1
|
Liu Y, Xu XQ, Li WJ, Zhang B, Meng FZ, Wang X, Majid SM, Guo Z, Ho WZ. Cytosolic DNA sensors activation of human astrocytes inhibits herpes simplex virus through IRF1 induction. Front Cell Infect Microbiol 2024; 14:1383811. [PMID: 38808062 PMCID: PMC11130358 DOI: 10.3389/fcimb.2024.1383811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-β/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Jing Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Biao Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Feng-Zhen Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Safah M. Majid
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zihan Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Cleaver J, Jeffery K, Klenerman P, Lim M, Handunnetthi L, Irani SR, Handel A. The immunobiology of herpes simplex virus encephalitis and post-viral autoimmunity. Brain 2024; 147:1130-1148. [PMID: 38092513 PMCID: PMC10994539 DOI: 10.1093/brain/awad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 04/06/2024] Open
Abstract
Herpes simplex virus encephalitis (HSE) is the leading cause of non-epidemic encephalitis in the developed world and, despite antiviral therapy, mortality and morbidity is high. The emergence of post-HSE autoimmune encephalitis reveals a new immunological paradigm in autoantibody-mediated disease. A reductionist evaluation of the immunobiological mechanisms in HSE is crucial to dissect the origins of post-viral autoimmunity and supply rational approaches to the selection of immunotherapeutics. Herein, we review the latest evidence behind the phenotypic progression and underlying immunobiology of HSE including the cytokine/chemokine environment, the role of pathogen-recognition receptors, T- and B-cell immunity and relevant inborn errors of immunity. Second, we provide a contemporary review of published patients with post-HSE autoimmune encephalitis from a combined cohort of 110 patients. Third, we integrate novel mechanisms of autoimmunization in deep cervical lymph nodes to explore hypotheses around post-HSE autoimmune encephalitis and challenge these against mechanisms of molecular mimicry and others. Finally, we explore translational concepts where neuroglial surface autoantibodies have been observed with other neuroinfectious diseases and those that generate brain damage including traumatic brain injury, ischaemic stroke and neurodegenerative disease. Overall, the clinical and immunological landscape of HSE is an important and evolving field, from which precision immunotherapeutics could soon emerge.
Collapse
Affiliation(s)
- Jonathan Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Katie Jeffery
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ming Lim
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, UK
- Department Women and Children’s Health, School of Life Course Sciences, King’s College London, London, WC2R 2LS, UK
| | - Lahiru Handunnetthi
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| |
Collapse
|
3
|
Naqvi RA, Valverde A, Yadavalli T, Bobat FI, Capistrano KJ, Shukla D, Naqvi AR. Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology. Curr Pharm Des 2024; 30:649-665. [PMID: 38347772 DOI: 10.2174/0113816128286469240129100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024]
Abstract
Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Fatima Ismail Bobat
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Kristelle J Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
4
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
5
|
Mohnke J, Stark I, Fischer M, Fischer PM, Schlosser A, Grothey A, O’Hare P, Sodeik B, Erhard F, Dölken L, Hennig T. pUL36 Deubiquitinase Activity Augments Both the Initiation and the Progression of Lytic Herpes Simplex Virus Infection in IFN-Primed Cells. J Virol 2022; 96:e0096322. [PMID: 36314822 PMCID: PMC9683058 DOI: 10.1128/jvi.00963-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
The evolutionarily conserved, structural HSV-1 tegument protein pUL36 is essential for both virus entry and assembly. While its N-terminal deubiquitinase (DUB) activity is dispensable for infection in cell culture, it is required for efficient virus spread in vivo, as it acts as a potent viral immune evasin. Interferon (IFN) induces the expression of hundreds of antiviral factors, including many ubiquitin modulators, which HSV-1 needs to neutralize to efficiently initiate a productive infection. Herein, we discover two functions of the conserved pUL36 DUB during lytic replication in cell culture in an understudied but equally important scenario of HSV-1 infection in IFN-treated cells. Our data indicate that the pUL36 DUB contributes to overcoming the IFN-mediated suppression of productive infection in both the early and late phases of HSV-1 infection. We show that incoming tegument-derived pUL36 DUB activity contributes to the IFN resistance of HSV-1 in IFN-primed cells to efficiently initiate lytic virus replication. Subsequently, the de novo expressed DUB augmented the efficiency of virus replication and increased the output of infectious virus. Notably, the DUB defect was only apparent when IFN was applied prior to infection. Our data indicate that IFN-induced defense mechanisms exist and that they work to both neutralize infectivity early on and slow the progression of HSV-1 replication in the late stages of infection. Also, our data indicate that pUL36 DUB activity contributes to the disarming of these host responses. IMPORTANCE HSV-1 is a ubiquitous human pathogen that is responsible for common cold sores and may also cause life-threatening disease. pUL36 is an essential, conserved herpesvirus protein with N-terminal deubiquitinating (DUB) activity. The DUB is dispensable for HSV-1 replication in cell culture but represents an important viral immune evasin in vivo. IFN plays a pivotal role in HSV-1 infection and suppresses viral replication both in vitro and in vivo. Here, we show that DUB activity contributes to overcoming IFN-induced cellular resistance in order to more efficiently initiate lytic replication and produce infectious virions. As such, DUB activity in the incoming virions increases their infectivity, while the de novo synthesized DUB augments productive infection. Thus, the HSV-1 DUB antagonizes the activity of IFN-inducible effector proteins to facilitate productive infection at multiple levels. Our findings underscore the importance of using more challenging cell culture systems to fully understand virus protein functions.
Collapse
Affiliation(s)
- Jonas Mohnke
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Irmgard Stark
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mara Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Patrick M. Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter O’Hare
- Department of Virology, Imperial College London, Norfolk Place, London, United Kingdom
| | - Beate Sodeik
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
- RESIST Exzellenzcluster, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci Rep 2022; 12:8489. [PMID: 35590057 PMCID: PMC9119387 DOI: 10.1038/s41598-022-12597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.
Collapse
|
7
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
8
|
Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes Simplex Virus 1 Infection of Neuronal and Non-Neuronal Cells Elicits Specific Innate Immune Responses and Immune Evasion Mechanisms. Front Immunol 2021; 12:644664. [PMID: 34135889 PMCID: PMC8201405 DOI: 10.3389/fimmu.2021.644664] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.
Collapse
Affiliation(s)
- Amanda L Verzosa
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Lea A McGeever
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Shun-Je Bhark
- Biology Department, Seattle Pacific University, Seattle, WA, United States
| | - Tracie Delgado
- Biology Department, Seattle Pacific University, Seattle, WA, United States
| | - Nicole Salazar
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Erica L Sanchez
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
9
|
Manivanh R, Mehrbach J, Charron AJ, Grassetti A, Cerón S, Taylor SA, Cabrera JR, Gerber S, Leib DA. Herpes Simplex Virus 1 ICP34.5 Alters Mitochondrial Dynamics in Neurons. J Virol 2020; 94:e01784-19. [PMID: 32376626 PMCID: PMC7343198 DOI: 10.1128/jvi.01784-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Expression of viral genes and activation of innate antiviral responses during infection result in an increase in reactive oxygen species (ROS) and toxic by-products of energy metabolism which can lead to cell death. The mitochondrion and its associated proteins are crucial regulators of these responses and related pathways such as autophagy and apoptosis. Through a mass spectrometry approach, we have shown that the herpes simplex virus 1 (HSV-1) neurovirulence- and autophagy-modulating protein ICP34.5 interacts with numerous mitochondrion-associated factors. Specifically, we showed that amino acids 68 to 87 of ICP34.5, the domain that binds beclin1 and controls neurovirulence, are necessary for interactions with PGAM5, KEAP1, and other regulators of the antioxidant response, mitochondrial trafficking, and programmed cell death. We further show that while this domain interacts with multiple cellular stress response factors, it does not alter apoptosis or antioxidant gene expression. That said, the attenuated replication of a recombinant virus lacking residues 68 to 87 (termed Δ68-87) in primary human fibroblasts was restored by addition of ferric nitrate. Furthermore, in primary mouse neurons, the perinuclear localization of mitochondria that follows infection with HSV-1 was notably absent following Δ68-87 infection. Through this 20-amino-acid domain, ICP34.5 significantly reduces mitochondrial motility in axons of neurons. We propose the hypothesis that ICP34.5 promotes perinuclear mitochondrial localization by modulating transport of mitochondria through interaction with PGAM5. These data expand upon previous observations of altered mitochondrial dynamics following alphaherpesvirus infections and identify a key determinant of this activity during HSV-1 infections.IMPORTANCE Herpes simplex virus persists lifelong in neurons and can reactivate to cause recurrent lesions in mucosal tissues. A key determinant of virulence is the viral protein ICP34.5, of which residues 68 to 87 significantly contribute to neurovirulence through an unknown mechanism. Our report provides evidence that residues 68 to 87 of ICP34.5 are required for binding mitochondrion-associated factors. These interactions alter mitochondrial dynamics in neurons, thereby facilitating viral replication and pathogenesis.
Collapse
Affiliation(s)
- Richard Manivanh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jesse Mehrbach
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Audra J Charron
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Andrew Grassetti
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Stacey Cerón
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sean A Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jorge Rubén Cabrera
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Scott Gerber
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
10
|
Alandijany T. Host Intrinsic and Innate Intracellular Immunity During Herpes Simplex Virus Type 1 (HSV-1) Infection. Front Microbiol 2019; 10:2611. [PMID: 31781083 PMCID: PMC6856869 DOI: 10.3389/fmicb.2019.02611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
When host cells are invaded by viruses, they deploy multifaceted intracellular defense mechanisms to control infections and limit the damage they may cause. Host intracellular antiviral immunity can be classified into two main branches: (i) intrinsic immunity, an interferon (IFN)-independent antiviral response mediated by constitutively expressed cellular proteins (so-called intrinsic host restriction factors); and (ii) innate immunity, an IFN-dependent antiviral response conferred by IFN-stimulated gene (ISG) products, which are (as indicated by their name) upregulated in response to IFN secretion following the recognition of pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs). Recent evidence has demonstrated temporal regulation and specific viral requirements for the induction of these two arms of immunity during herpes simplex virus type 1 (HSV-1) infection. Moreover, they exert differential antiviral effects to control viral replication. Although they are distinct from one another, the words "intrinsic" and "innate" have been interchangeably and/or simultaneously used in the field of virology. Hence, the aims of this review are to (1) elucidate the current knowledge about host intrinsic and innate immunity during HSV-1 infection, (2) clarify the recent advances in the understanding of their regulation and address the distinctions between them with respect to their induction requirements and effects on viral infection, and (3) highlight the key roles of the viral E3 ubiquitin ligase ICP0 in counteracting both aspects of immunity. This review emphasizes that intrinsic and innate immunity are temporally and functionally distinct arms of host intracellular immunity during HSV-1 infection; the findings are likely pertinent to other clinically important viral infections.
Collapse
Affiliation(s)
- Thamir Alandijany
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Zimmer B, Ewaleifoh O, Harschnitz O, Lee YS, Peneau C, McAlpine JL, Liu B, Tchieu J, Steinbeck JA, Lafaille F, Volpi S, Notarangelo LD, Casanova JL, Zhang SY, Smith GA, Studer L. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc Natl Acad Sci U S A 2018; 115:E8775-E8782. [PMID: 30154162 PMCID: PMC6140487 DOI: 10.1073/pnas.1809853115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Some HSE children carry inborn errors of the Toll-like receptor 3 (TLR3)-dependent IFN-α/β- and -λ-inducing pathway. Induced pluripotent stem cell (iPSC)-derived cortical neurons with TLR3 pathway mutations are highly susceptible to HSV-1, due to impairment of cell-intrinsic TLR3-IFN immunity. In contrast, the contribution of cell-intrinsic immunity of human trigeminal ganglion (TG) neurons remains unclear. Here, we describe efficient in vitro derivation and purification of TG neurons from human iPSCs via a cranial placode intermediate. The resulting TG neurons are of sensory identity and exhibit robust responses to heat (capsaicin), cold (icilin), and inflammatory pain (ATP). Unlike control cortical neurons, both control and TLR3-deficient TG neurons were highly susceptible to HSV-1. However, pretreatment of control TG neurons with poly(I:C) induced the cells into an anti-HSV-1 state. Moreover, both control and TLR3-deficient TG neurons developed resistance to HSV-1 following pretreatment with IFN-β but not IFN-λ. These data indicate that TG neurons are vulnerable to HSV-1 because they require preemptive stimulation of the TLR3 or IFN-α/β receptors to induce antiviral immunity, whereas cortical neurons possess a TLR3-dependent constitutive resistance that is sufficient to block incoming HSV-1 in the absence of prior antiviral signals. The lack of constitutive resistance in TG neurons in vitro is consistent with their exploitation as a latent virus reservoir in vivo. Our results incriminate deficiencies in the constitutive TLR3-dependent response of cortical neurons in the pathogenesis of HSE.
Collapse
Affiliation(s)
- Bastian Zimmer
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Osefame Ewaleifoh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Oliver Harschnitz
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Yoon-Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Camille Peneau
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jessica L McAlpine
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Becky Liu
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Jason Tchieu
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Julius A Steinbeck
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Fabien Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stefano Volpi
- Pediatric and Rheumatology Unit, Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto Giannina Gaslini and University of Genoa, 16147 Genoa, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| |
Collapse
|
12
|
Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome 2018; 29:425-445. [PMID: 30167845 PMCID: PMC6132704 DOI: 10.1007/s00335-018-9772-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
A majority of the world population is infected with herpes simplex viruses (HSV; human herpesvirus types 1 and 2). These viruses, perhaps best known for their manifestation in the genital or oral mucosa, can also cause herpes simplex encephalitis, a severe and often fatal disease of the central nervous system. Antiviral therapies for HSV are only partially effective since the virus can establish latent infections in neurons, and severe pathological sequelae in the brain are common. A better understanding of disease pathogenesis is required to develop new strategies against herpes simplex encephalitis, including the precise viral and host genetic determinants that promote virus invasion into the central nervous system and its associated immunopathology. Here we review the current understanding of herpes simplex encephalitis from the host genome perspective, which has been illuminated by groundbreaking work on rare herpes simplex encephalitis patients together with mechanistic insight from single-gene mouse models of disease. A complex picture has emerged, whereby innate type I interferon-mediated antiviral signaling is a central pathway to control viral replication, and the regulation of immunopathology and the balance between apoptosis and autophagy are critical to disease severity in the central nervous system. The lessons learned from mouse studies inform us on fundamental defense mechanisms at the interface of host–pathogen interactions within the central nervous system, as well as possible rationales for intervention against infections from severe neuropathogenic viruses.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
13
|
Linderman JA, Kobayashi M, Rayannavar V, Fak JJ, Darnell RB, Chao MV, Wilson AC, Mohr I. Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen. Cell Rep 2017; 18:1312-1323. [PMID: 28147283 DOI: 10.1016/j.celrep.2017.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022] Open
Abstract
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
Collapse
Affiliation(s)
- Jessica A Linderman
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Vinayak Rayannavar
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Physiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
14
|
Role of Herpes Simplex Virus 1 γ34.5 in the Regulation of IRF3 Signaling. J Virol 2017; 91:JVI.01156-17. [PMID: 28904192 DOI: 10.1128/jvi.01156-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
During viral infection, pattern recognition receptors (PRRs) and their associated adaptors recruit TANK-binding kinase 1 (TBK1) to activate interferon regulatory factor 3 (IRF3), resulting in production of type I interferons (IFNs). ICP0 and ICP34.5 are among the proteins encoded by herpes simplex virus 1 (HSV-1) that modulate type I IFN signaling. We constructed a recombinant virus (ΔXX) that lacks amino acids 87 to 106, a portion of the previously described TBK1-binding domain of the γ34.5 gene (D. Verpooten, Y. Ma, S. Hou, Z. Yan, and B. He, J Biol Chem 284:1097-1105, 2009, https://doi.org/10.1074/JBC.M805905200). These 20 residues are outside the γ34.5 beclin1-binding domain (BBD) that interacts with beclin1 and regulates autophagy. Unexpectedly, ΔXX showed no deficit in replication in vivo in a variety of tissues and showed virulence comparable to that of wild-type and marker-rescued viruses following intracerebral infection. ΔXX was fully capable of mediating the dephosphorylation of eIF2α, and the virus was capable of controlling the phosphorylation of IRF3. In contrast, a null mutant in γ34.5 failed to control IRF3 phosphorylation due to an inability of the mutant to sustain expression of ICP0. Our data show that while γ34.5 regulates IRF3 phosphorylation, the TBK1-binding domain itself has no impact on IRF3 phosphorylation or on replication and pathogenesis in mice.IMPORTANCE Interferons (IFNs) are potent activators of a variety of host responses that serve to control virus infections. The Herpesviridae have evolved countermeasures to IFN responses. Herpes simplex virus 1 (HSV-1) encodes the multifunctional neurovirulence protein ICP34.5. In this study, we investigated the biological relevance of the interaction between ICP34.5 and TANK-binding kinase 1 (TBK1), an activator of IFN responses. Here, we establish that although ICP34.5 binds TBK1 under certain conditions through a TBK1-binding domain (TBD), there was no direct impact of the TBD on viral replication or virulence in mice. Furthermore, we showed that activation of IRF3, a substrate of TBK1, was independent of the TBD. Instead, we provided evidence that the ability of ICP34.5 to control IRF3 activation is through its ability to reverse translational shutoff and sustain the expression of other IFN inhibitors encoded by the virus. This work provides new insights into the immunomodulatory functions of ICP34.5.
Collapse
|
15
|
Katzenell S, Cabrera JR, North BJ, Leib DA. Isolation, Purification, and Culture of Primary Murine Sensory Neurons. Methods Mol Biol 2017; 1656:229-251. [PMID: 28808974 PMCID: PMC5613752 DOI: 10.1007/978-1-4939-7237-1_15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cultured primary neurons have been of extraordinary value for the study of neuronal anatomy, cell biology, and physiology. While use of neuronal cell lines has ease and utility, there are often caveats that arise due to their mitotic nature. This methods article presents detailed methodology for the preparation, purification, and culture of adult murine sensory neurons for the study of herpes simplex virus lytic and latent infections. While virology is the application for our laboratory, these cultures also have broad utility for neurobiologists and cell biologists. While these primary cultures have been highly informative, the methodology is challenging to many investigators. Through publication of this highly detailed protocol, it is our hope that the use of this culture system can spread in the field to allow more rapid progress in furthering our understanding of neurotropic virus infection.
Collapse
Affiliation(s)
- Sarah Katzenell
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth University, 630E Borwell Building, One Medical Center Drive, HB 7556, Lebanon, NH, 03756, USA
| | - Jorge R Cabrera
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth University, 630E Borwell Building, One Medical Center Drive, HB 7556, Lebanon, NH, 03756, USA
| | - Brian J North
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth University, 630E Borwell Building, One Medical Center Drive, HB 7556, Lebanon, NH, 03756, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth University, 630E Borwell Building, One Medical Center Drive, HB 7556, Lebanon, NH, 03756, USA.
| |
Collapse
|
16
|
Abstract
Neuroinvasive herpesviruses have evolved to efficiently infect and establish latency in neurons. The nervous system has limited capability to regenerate, so immune responses therein are carefully regulated to be nondestructive, with dependence on atypical intrinsic and innate defenses. In this article we review studies of some of these noncanonical defense pathways and how herpesvirus gene products counter them, highlighting the contributions that primary neuronal in vitro models have made to our understanding of this field.
Collapse
|
17
|
Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency. Virology 2016; 497:323-327. [PMID: 27518540 DOI: 10.1016/j.virol.2016.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNβ promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency.
Collapse
|
18
|
Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol 2016; 90:4706-4719. [PMID: 26912623 DOI: 10.1128/jvi.02908-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) establishes lifelong infection in the neurons of trigeminal ganglia (TG), cycling between productive infection and latency. Neuronal antiviral responses are driven by type I interferon (IFN) and are crucial to controlling HSV-1 virulence. Autophagy also plays a role in this neuronal antiviral response, but the mechanism remains obscure. In this study, HSV-1 infection of murine TG neurons triggered unusual clusters of autophagosomes, predominantly in neurons lacking detectable HSV-1 antigen. Treatment of neurons with IFN-β induced a similar response, and cluster formation by infection or IFN treatment was dependent upon an intact IFN-signaling pathway. The autophagic clusters were decorated with both ISG15, an essential effecter of the antiviral response, and p62, a selective autophagy receptor. The autophagic clusters were not induced by rapamycin or starvation, consistent with a process of selective autophagy. While clusters were triggered by other neurotropic herpesviruses, infection with unrelated viruses failed to induce this response. Following ocular infection in vivo, clusters formed exclusively in the infected ophthalmic branch of the TG. Taken together, our results show that infection with HSV and antiviral signaling in TG neurons produce an unorthodox autophagic response. This autophagic clustering is associated with antiviral signaling, the presence of viral genome, and the absence of HSV protein expression and may therefore represent an important neuronal response to HSV infection and the establishment of latency. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus and a significant cause of morbidity and some mortality. It is the causative agent of benign cold sores, but it can also cause blindness and life-threatening encephalitis. The success of HSV-1 is largely due to its ability to establish lifelong latent infections in neurons and to occasionally reactivate. The exact mechanisms by which neurons defend against virus infection is poorly understood, but such defense is at least partially mediated by autophagy, an intracellular pathway by which pathogens and other unwanted cargoes are degraded. The study demonstrates and investigates a new autophagic structure that appears to be specific to the interaction between neurotropic herpesviruses and murine primary sensory neurons. This work may therefore have important implications for our understanding of latency and reactivation.
Collapse
|
19
|
Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol 2016; 90:4807-4826. [PMID: 26937035 PMCID: PMC4836348 DOI: 10.1128/jvi.03055-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection.
Collapse
|
20
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
21
|
Lucas TM, Richner JM, Diamond MS. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol 2015; 90:2600-15. [PMID: 26699642 PMCID: PMC4810731 DOI: 10.1128/jvi.02463-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues. IMPORTANCE The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Role of the DNA Sensor STING in Protection from Lethal Infection following Corneal and Intracerebral Challenge with Herpes Simplex Virus 1. J Virol 2015; 89:11080-91. [PMID: 26311879 DOI: 10.1128/jvi.00954-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED STING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING(-/-)) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING(-/-) mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal to STING(-/-) mice by the i.v. route. Corneally infected STING(-/-) mice also showed increased periocular disease and increased corneal and trigeminal ganglia titers, although there was no difference in brain titers. They also showed elevated expression of tumor necrosis factor alpha (TNF-α) and CXCL9 relative to control mice but surprisingly modest changes in type I interferon expression. Finally, we also showed that HSV strains lacking the ability to counter autophagy and the PKR-driven antiviral state had near-wild-type virulence following intracerebral infection of STING(-/-) mice. Together, these data show that while STING is an important component of host resistance to HSV in the cornea, its previously shown immutable role in mediating host survival by the i.v. route was not recapitulated following a mucosal infection route. Furthermore, our data are consistent with the idea that HSV counters STING-mediated induction of the antiviral state and autophagy response, both of which are critical factors for survival following direct infection of the nervous system. IMPORTANCE HSV infections represent an incurable source of morbidity and mortality in humans and are especially severe in neonatal and immunocompromised populations. A key step in the development of an immune response is the recognition of microbial components within infected cells. The host protein STING is important in this regard for the recognition of HSV DNA and the subsequent triggering of innate responses. STING was previously shown to be essential for protection against lethal challenge from intravenous HSV-1 infection. In this study, we show that the requirement for STING depends on the infection route. In addition, STING is important for appropriate regulation of the inflammatory response in the cornea, and our data are consistent with the idea that HSV modulates STING activity through inhibition of autophagy. Our results elucidate the importance of STING in host protection from HSV-1 and demonstrate the redundancy of host protective mechanisms, especially following mucosal infection.
Collapse
|
23
|
Rosato PC, Leib DA. Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLoS Pathog 2015; 11:e1005028. [PMID: 26153886 PMCID: PMC4495997 DOI: 10.1371/journal.ppat.1005028] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/17/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens. Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus that can cause cold sores, blindness, and even death from encephalitis. There is no vaccine against HSV, and although antiviral drugs can control HSV-1, it persists because it establishes lifelong latent infections in neurons. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Sensory neurons, in which HSV resides, have projection which that extend long distances to innervate the skin, the initial site of HSV infection. We found that neurons can respond to interferon beta, a molecule that strongly stimulates innate immunity and inhibits virus growth, at both the cell body and at the end of these long projections. Moreover, we found that this interferon response of neurons is critical for controlling HSV infection in vivo and that the interferon responses of non-neuronal cells are insufficient to provide protection. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
Affiliation(s)
- Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
24
|
Innate immune interactions within the central nervous system modulate pathogenesis of viral infections. Curr Opin Immunol 2015; 36:47-53. [PMID: 26163762 DOI: 10.1016/j.coi.2015.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022]
Abstract
The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene I like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses.
Collapse
|
25
|
Rosato PC, Leib DA. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host-pathogen standoff. Future Virol 2015; 10:699-714. [PMID: 26213562 PMCID: PMC4508759 DOI: 10.2217/fvl.15.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus.
Collapse
Affiliation(s)
- Pamela C Rosato
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David A Leib
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|