CTL-mediated lysis. One of the major differences between BL cells and lymphoplastoid cell lines (LCLs) is the proteasome; indeed, proteasomes from BL cells demonstrate far lower chymotryptic and tryptic-like activities compared with proteasomes from LCLs. Hence, inefficient proteasomal processing is likely to be the main reason for the poor presentation of this epitope in BL cells. Interestingly, we show that treatments with proteasome inhibitors partially restore the capacity of BL cells to present the HPV epitope. This indicates that proteasomes from BL cells, although less efficient in degrading reference substrates than proteasomes from LCLs, are able to destroy the HPV epitope, which can, however, be generated and presented after partial inhibition of the proteasome. These findings suggest the use of proteasome inhibitors, alone or in combination with other drugs, as a strategy for the treatment of EBNA1-carrying tumours.
Collapse
Affiliation(s)
- Federica Destro
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kwun HJ, da Silva SR, Qin H, Ferris RL, Tan R, Chang Y, Moore PS. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation. Virology 2011; 412:357-65. [PMID: 21324504 DOI: 10.1016/j.virol.2011.01.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/20/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER. By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.
Collapse
Affiliation(s)
- Hyun Jin Kwun
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Long HM, Taylor GS, Rickinson AB. Immune defence against EBV and EBV-associated disease. Curr Opin Immunol 2011; 23:258-64. [PMID: 21269819 DOI: 10.1016/j.coi.2010.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus widespread in the human population and normally contained as an asymptomatic infection by T cell surveillance, nevertheless causes infectious mononucleosis and is strongly linked to several types of human cancer. Here we describe new findings on the range of cellular immune responses induced by EBV infection, on viral strategies to evade those responses and on the links between HLA gene loci and EBV-induced disease. The success of adoptive T cell therapy for EBV-driven post-transplant lymphoproliferative disease is stimulating efforts to target other EBV-associated tumours by immunotherapeutic means, and has reawakened interest in the ultimate intervention strategy, a prophylactic EBV vaccine.
Collapse
Affiliation(s)
- Heather M Long
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
50
|
Apcher S, Daskalogianni C, Manoury B, Fåhraeus R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog 2010; 6:e1001151. [PMID: 20976201 PMCID: PMC2954899 DOI: 10.1371/journal.ppat.1001151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 09/13/2010] [Indexed: 01/25/2023] Open
Abstract
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general. The presentation of short peptides on major histocompatibility (MHC) class I molecules forms the cornerstone for which the immune system tells apart self from non-self. It is important for viruses such as the Epstein-Barr virus (EBV) to avoid this antigen presentation pathway in order to escape recognition and killing of its host cells. All EBV-infected cells, including cancer cells, express EBNA1 without attracting the attention of the immune system. In this report we describe the mechanism by which EBNA1 escapes antigen presentation. This should open up for new approaches to target EBV-associated diseases including cancers and immuno proliferative disorders and for understanding the underlying mechanisms of the source and regulation of antigenic peptide production.
Collapse
Affiliation(s)
- Sebastien Apcher
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Chrysoula Daskalogianni
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | | | - Robin Fåhraeus
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
- * E-mail:
| |
Collapse
|