1
|
Zeng Q, Antia A, Casorla-Perez LA, Puray-Chavez M, Kutluay SB, Ciorba MA, Ding S. Calpain-2 mediates SARS-CoV-2 entry via regulating ACE2 levels. mBio 2024; 15:e0228723. [PMID: 38349185 PMCID: PMC10936414 DOI: 10.1128/mbio.02287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.
Collapse
Affiliation(s)
- Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luis Alberto Casorla-Perez
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Diseases Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Diseases Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Li J, Zheng K, Shen H, Wu H, Wan C, Zhang R, Liu Z. Calpain-2 protein influences chikungunya virus replication and regulates vimentin rearrangement caused by chikungunya virus infection. Front Microbiol 2023; 14:1229576. [PMID: 37928675 PMCID: PMC10620729 DOI: 10.3389/fmicb.2023.1229576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Chikungunya fever (CHIF), a vector-borne disease transmitted mainly by Aedes albopictus and Aedes aegypti, is caused by Chikungunya virus (CHIKV) infection. To date, it is estimated that 39% of the world's population is at risk of infection for living in countries and regions where CHIKV is endemic. However, at present, the cellular receptors of CHIKV remains not clear, and there are no specific drugs and vaccines for CHIF. Here, the cytotoxicity of calpain-2 protein activity inhibitor III and specific siRNA was detected by MTT assays. The replication of CHIKV was detected by qPCR amplification and plaque assay. Western blot was used to determine the level of the calpain-2 protein and vimentin protein. Immunofluorescence was also operated for detecting the rearrangement of vimentin protein. Our results indicated that calpain-2 protein activity inhibitor III and specific siRNA might suppress CHIKV replication. Furthermore, CHIKV infection led to vimentin remodeling and formation of cage-like structures, which could be inhibited by the inhibitor III. In summary, we confirmed that calpain-2 protein influenced chikungunya virus replication and regulated vimentin rearrangement caused by chikungunya virus infection, which could be important for understanding the biological significance of CHIKV replication and the future development of antiviral strategies.
Collapse
Affiliation(s)
- Jia Li
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Huilong Shen
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Hua Wu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Chengsong Wan
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Renli Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
3
|
Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, Marjomäki V. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiol Spectr 2023; 11:e0055223. [PMID: 37436162 PMCID: PMC10433971 DOI: 10.1128/spectrum.00552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.
Collapse
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marleen Zwaagstra
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mari Martikainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Mehdi Benkahla
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Emily Gervais
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anni Honkimaa
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie Bailliot
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Olve Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Frank Van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Saul S, Karim M, Ghita L, Huang PT, Chiu W, Durán V, Lo CW, Kumar S, Bhalla N, Leyssen P, Alem F, Boghdeh NA, Tran DH, Cohen CA, Brown JA, Huie KE, Tindle C, Sibai M, Ye C, Khalil AM, Martinez-Sobrido L, Dye JM, Pinsky BA, Ghosh P, Das S, Solow-Cordero DE, Jin J, Wikswo JP, Jochmans D, Neyts J, Jonghe SD, Narayanan A, Einav S. Anticancer pan-ErbB inhibitors reduce inflammation and tissue injury and exert broad-spectrum antiviral effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.05.15.444128. [PMID: 34159337 PMCID: PMC8219101 DOI: 10.1101/2021.05.15.444128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.
Collapse
|
5
|
Zeng Q, Antia A, Puray-Chavez M, Kutluay SB, Ding S. Calpain-2 mediates SARS-CoV-2 entry and represents a therapeutic target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518418. [PMID: 36482976 PMCID: PMC9727764 DOI: 10.1101/2022.11.29.518418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (M pro ), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein, but not M pro . In contrast, calpain inhibitors did not exhibit antiviral activities towards the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an M pro -independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step.
Collapse
|
6
|
Marjomäki V, Kalander K, Hellman M, Permi P. Enteroviruses and coronaviruses: similarities and therapeutic targets. Expert Opin Ther Targets 2021; 25:479-489. [PMID: 34253126 PMCID: PMC8330013 DOI: 10.1080/14728222.2021.1952985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Enteroviruses are common viruses causing a huge number of acute and chronic infections and producing towering economic costs. Similarly, coronaviruses cause seasonal mild infections, epidemics, and even pandemics and can lead to severe respiratory symptoms. It is important to develop broadly acting antiviral molecules to efficiently tackle the infections caused by thes.Areas covered: This review illuminates the differences and similarities between enteroviruses and coronaviruses and examines the most appealing therapeutic targets to combat both virus groups. Publications of both virus groups and deposited structures discovered through PubMed to March 2021 for viral proteases have been evaluated.Expert opinion: The main protease of coronaviruses and enteroviruses share similarities in their structure and function. These proteases process their viral polyproteins and thus drugs that bind to the active site have potential to target both virus groups. It is important to develop drugs that target more evolutionarily conserved processes and proteins. Moreover, it is a wise strategy to concentrate on processes that are similar between several virus families.
Collapse
Affiliation(s)
- Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kerttu Kalander
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Hellman
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
Tijore A, Yao M, Wang YH, Hariharan A, Nematbakhsh Y, Lee Doss B, Lim CT, Sheetz M. Selective killing of transformed cells by mechanical stretch. Biomaterials 2021; 275:120866. [PMID: 34044258 DOI: 10.1016/j.biomaterials.2021.120866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells differ from normal cells in several important features like anchorage independence, Warburg effect and mechanosensing. Further, in recent studies, they respond aberrantly to external mechanical distortion. Consistent with altered mechano-responsiveness, we find that cyclic stretching of tumor cells from many different tissues reduces growth rate and causes apoptosis on soft surfaces. Surprisingly, normal cells behave similarly when transformed by depletion of the rigidity sensor protein (Tropomyosin 2.1). Restoration of rigidity sensing in tumor cells promotes rigidity dependent mechanical behavior, i.e. cyclic stretching enhances growth and reduces apoptosis on soft surfaces. The mechanism of mechanical apoptosis (mechanoptosis) of transformed cells involves calcium influx through the mechanosensitive channel, Piezo1 that activates calpain 2 dependent apoptosis through the BAX molecule and subsequent mitochondrial activation of caspase 3 on both fibronetin and collagen matrices. Thus, it is possible to selectively kill tumor cells by mechanical perturbations, while stimulating the growth of normal cells.
Collapse
Affiliation(s)
- Ajay Tijore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yu-Hsiu Wang
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yasaman Nematbakhsh
- Department of Biomedical Engineering, National University of Singapore, 117575, Singapore
| | - Bryant Lee Doss
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 117575, Singapore; Institute for Health Innovation and Technology, National University of Singapore, 117599, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
8
|
Salmikangas S, Laiho JE, Kalander K, Laajala M, Honkimaa A, Shanina I, Oikarinen S, Horwitz MS, Hyöty H, Marjomäki V. Detection of Viral -RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms 2020; 8:microorganisms8121928. [PMID: 33291747 PMCID: PMC7761939 DOI: 10.3390/microorganisms8121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging -RNA and +RNA during acute and persistent enterovirus infections. According to our results, the replication of the viral RNA started 2-3 h after infection and the translation shortly after at 3-4 h post-infection. The replication hotspots with newly emerging -RNA were located quite centrally in the cell, while the +RNA production and most likely virion assembly took place in the periphery of the cell. We also discovered that the pace of replication of -RNA and +RNA strands was almost identical, and -RNA was absent during antiviral treatments. ViewRNA ISH with our custom probes also showed a good signal during acute and persistent enterovirus infections in cell and mouse models. Considering these results, along with the established bDNA FISH protocol modified by us, the effects of antiviral drugs and the emergence of enterovirus RNAs in general can be studied more effectively.
Collapse
Affiliation(s)
- Sami Salmikangas
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Kerttu Kalander
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Iryna Shanina
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
- Correspondence: ; Tel.: +358-405634422
| |
Collapse
|
9
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Bouin A, Semler BL. Picornavirus Cellular Remodeling: Doubling Down in Response to Viral-Induced Inflammation. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:31-37. [PMID: 32704466 PMCID: PMC7377643 DOI: 10.1007/s40588-020-00138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose of Review To highlight recent findings on how picornavirus infections of the airways and cardiac tissues impact cellular inflammation and remodeling events. Recent Findings Recent published work has revealed that although many picornavirus infections appear to be initially asymptomatic, there are significant disease sequelae that result from chronic or persistent infections and the long-term, pathogenic effects on host tissues. Summary Because many acute picornavirus infections are asymptomatic, it is difficult to diagnose these pathologies at the early stages of disease. As a result, we must rely on preventative measures (i.e., vaccination) or discover novel treatments to reverse tissue damage and remodeling in affected individuals. Both of these strategies will require a comprehensive knowledge of virus-and cell-specific replication determinants and how these processes induce pathogenic effects in infected cells and tissues.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| |
Collapse
|
11
|
Yu P, Wei R, Dong W, Zhu Z, Zhang X, Chen Y, Liu X, Guo C. CD163 ΔSRCR5 MARC-145 Cells Resist PRRSV-2 Infection via Inhibiting Virus Uncoating, Which Requires the Interaction of CD163 With Calpain 1. Front Microbiol 2020; 10:3115. [PMID: 32038556 PMCID: PMC6990145 DOI: 10.3389/fmicb.2019.03115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine alveolar macrophages without the CD163 SRCR5 domain are resistant to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, whether the deletion of CD163 SRCR5 in MARC-145 cells confers resistance to PRRSV and interaction of which of the host proteins with CD163 is involved in virus uncoating remain unclear. Here we deleted the SRCR5 domain of CD163 in MARC-145 cells using CRISPR/Cas9 to generate a CD163ΔSRCR5 MARC-145 cell line. The modification of CD163 had no impact on CD163 expression. CD163ΔSRCR5 cells were completely resistant to infection by PRRSV-2 strains Li11, CHR6, TJM, and VR2332. The modified cells showed no cytokine response to PRRSV-2 infection and maintained normal cell vitality comparable with the WT cells. The resistant phenotype of the cells was stably maintained through cell passages. There were no replication transcription complexes in the CD163ΔSRCR5 cells. SRCR5 deletion did not disturb the colocalization of CD163 and PRRSV-N in early endosomes (EE). However, the interaction of the viral proteins GP2a, GP3, or GP5 with CD163, which is involved in virus uncoating was affected. Furthermore, 77 CD163-binding cellular proteins affected by the SRCR5 deletion were identified by LC–MS/MS. Inhibition of calpain 1 trapped the virions in EE and forced then into late endosomes but did not block viral attachment and internalization, suggesting that calpain 1 is involved in the uncoating. Overall, CD163ΔSRCR5 MARC-145 cells are fully resistant to PRRSV-2 infection and calpain 1 is identified as a novel host protein that interacts with CD163 to facilitate PRRSV uncoating.
Collapse
Affiliation(s)
- Piao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Human Enterovirus Group B Viruses Rely on Vimentin Dynamics for Efficient Processing of Viral Nonstructural Proteins. J Virol 2020; 94:JVI.01393-19. [PMID: 31619557 PMCID: PMC6955253 DOI: 10.1128/jvi.01393-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
We report that several viruses from the human enterovirus group B cause massive vimentin rearrangements during lytic infection. Comprehensive studies suggested that viral protein synthesis was triggering the vimentin rearrangements. Blocking the host cell vimentin dynamics with β, β'-iminodipropionitrile (IDPN) did not significantly affect the production of progeny viruses and only moderately lowered the synthesis of structural proteins such as VP1. In contrast, the synthesis of the nonstructural proteins 2A, 3C, and 3D was drastically lowered. This led to attenuation of the cleavage of the host cell substrates PABP and G3BP1 and reduced caspase activation, leading to prolonged cell survival. Furthermore, the localization of the proteins differed in the infected cells. Capsid protein VP1 was found diffusely around the cytoplasm, whereas 2A and 3D followed vimentin distribution. Based on protein blotting, smaller amounts of nonstructural proteins did not result from proteasomal degradation but from lower synthesis without intact vimentin cage structure. In contrast, inhibition of Hsp90 chaperone activity, which regulates P1 maturation, lowered the amount of VP1 but had less effect on 2A. The results suggest that the vimentin dynamics regulate viral nonstructural protein synthesis while having less effect on structural protein synthesis or overall infection efficiency. The results presented here shed new light on differential fate of structural and nonstructural proteins of enteroviruses, having consequences on host cell survival.IMPORTANCE A virus needs the host cell in order to replicate and produce new progeny viruses. For this, the virus takes over the host cell and modifies it to become a factory for viral proteins. Irrespective of the specific virus family, these proteins can be divided into structural and nonstructural proteins. Structural proteins are the building blocks for the new progeny virions, whereas the nonstructural proteins orchestrate the takeover of the host cell and its functions. Here, we have shown a mechanism that viruses exploit in order to regulate the host cell. We show that viral protein synthesis induces vimentin cages, which promote production of specific viral proteins that eventually control apoptosis and host cell death. This study specifies vimentin as the key regulator of these events and indicates that viral proteins have different fates in the cells depending on their association with vimentin cages.
Collapse
|
13
|
Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein. Viruses 2019; 11:v11121106. [PMID: 31795245 PMCID: PMC6950447 DOI: 10.3390/v11121106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular calpains have a potential role in the processing of the enteroviral polyprotein. Using purified calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium concentration, especially for calpain 2. In addition, calpain cleavage at the VP3-VP1 interface was supported by a competition assay using a peptide containing the VP3-VP1 cleavage site. Moreover, a mass spectrometry analysis showed that calpains can cleave this same peptide at the VP3-VP1 interface, the cutting site being two amino acids aside from 3C’s cutting site. Furthermore, we show that calpains cannot cleave between P1 and 2A. In conclusion, we show that cellular proteases, calpains, can cleave structural proteins from enterovirus polyprotein in vitro. Whether they assist polyprotein processing in infected cells remains to be shown.
Collapse
|
14
|
Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation. J Virol 2019; 93:JVI.00599-19. [PMID: 31189702 DOI: 10.1128/jvi.00599-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release.IMPORTANCE There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses.
Collapse
|
15
|
Itoh R, Soejima T, Hiromatsu K. Anti-chlamydial activities of cell-permeable hydrophobic dipeptide-containing derivatives. J Infect Chemother 2019; 25:987-994. [PMID: 31230920 DOI: 10.1016/j.jiac.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
The obligate intracellular bacteria chlamydia is major human pathogen that causes millions of trachoma, sexually transmitted infections and pneumonia worldwide. We serendipitously found that both calpain inhibitors z-Val-Phe-CHO and z-Leu-Nle-CHO showed marked inhibitory activity against chlamydial growth in human epithelial HeLa cells, whereas other calpain inhibitors not. These peptidomimetic inhibitors consist of N-benzyloxycarbonyl group and hydrophobic dipeptide derivatives. Both compounds strongly restrict the chlamydial growth even addition at the 12 h post infection. Notably, inhibitors-mediated growth inhibition of chlamydia was independent on host calpain activity. Electron microscopic analysis revealed that z-Val-Phe-CHO inhibited chlamydial growth by arresting bacterial cell division and RB-EB re-transition, but not by changing into persistent state. We searched and found that z-Leu-Leu-CHO and z-Phe-Ala-FMK also inhibited chlamydial growth. Neither biotin-hydrophobic dipeptide nor morpholinoureidyl-hydrophobic dipeptide shows inhibitory effects on chlamydial intracellular growth. Our results suggested the possibility of some chemical derivatives based on z-hydrophobic dipeptide group for future therapeutic usage to the chlamydial infectious disease.
Collapse
Affiliation(s)
- Ryota Itoh
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Toshinori Soejima
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kenji Hiromatsu
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
16
|
Kumar V, Ahmad A. Targeting calpains: A novel immunomodulatory approach for microbial infections. Eur J Pharmacol 2017; 814:28-44. [PMID: 28789934 DOI: 10.1016/j.ejphar.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/09/2023]
Abstract
Calpains are a family of Ca2+ dependent cytosolic non-lysosomal proteases with well conserved cysteine-rich domains for enzymatic activity. Due to their functional dependency on Ca2+ concentrations, they are involved in various cellular processes that are regulated by intracellular ca2+ concentration (i.e. embryo development, cell development and migration, maintenance of cellular architecture and structure etc.). Calpains are widely studied proteases in mammalian (i.e. mouse and human) physiology and pathophysiology due to their ubiquitous presence. For example, these proteases have been found to be involved in various inflammatory disorders such as neurodegeneration, cancer, brain and myocardial ischemia and infarction, cataract and muscular dystrophies etc. Besides their role in these sterile inflammatory conditions, calpains have also been shown to regulate a wide range of infectious diseases (i.e. sepsis, tuberculosis, gonorrhoea and bacillary dysentery etc.). One of these regulatory mechanisms mediated by calpains (i.e. calpain 1 and 2) during microbial infections involves the regulation of innate immune response, inflammation and cell death. Thus, the major emphasis of this review is to highlight the importance of calpains in the pathogenesis of various microbial (i.e. bacterial, fungal and viral) diseases and the use of calpain modulators as potential immunomodulators in microbial infections.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Paediatrics and Child Health, Children's Health Queensland Clinical Unit, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Ali Ahmad
- Laboratory of innate immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, 3175 Cote Ste Catherine, Montreal, Quebec, Canada H3T 1C5.
| |
Collapse
|
17
|
Li M, Su Y, Yu Y, Yu Y, Wang X, Zou Y, Ge J, Chen R. Dual roles of calpain in facilitating Coxsackievirus B3 replication and prompting inflammation in acute myocarditis. Int J Cardiol 2016; 221:1123-31. [PMID: 27472894 PMCID: PMC7114300 DOI: 10.1016/j.ijcard.2016.07.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/17/2016] [Accepted: 07/08/2016] [Indexed: 01/14/2023]
Abstract
Background Viral myocarditis (VMC) treatment has long been lacking of effective methods. Our former studies indicated roles of calpain in VMC pathogenesis. This study aimed at verifying the potential of calpain in Coxsackievirus B3 (CVB3)-induced myocarditis treatment. Methods A transgenic mouse overexpressing the endogenous calpain inhibitor, calpastatin, was introduced in the study. VMC mouse model was established via intraperitoneal injection of CVB3 in transgenic and wild mouse respectively. Myocardial injury was assayed histologically (HE staining and pathology grading) and serologically (myocardial damage markers of CK-MB and cTnI). CVB3 replication was observed in vivo and in vitro via the capsid protein VP1 detection or virus titration. Inflammation/fibrotic factors of MPO, perforin, IFNγ, IL17, Smad3 and MMP2 were evaluated using western blot or immunohistology stain. Role of calpain in regulating fibroblast migration was studied in scratch assays. Results Calpastatin overexpression ameliorated myocardial injury induced by CVB3 infection significantly in transgenic mouse indicated by reduced peripheral CK-MB and cTnI levels and improved histology injury. Comparing with CVB3-infected wild type mouse, the transgenic mouse heart tissue carried lower virus load. The inflammation factors of MPO, perforin, IFNγ and IL17 were down-regulated accompanied with fibrotic agents of Smad3 and MMP2 inhibition. And calpain participated in the migration of fibroblasts in vitro, which further proves its role in regulating fibrosis. Conclusion Calpain plays dual roles of facilitating CVB3 replication and inflammation promotion. Calpain inhibition in CVB3-induced myocarditis showed significant treatment effect. Calpain might be a novel target for VMC treatment in clinical practices. Calpain is involved in virus replication in myocarditis. Calpain mediates inflammation infiltration in myocarditis. Calpain might be a candidate for viral myocarditis treatment.
Collapse
Affiliation(s)
- Minghui Li
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yangang Su
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Yu
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinggang Wang
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Ruizhen Chen
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Activities of proteasome and m-calpain are essential for Chikungunya virus replication. Virus Genes 2016; 52:716-21. [PMID: 27206501 PMCID: PMC7088676 DOI: 10.1007/s11262-016-1355-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
Abstract
Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.
Collapse
|
19
|
Blanc F, Furio L, Moisy D, Yen HL, Chignard M, Letavernier E, Naffakh N, Mok CKP, Si-Tahar M. Targeting host calpain proteases decreases influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2016; 310:L689-99. [PMID: 26747784 DOI: 10.1152/ajplung.00314.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
Influenza A viruses (IAV) trigger contagious acute respiratory diseases. A better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient treatments of severe influenza. Calpains are intracellular proteases that participate in diverse cellular responses, including inflammation. Here, we used in vitro and in vivo approaches to investigate the role of calpain signaling in IAV pathogenesis. Calpain expression and activity were found altered in IAV-infected bronchial epithelial cells. With the use of small-interfering RNA (siRNA) gene silencing, specific synthetic inhibitors of calpains, and mice overexpressing calpastatin, we found that calpain inhibition dampens IAV replication and IAV-triggered secretion of proinflammatory mediators and leukocyte infiltration. Remarkably, calpain inhibition has a protective impact in IAV infection, since it significantly reduced mortality of mice challenged not only by seasonal H3N2- but also by hypervirulent H5N1 IAV strains. Hence, our study suggests that calpains are promising therapeutic targets for treating IAV acute pneumonia.
Collapse
Affiliation(s)
- Fany Blanc
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Laetitia Furio
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Dorothée Moisy
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Michel Chignard
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Emmanuel Letavernier
- Institut National de la Santé et de la Recherche Médicale UMR-S1155, Paris, France
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Chris Ka Pun Mok
- The HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Mustapha Si-Tahar
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France; Institut National de la Santé et de la Recherche Médicale U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; and Université François Rabelais, Tours, France
| |
Collapse
|
20
|
Marjomäki V, Turkki P, Huttunen M. Infectious Entry Pathway of Enterovirus B Species. Viruses 2015; 7:6387-99. [PMID: 26690201 PMCID: PMC4690868 DOI: 10.3390/v7122945] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022] Open
Abstract
Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1) and coxsackievirus A9 (CVA9). These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication.
Collapse
Affiliation(s)
- Varpu Marjomäki
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Paula Turkki
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Moona Huttunen
- MRC-Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Martikainen M, Salorinne K, Lahtinen T, Malola S, Permi P, Häkkinen H, Marjomäki V. Hydrophobic pocket targeting probes for enteroviruses. NANOSCALE 2015; 7:17457-67. [PMID: 26440968 DOI: 10.1039/c5nr04139b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.
Collapse
Affiliation(s)
- Mari Martikainen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Permeability changes of integrin-containing multivesicular structures triggered by picornavirus entry. PLoS One 2014; 9:e108948. [PMID: 25299706 PMCID: PMC4191987 DOI: 10.1371/journal.pone.0108948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
Cellular uptake of clustered α2β1-integrin induces the formation of membrane compartments that subsequently mature into a multivesicular body (MVB). Enhanced internalization mediated by clustered integrins was observed upon infection by the picornavirus echovirus 1 (EVI). We elucidated the structural features of virus-induced MVBs (vMVBs) in comparison to antibody-induced control MVBs (mock infection) by means of high-pressure cryo fixation of cells followed by immuno electron tomography during early entry of the virus. Three-dimensional tomograms revealed a marked increase in the size and complexity of these vMVBs and the intraluminal vesicles (ILVs) at 2 and 3.5 hours post infection (p.i.), in contrast to the control MVBs without virus. Breakages in the membranes of vMVBs were detected from tomograms after 2 and especially after 3.5 h suggesting that these breakages could facilitate the genome release to the cytoplasm. The in situ neutral-red labeling of viral genome showed that virus uncoating starts as early as 30 min p.i., while an increase of permeability was detected in the vMVBs between 1 and 3 hours p.i., based on a confocal microscopy assay. Altogether, the data show marked morphological changes in size and permeability of the endosomes in the infectious entry pathway of this non-enveloped enterovirus and suggest that the formed breakages facilitate the transfer of the genome to the cytoplasm for replication.
Collapse
|
23
|
Abstract
UNLABELLED Coxsackievirus A9 (CVA9) is a member of the human enterovirus B species in the Enterovirus genus of the family Picornaviridae. According to earlier studies, CVA9 binds to αVβ3 and αVβ6 integrins on the cell surface and utilizes β2-microglobulin, dynamin, and Arf6 for internalization. However, the structures utilized by the virus for internalization and uncoating are less well understood. We show here, based on electron microscopy, that CVA9 is found in multivesicular structures 2 h postinfection (p.i.). A neutral red labeling assay revealed that uncoating occurs mainly around 2 h p.i., while double-stranded RNA is found in the cytoplasm after 3 h p.i. The biogenesis of multivesicular bodies (MVBs) is crucial for promoting infection, as judged by the strong inhibitory effect of the wild-type form of Hrs and dominant negative form of VPS4 in CVA9 infection. CVA9 infection is dependent on phospholipase C at the start of infection, whereas Rac1 is especially important between 1 and 3 h p.i., when the virus is in endosomes. Several lines of evidence implicate that low pH does not play a role in CVA9 infection. The infection is not affected by Bafilomycin A1. In addition, CVA9 is not targeted to acidic late endosomes or lysosomes, and the MVBs accumulating CVA9 have a neutral pH. Thus, CVA9 is the second enterovirus demonstrated so far, after echovirus 1, that can trigger neutral MVBs, which are important for virus infection. IMPORTANCE We demonstrate here that the enterovirus coxsackievirus A9 (CVA9) uses a nonclathrin and nonacidic pathway to infect cells. CVA9 does not accumulate in conventional late endosomes or lysosomes. We found that inhibitors of phospholipase C (PLC), Rac1, and the Na(+)/H(+) exchanger decreased CVA9 infection. The PLC inhibitor acts on early entry, the Rac1 inhibitor acts between 1 and 3 h, when the virus is in endosomes, and the Na(+)/H(+) exchange inhibitor acts during various steps during the virus life cycle. The infection depends on the formation of novel neutral multivesicular bodies (MVBs), which accumulate CVA9 during the first hours of entry. Thus, CVA9 is the second enterovirus demonstrated so far, after echovirus 1, that can trigger formation of neutral MVBs. The data show that these enteroviruses favor nonacidic conditions and complex MVBs to promote virus infection.
Collapse
|
24
|
Li M, Wang X, Yu Y, Yu Y, Xie Y, Zou Y, Ge J, Peng T, Chen R. Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res 2013; 179:177-86. [PMID: 24177271 DOI: 10.1016/j.virusres.2013.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/15/2022]
Abstract
Calpain is a family of neutral cysteine proteinase involved in many physiological and pathological processes including virus replication, autophagy and apoptosis. Previous study has indicated the involvement of calpain in pathogenesis of coxsackievirus B3 (CVB3)-induced myocarditis. Besides, many studies demonstrated that host cell autophagy and apoptosis mechanisms participate in virus life cycle. However, role of calpain in CVB3 replication via autophagy/apoptosis mechanisms has not been reported, which was discussed here in H9c2 cardiomyocytes. The data demonstrated that calpain was activated following CVB3 infection. Calpain inhibition decreased autophagy, indicating role of calpain in enhancing autophagy during CVB3 infection. Both calpain activity and autophagy were involved in facilitating CVB3 replication demonstrated by virus titer and CVB3 capsid protein VP1 expression alterations resulting from calpain inhibitor ALLN and autophagy inhibitor 3MA intervention. We also found that both calpain activity and autophagy suppressed caspase3 activity and host cell apoptosis 5-10h post-infection (p.i.). In summary, the present study shows that CVB3 infection of H9c2 cells hinders caspase3 activity provocation and cell apoptosis at least in the early phase of infection (5-10h p.i.) via calpain-induced autophagy enhancement, which might be a mechanism facilitating CVB3 replication in host cells.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Xinggang Wang
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yong Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Ying Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yeqing Xie
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yunzeng Zou
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Junbo Ge
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Tianqing Peng
- Lawson Health Research Institute, Department of Medicine and Pathology, University of Western Ontario, Canada
| | - Ruizhen Chen
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
25
|
Lu JR, Lu WW, Lai JZ, Tsai FL, Wu SH, Lin CW, Kung SH. Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol 2013; 94:1477-1485. [PMID: 23515028 DOI: 10.1099/vir.0.047753-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of an array of childhood diseases with severe neurological manifestations implicated. EV71 infection is known to induce caspase-dependent apoptosis in cell cultures and animal models. However, whether an alternative apoptotic pathway independent of caspase activation can be triggered by EV71 infection has not been explored. In this study, we showed that calcium (Ca²⁺)-activated calpains are capable of mediating caspase-independent pathway activation during EV71-induced apoptosis in HeLa cells. Results from subcellular fractionation analysis and confocal imaging indicated that during EV71 infection, apoptosis-inducing factor (AIF), a primary mediator of the caspase-independent pathway, became truncated and translocated from the mitochondrion to nucleus. This was accompanied by the release of cytochrome c, and sharply decreased mitochondrial membrane potential. AIF knockdown data indicated significant protection against apoptotic cell death, with greater protection provided by the addition of a pan-caspase inhibitor. The Ca²⁺-dependent, calpain isoforms 1 and 2, but not cathepsins, were proven crucial for the altered AIF behaviour as studied by the pharmacological inhibitor and the knockdown approaches. We then analysed Ca²⁺ dynamics in the infected cells and found elevated levels of mitochondrial Ca²⁺. Treatment with ruthenium red, a mitochondrial Ca²⁺ influx inhibitor, significantly blocked calpain activations and AIF cleavage. Our conclusion was that calpain activation via Ca²⁺ flux plays an essential role in eliciting an AIF-mediated, caspase-independent apoptotic pathway in EV71-infected cells. These findings should be useful for understanding the virus-induced cytopathology and the impact of Ca²⁺ homeostasis on EV71 infection.
Collapse
Affiliation(s)
- Jia-Rong Lu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan, Republic of China
| | - Jian-Zhong Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Fu-Lian Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Szu-Hsien Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
26
|
Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J Virol 2012; 86:10112-22. [PMID: 22787216 DOI: 10.1128/jvi.01001-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5(-/-) mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle.
Collapse
|
27
|
Rintanen N, Karjalainen M, Alanko J, Paavolainen L, Mäki A, Nissinen L, Lehkonen M, Kallio K, Cheng RH, Upla P, Ivaska J, Marjomäki V. Calpains promote α2β1 integrin turnover in nonrecycling integrin pathway. Mol Biol Cell 2011; 23:448-63. [PMID: 22160595 PMCID: PMC3268724 DOI: 10.1091/mbc.e11-06-0548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel virus- and integrin clustering–specific pathway diverts integrin from its normal endo/exocytic traffic to a nonrecycling degradative endosomal route. Clustering of α2β1 integrin causes redistribution of the integrin to perinuclear endosomes, leading to enhanced integrin turnover promoted by calpains. Collagen receptor integrins recycle between the plasma membrane and endosomes and facilitate formation and turnover of focal adhesions. In contrast, clustering of α2β1 integrin with antibodies or the human pathogen echovirus 1 (EV1) causes redistribution of α2 integrin to perinuclear multivesicular bodies, α2-MVBs. We show here that the internalized clustered α2 integrin remains in α2-MVBs and is not recycled back to the plasma membrane. Instead, receptor clustering and internalization lead to an accelerated down-regulation of α2β1 integrin compared to the slow turnover of unclustered α2 integrin. EV1 infection or integrin degradation is not associated with proteasomal or autophagosomal processes and shows no significant association with lysosomal pathway. In contrast, degradation is dependent on calpains, such that it is blocked by calpain inhibitors. We show that active calpain is present in α2-MVBs, internalized clustered α2β1 integrin coprecipitates with calpain-1, and calpain enzymes can degrade α2β1 integrin. In conclusion, we identified a novel virus- and clustering-specific pathway that diverts α2β1 integrin from its normal endo/exocytic traffic to a nonrecycling, calpain-dependent degradative endosomal route.
Collapse
Affiliation(s)
- Nina Rintanen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Karjalainen M, Rintanen N, Lehkonen M, Kallio K, Mäki A, Hellström K, Siljamäki V, Upla P, Marjomäki V. Echovirus 1 infection depends on biogenesis of novel multivesicular bodies. Cell Microbiol 2011; 13:1975-95. [PMID: 21899700 DOI: 10.1111/j.1462-5822.2011.01685.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-enveloped picornavirus echovirus 1 (EV1) clusters its receptor α2β1 integrin and causes their internalization and accumulation in α2β1 integrin enriched multivesicular bodies (α2-MVBs). Our results here show that these α2-MVBs are distinct from acidic late endosomes/lysosomes by several criteria: (i) live intra-endosomal pH measurements show that α2-MVBs are not acidic, (ii) they are not positive for the late endosomal marker LBPA or Dil-LDL internalized to lysosomes, and (iii) simultaneous stimulation of epidermal growth factor receptor (EGFR) and α2β1 integrin clustering leads to their accumulation in separate endosomes. EGFR showed downregulation between 15 min and 2 h, whereas accumulation of α2β1 integrin/EV1 led to an increase of integrin fluorescence in cytoplasmic vesicles further suggesting that EV1 pathway is separate from the lysosomal downregulation pathway. In addition, the results demonstrate the involvement of ESCRTs in the biogenesis of α2-MVBs. Overexpression of dominant-negative form of VPS4 inhibited biogenesis of α2-MVBs and efficiently prevented EV1 infection. Furthermore, α2-MVBs were positive for some members of ESCRTs such as Hrs, VPS37A and VPS24 and the siRNA treatment of TSG101, VPS37A and VPS24 inhibited EV1 infection. Our results show that the non-enveloped EV1 depends on biogenesis of novel multivesicular structures for successful infection.
Collapse
Affiliation(s)
- Mikko Karjalainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bozym RA, Patel K, White C, Cheung KH, Bergelson JM, Morosky SA, Coyne CB. Calcium signals and calpain-dependent necrosis are essential for release of coxsackievirus B from polarized intestinal epithelial cells. Mol Biol Cell 2011; 22:3010-21. [PMID: 21737691 PMCID: PMC3164450 DOI: 10.1091/mbc.e11-02-0094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus B (CVB), a member of the enterovirus family, targets the polarized epithelial cells lining the intestinal tract early in infection. Although the polarized epithelium functions as a protective barrier, this barrier is likely exploited by CVB to promote viral entry and subsequent egress. Here we show that, in contrast to nonpolarized cells, CVB-infected polarized intestinal Caco-2 cells undergo nonapoptotic necrotic cell death triggered by inositol 1,4,5-trisphosphate receptor-dependent calcium release. We further show that CVB-induced cellular necrosis depends on the Ca(2+)-activated protease calpain-2 and that this protease is involved in CVB-induced disruption of the junctional complex and rearrangements of the actin cytoskeleton. Our study illustrates the cell signaling pathways hijacked by CVB, and perhaps other viral pathogens, to promote their replication and spread in polarized cell types.
Collapse
Affiliation(s)
- Rebecca A. Bozym
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| | - Kunal Patel
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Carl White
- Department of Physiology & Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - King-Ho Cheung
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Jeffrey M. Bergelson
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
30
|
Bozym RA, Morosky SA, Kim KS, Cherry S, Coyne CB. Release of intracellular calcium stores facilitates coxsackievirus entry into polarized endothelial cells. PLoS Pathog 2010; 6:e1001135. [PMID: 20949071 PMCID: PMC2951373 DOI: 10.1371/journal.ppat.1001135] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/07/2010] [Indexed: 12/01/2022] Open
Abstract
Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers. Enteroviruses are associated with a number of diverse syndromes such as myocarditis, febrile illness, and are the main causative agents of aseptic meningitis. No effective therapeutics exist to combat non-poliovirus enterovirus infections. A better understanding of the mechanisms by which these viruses infect host cells could lead to the design of effective therapeutic interventions. In this study, we found that intracellular calcium stores in polarized endothelial monolayers are depleted upon exposure to coxsackievirus B (CVB) and that this release is mediated by viral attachment to its receptor decay-accelerating factor. We also discovered that the calcium release requires the activation of signaling molecules involved in calcium signaling such as Src tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3 on the ER membrane. Furthermore, we found that a calcium-activated cystein protease, calpain-2, was activated and necessary for proper viral trafficking inside the cell. Interestingly, we found that this signaling cascade was critical for CVB internalization into the endothelium, but was not involved in CVB entry into the epithelium. This is an important advance in our understanding of how enteroviruses hijack host endothelial cell signaling mechanisms in order to facilitate their entry and eventual spread.
Collapse
Affiliation(s)
- Rebecca A. Bozym
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kwang S. Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Rafts are domains of the plasma membrane, enriched in cholesterol and sphingolipids; they form a platform for signaling proteins and receptors. The lipid rafts are utilized in the replication cycle of numerous viruses. Internalization receptors of many viruses localize to rafts or are recruited there after virus binding. Arrays of signal transduction proteins found in rafts contribute to efficient trafficking and productive infection. Some viruses are dependent on raft domains for the biogenesis of their membranous replication structures. Finally, rafts are often important in virus assembly and budding. Subsequently, raft components in the viral envelope may be vital for the entry to a new host cell. Here, we summarize the current knowledge of the involvement of rafts in virus infection.
Collapse
Affiliation(s)
- Paula Upla
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | - Timo Hyypiä
- Department of Virology, University of Turku, FI-20520 Turku, Finland
| | - Varpu Marjomäki
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| |
Collapse
|
32
|
Arita M, Wakita T, Shimizu H. Cellular kinase inhibitors that suppress enterovirus replication have a conserved target in viral protein 3A similar to that of enviroxime. J Gen Virol 2009; 90:1869-1879. [PMID: 19439558 DOI: 10.1099/vir.0.012096-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we identified a cellular kinase inhibitor, GW5074, that inhibits poliovirus (PV) and enterovirus 71 replication strongly, although its target has remained unknown. To identify the target of GW5074, we searched for cellular kinase inhibitors that have anti-enterovirus activity similar or related to that of GW5074. With this aim, we performed screenings to identify cellular kinase inhibitors that could inhibit PV replication cooperatively with GW5074 or synthetically in the absence of GW5074. We identified MEK1/2 inhibitors (SL327 and U0126), an EGFR inhibitor (AG1478) and a phosphatidylinositol 3-kinase inhibitor (wortmannin) as compounds with a cooperative inhibitory effect with GW5074, and an Akt1/2 inhibitor (Akt inhibitor VIII) as a compound with a synthetic inhibitory effect with MEK1/2 inhibitors and AG1478. Individual treatment with the identified kinase inhibitors did not affect PV replication significantly, but combined treatment with MEK1/2 inhibitor, AG1478 and Akt1/2 inhibitor suppressed the replication synthetically. The effect of AG1478 in this synthetic inhibition was compensated by other receptor tyrosine kinase inhibitors (IGF-1R inhibitor II and Flt3 inhibitor II). We isolated mutants resistant to Flt3 inhibitor II and GW5074 and found that these mutants had cross-resistance to each treatment. These mutants had a common mutation in viral protein 3A that results in an amino acid change at position 70 (Ala to Thr), a mutation that was previously identified in mutants resistant to a potent anti-enterovirus compound, enviroxime. These results suggest that cellular kinase inhibitors and enviroxime have a conserved target in viral protein 3A to suppress enterovirus replication.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
33
|
Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. J Virol 2008; 82:11976-8. [PMID: 18799585 DOI: 10.1128/jvi.01028-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus is the most important cause of meningitis and encephalitis in infants; an infection is sometimes fatal or may lead to neurodevelopmental defects. Here, we show that coxsackievirus B4 (CVB4) induces an autophagy pathway for replication in rat primary neurons. Notably, calpain inhibitors reduce autophagosome formation. Conversely, the inhibition of the autophagy pathway with 3-methyladenine inhibits calpain activation. This work reveals, for the first time, that calpain is essential for the autophagy pathway and viral replication in CVB4-infected neurons.
Collapse
|
34
|
Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpää P, Liberali P, Renkema GH, Hyypiä T, Heino J, Marjomäki V. A Raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 2008; 19:2857-69. [PMID: 18448666 DOI: 10.1091/mbc.e07-10-1094] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that a human picornavirus echovirus 1 (EV1) is transported to caveosomes during 2 h together with its receptor alpha2beta1 integrin. Here, we show that the majority of early uptake does not occur through caveolae. alpha2beta1 integrin, clustered by antibodies or by EV1 binding, is initially internalized from lipid rafts into tubulovesicular structures. These vesicles accumulate fluid-phase markers but do not initially colocalize with caveolin-1 or internalized simian virus 40 (SV40). Furthermore, the internalized endosomes do not contain glycosylphosphatidylinositol (GPI)-anchored proteins or flotillin 1, suggesting that clustered alpha2beta1 integrin does not enter the GPI-anchored protein enriched endosomal compartment or flotillin pathways, respectively. Endosomes mature further into larger multivesicular bodies between 15 min to 2 h and concomitantly recruit caveolin-1 or SV40 inside. Cell entry is regulated by p21-activated kinase (Pak)1, Rac1, phosphatidylinositol 3-kinase, phospholipase C, and actin but not by dynamin 2 in SAOS-alpha2beta1 cells. An amiloride analog, 5-(N-ethyl-N-isopropanyl) amiloride, blocks infection, causes integrin accumulation in early tubulovesicular structures, and prevents their structural maturation into multivesicular structures. Our results together suggest that alpha2beta1 integrin clustering defines its own entry pathway that is Pak1 dependent but clathrin and caveolin independent and that is able to sort cargo to caveosomes.
Collapse
Affiliation(s)
- Mikko Karjalainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|