1
|
Jeandard D, Smirnova A, Fasemore AM, Coudray L, Entelis N, Förstner K, Tarassov I, Smirnov A. CoLoC-seq probes the global topology of organelle transcriptomes. Nucleic Acids Res 2022; 51:e16. [PMID: 36537202 PMCID: PMC9943681 DOI: 10.1093/nar/gkac1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.
Collapse
Affiliation(s)
| | | | | | - Léna Coudray
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Nina Entelis
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Konrad U Förstner
- ZB MED – Information Centre for Life Sciences, Cologne, D-50931, Germany,TH Köln – University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne, D-50678, Germany
| | - Ivan Tarassov
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | | |
Collapse
|
2
|
Thakur A, Kumar M. AntiVIRmiR: A repository of host antiviral miRNAs and their expression along with experimentally validated viral miRNAs and their targets. Front Genet 2022; 13:971852. [PMID: 36159991 PMCID: PMC9493126 DOI: 10.3389/fgene.2022.971852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs play an essential role in promoting viral infections as well as modulating the antiviral defense. Several miRNA repositories have been developed for different species, e.g., human, mouse, and plant. However, 'VIRmiRNA' is the only existing resource for experimentally validated viral miRNAs and their targets. We have developed a 'AntiVIRmiR' resource encompassing data on host/virus miRNA expression during viral infection. This resource with 22,741 entries is divided into four sub-databases viz., 'DEmiRVIR', 'AntiVmiR', 'VIRmiRNA2' and 'VIRmiRTar2'. 'DEmiRVIR' has 10,033 differentially expressed host-viral miRNAs for 21 viruses. 'AntiVmiR' incorporates 1,642 entries for host miRNAs showing antiviral activity for 34 viruses. Additionally, 'VIRmiRNA2' includes 3,340 entries for experimentally validated viral miRNAs from 50 viruses along with 650 viral isomeric sequences for 14 viruses. Further, 'VIRmiRTar2' has 7,726 experimentally validated targets for viral miRNAs against 21 viruses. Furthermore, we have also performed network analysis for three sub-databases. Interactions between up/down-regulated human miRNAs and viruses are displayed for 'AntiVmiR' as well as 'DEmiRVIR'. Moreover, 'VIRmiRTar2' interactions are shown among different viruses, miRNAs, and their targets. We have provided browse, search, external hyperlinks, data statistics, and useful analysis tools. The database available at https://bioinfo.imtech.res.in/manojk/antivirmir would be beneficial for understanding the host-virus interactions as well as viral pathogenesis.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Macveigh-Fierro D, Rodriguez W, Miles J, Muller M. Stealing the Show: KSHV Hijacks Host RNA Regulatory Pathways to Promote Infection. Viruses 2020; 12:E1024. [PMID: 32937781 PMCID: PMC7551087 DOI: 10.3390/v12091024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces life-long infections and has evolved many ways to exert extensive control over its host's transcriptional and post-transcriptional machinery to gain better access to resources and dampened immune sensing. The hallmark of this takeover is how KSHV reshapes RNA fate both to control expression of its own gene but also that of its host. From the nucleus to the cytoplasm, control of RNA expression, localization, and decay is a process that is carefully tuned by a multitude of factors and that can adapt or react to rapid changes in the environment. Intriguingly, it appears that KSHV has found ways to co-opt each of these pathways for its own benefit. Here we provide a comprehensive review of recent work in this area and in particular recent advances on the post-transcriptional modifications front. Overall, this review highlights the myriad of ways KSHV uses to control RNA fate and gathers novel insights gained from the past decade of research at the interface of RNA biology and the field of KSHV research.
Collapse
Affiliation(s)
| | | | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (D.M.-F.); (W.R.); (J.M.)
| |
Collapse
|
4
|
Purification Methods and the Presence of RNA in Virus Particles and Extracellular Vesicles. Viruses 2020; 12:v12090917. [PMID: 32825599 PMCID: PMC7552034 DOI: 10.3390/v12090917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fields of extracellular vesicles (EV) and virus infections are marred in a debate on whether a particular mRNA or non-coding RNA (i.e., miRNA) is packaged into a virus particle or copurifying EV and similarly, whether a particular mRNA or non-coding RNA is contained in meaningful numbers within an EV. Key in settling this debate, is whether the purification methods are adequate to separate virus particles, EV and contaminant soluble RNA and RNA:protein complexes. Differential centrifugation/ultracentrifugation and precipitating agents like polyethylene glycol are widely utilized for both EV and virus purifications. EV are known to co-sediment with virions and other particulates, such as defective interfering particles and protein aggregates. Here, we discuss how encased RNAs from a heterogeneous mixture of particles can be distinguished by different purification methods. This is particularly important for subsequent interpretation of whether the RNA associated phenotype is contributed solely by virus or EV particles or a mixture of both. We also discuss the discrepancy of miRNA abundance in EV from different input material.
Collapse
|
5
|
Abere B, Li J, Zhou H, Toptan T, Moore PS, Chang Y. Kaposi's Sarcoma-Associated Herpesvirus-Encoded circRNAs Are Expressed in Infected Tumor Tissues and Are Incorporated into Virions. mBio 2020; 11:e03027-19. [PMID: 31911496 PMCID: PMC6946807 DOI: 10.1128/mbio.03027-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection.IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.
Collapse
Affiliation(s)
- Bizunesh Abere
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinghui Li
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Hongzhao Zhou
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tuna Toptan
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick S Moore
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Katano H. Expression and Function of Kaposi’s Sarcoma-Associated Herpesvirus Non-coding RNAs. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
9
|
Steele EJ, Al-Mufti S, Augustyn KA, Chandrajith R, Coghlan JP, Coulson SG, Ghosh S, Gillman M, Gorczynski RM, Klyce B, Louis G, Mahanama K, Oliver KR, Padron J, Qu J, Schuster JA, Smith WE, Snyder DP, Steele JA, Stewart BJ, Temple R, Tokoro G, Tout CA, Unzicker A, Wainwright M, Wallis J, Wallis DH, Wallis MK, Wetherall J, Wickramasinghe DT, Wickramasinghe JT, Wickramasinghe NC, Liu Y. Cause of Cambrian Explosion - Terrestrial or Cosmic? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:3-23. [PMID: 29544820 DOI: 10.1016/j.pbiomolbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.
Collapse
Affiliation(s)
- Edward J Steele
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka.
| | - Shirwan Al-Mufti
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Kenneth A Augustyn
- Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States
| | | | - John P Coghlan
- University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia
| | - S G Coulson
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Sudipto Ghosh
- Metallurgical & Materials Engineering IIT, Kanpur, India
| | - Mark Gillman
- South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa
| | - Reginald M Gorczynski
- University Toronto Health Network, Toronto General Hospital, University of Toronto, Canada
| | - Brig Klyce
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Godfrey Louis
- Department of Physics, Cochin University of Science and Technology Cochin, India
| | | | - Keith R Oliver
- School of Veterinary and Life Sciences Murdoch University, Perth, WA, Australia
| | - Julio Padron
- Studio Eutropi, Clinical Pathology and Nutrition, Via Pompei 46, Ardea, 00040, Rome, Italy
| | - Jiangwen Qu
- Department of Infectious Disease Control, Tianjin Center for Disease Control and Prevention, China
| | - John A Schuster
- School of History and Philosophy of Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - W E Smith
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Duane P Snyder
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Julian A Steele
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Brent J Stewart
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | - Robert Temple
- The History of Chinese Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Christopher A Tout
- Institute of Astronomy, The Observatories, Madingley Road, Cambridge, CB3 0HA, UK
| | | | - Milton Wainwright
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka
| | - Jamie Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Daryl H Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Max K Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - John Wetherall
- School of Biomedical Sciences, Perth, Curtin University, WA, Australia
| | - D T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | | | - N Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS One 2018; 13:e0192659. [PMID: 29425228 PMCID: PMC5806893 DOI: 10.1371/journal.pone.0192659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small RNA repertoire, complicating the use of exosome miRNAs as biomarkers of disease.
Collapse
|
11
|
Abstract
As the notion of small molecule targeting of regulatory viral and cellular RNAs gathers momentum, understanding their structure, and variations thereof, in the appropriate biological context will play a critical role. This is especially true of the ∼1100-nt polyadenylated nuclear (PAN) long non-coding (lnc) RNA of Kaposi's sarcoma herpesvirus (KSHV), whose interaction with viral and cellular proteins is central to lytic infection. Nuclear accumulation of PAN RNA is mediated via a unique triple helical structure at its 3' terminus (within the expression and nuclear retention element, or ENE) which protects it from deadenylation-dependent decay. Additionally, significant levels of PAN RNA have been reported in both the cytoplasm of KSHV-infected cells and in budding virions, leading us to consider which viral and host proteins might associate with, or dissociate from, this lncRNA during its "journey" through the cell. By combining the power of SHAPE-mutational profiling (SHAPE-MaP) with large scale virus culture facilities of the National Cancer Institute, Frederick MD, Sztuba-Solinska et al. have provide the first detailed description of KSHV PAN nucleoprotein complexes in multiple biological contexts, complementing this by mapping sites of recombinant KSHV proteins on an in vitro-synthesized, polyadenylated counterpart.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- a Frederick National Laboratory for Cancer Research, Basic Research Laboratory , National Cancer Institute , Frederick , MD , USA
| | - Stuart F J Le Grice
- b Basic Research Laboratory, National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
12
|
Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D, Le Grice SFJ. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 2017; 45:6805-6821. [PMID: 28383682 PMCID: PMC5499733 DOI: 10.1093/nar/gkx241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
KSHV and the Role of Notch Receptor Dysregulation in Disease Progression. Pathogens 2017; 6:pathogens6030034. [PMID: 28777778 PMCID: PMC5617991 DOI: 10.3390/pathogens6030034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two human cancers, Kaposi's Sarcoma (KS) and primary effusion lymphoma (PEL), and a lymphoproliferation, Multicentric Castleman's Disease (MCD). Progression to tumor development in KS is dependent upon the reactivation of the virus from its latent state. We, and others, have shown that the Replication and transcriptional activator (Rta) protein is the only viral gene product that is necessary and sufficient for viral reactivation. To induce the reactivation and transcription of viral genes, Rta forms a complex with the cellular DNA binding component of the canonical Notch signaling pathway, recombination signal binding protein for Jk (RBP-Jk). Formation of this Rta:RBP-Jk complex is necessary for viral reactivation to occur. Expression of activated Notch has been shown to be dysregulated in KSHV infected cells and to be necessary for cell growth and disease progression. Studies into the involvement of activated Notch in viral reactivation have yielded varied results. In this paper, we review the current literature regarding Notch dysregulation by KSHV and its role in viral infection and cellular pathogenesis.
Collapse
|
14
|
Virus-Like Vesicles of Kaposi's Sarcoma-Associated Herpesvirus Activate Lytic Replication by Triggering Differentiation Signaling. J Virol 2017; 91:JVI.00362-17. [PMID: 28515293 DOI: 10.1128/jvi.00362-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 02/04/2023] Open
Abstract
Virus-like vesicles (VLVs) are membrane-enclosed vesicles that resemble native enveloped viruses in organization but lack the viral capsid and genome. During the productive infection of tumor-associated gammaherpesviruses, both virions and VLVs are produced and are released into the extracellular space. However, studies of gammaherpesvirus-associated VLVs have been largely restricted by the technical difficulty of separating VLVs from mature virions. Here we report a strategy of selectively isolating VLVs by using a Kaposi's sarcoma-associated herpesvirus (KSHV) mutant that is defective in small capsid protein and is unable to produce mature virions. Using mass spectrometry analysis, we found that VLVs contained viral glycoproteins required for cellular entry, as well as tegument proteins involved in regulating lytic replication, but lacked capsid proteins. Functional analysis showed that VLVs induced the expression of the viral lytic activator RTA, initiating KSHV lytic gene expression. Furthermore, employing RNA sequencing, we performed a genomewide analysis of cellular responses triggered by VLVs and found that PRDM1, a master regulator in cell differentiation, was significantly upregulated. In the context of KSHV replication, we demonstrated that VLV-induced upregulation of PRDM1 was necessary and sufficient to reactivate KSHV by activating its RTA promoter. In sum, our study systematically examined the composition of VLVs and demonstrated their biological roles in manipulating host cell responses and facilitating KSHV lytic replication.IMPORTANCE Cells lytically infected with tumor-associated herpesviruses produce a high proportion of virus-like vesicles (VLVs). The composition and function of VLVs have not been well defined, largely due to the inability to efficiently isolate VLVs that are free of virions. Using a cell system capable of establishing latent KSHV infection and robust reactivation, we successfully isolated VLVs from a KSHV mutant defective in the small capsid protein. We quantitatively analyzed proteins and microRNAs in VLVs and characterized the roles of VLVs in manipulating host cells and facilitating viral infection. More importantly, we demonstrated that by upregulating PRDM1 expression, VLVs triggered differentiation signaling in targeted cells and facilitated viral lytic infection via activation of the RTA promoter. Our study not only demonstrates a new strategy for isolating VLVs but also shows the important roles of KSHV-associated VLVs in intercellular communication and the viral life cycle.
Collapse
|
15
|
Mohammad AA, Costa H, Landázuri N, Lui WO, Hultenby K, Rahbar A, Yaiw KC, Söderberg-Nauclér C. Human cytomegalovirus microRNAs are carried by virions and dense bodies and are delivered to target cells. J Gen Virol 2017; 98:1058-1072. [PMID: 28589873 PMCID: PMC5656795 DOI: 10.1099/jgv.0.000736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection results in the production of virions, dense bodies (DBs) and non-infectious enveloped particles, all of which incorporate proteins and RNAs that can be transferred to host cells. Here, we investigated whether virions and DBs also carry microRNAs (miRNAs) and assessed their delivery and functionality in cells. Human lung fibroblasts (MRC-5) were infected with the HCMV strain AD169, and conditioned cell culture medium was collected and centrifuged. The pellets were treated with RNase-ONE, and the virions and DBs were purified with a potassium tartrate–glycerol gradient and dialysed. The virions and DBs were incubated with micrococcal nuclease, DNA and RNA were extracted and then analysed with TaqMan PCR assays, while the proteins were examined with Western blots. To assess the delivery of miRNAs to cells and their functionality, virions and DBs were irradiated with UV light. The purity of the virions and DBs was confirmed by typical morphology, the presence of the structural protein pp65 and the HCMV genome, the ability to infect MRC-5 cells and the absence of the host genome. RNA analysis revealed the presence of 14 HCMV-encoded miRNAs (UL22A-5p, US25-1-5p, UL22A-3p, US5-2-3p, UL112-3p, US25-2-3p, US25-2-5p, US33-3p, US5-1, UL36-5p, US4-5p, UL36-3p, UL70-5p and US25-1-3p), HCMV immediate-early mRNA and long non-coding RNA2.7, moreover, two host-encoded miRNAs (hsa-miR-218-5p and hsa-miR-21-5p) and beta-2-microglobulin RNA. UV-irradiated virions and DBs delivered viral miRNAs (US25-1-5p and UL112-3p) to the host cells, and miR-US25-1-5p was functional in a luciferase reporter assay. We conclude that virions and DBs carry miRNAs that are biologically functional and can be delivered to cells, which may affect cellular processes.
Collapse
Affiliation(s)
- Abdul-Aleem Mohammad
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Helena Costa
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Natalia Landázuri
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Koon-Chu Yaiw
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
The release of membrane-bound vesicles from cells is being increasingly recognized as a mechanism of intercellular communication. Extracellular vesicles (EVs) or exosomes are produced by virus-infected cells and are thought to be involved in intercellular communication between infected and uninfected cells. Viruses, in particular oncogenic viruses and viruses that establish chronic infections, have been shown to modulate the production and content of EVs. Viral microRNAs, proteins and even entire virions can be incorporated into EVs, which can affect the immune recognition of viruses or modulate neighbouring cells. In this Review, we discuss the roles that EVs have during viral infection to either promote or restrict viral replication in target cells. We will also discuss our current understanding of the molecular mechanisms that underlie these roles, the potential consequences for the infected host and possible future diagnostic applications.
Collapse
|
17
|
Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, Buck AH, de Candia P, Chow FWN, Das S, Driedonks TAP, Fernández-Messina L, Haderk F, Hill AF, Jones JC, Van Keuren-Jensen KR, Lai CP, Lässer C, Liegro ID, Lunavat TR, Lorenowicz MJ, Maas SLN, Mäger I, Mittelbrunn M, Momma S, Mukherjee K, Nawaz M, Pegtel DM, Pfaffl MW, Schiffelers RM, Tahara H, Théry C, Tosar JP, Wauben MHM, Witwer KW, Nolte-'t Hoen ENM. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles 2017; 6:1286095. [PMID: 28326170 PMCID: PMC5345583 DOI: 10.1080/20013078.2017.1286095] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/25/2016] [Indexed: 02/07/2023] Open
Abstract
The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Collapse
Affiliation(s)
- Bogdan Mateescu
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zürich) , Zurich , Switzerland
| | - Emma J K Kowal
- Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht , Utrecht , the Netherlands
| | - Sabine Bartel
- Experimental Asthma Research, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL) , Borstel , Germany
| | - Suvendra N Bhattacharyya
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , Budapest , Hungary
| | - Amy H Buck
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | | | - Franklin W N Chow
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Saumya Das
- Cardiovascular Research Institute, Massachusetts General Hospital , Boston , MA , USA
| | - Tom A P Driedonks
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | | | - Franziska Haderk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora , Australia
| | - Jennifer C Jones
- Molecular Immunogenetics & Vaccine Research Section, Vaccine Branch, CCR, NCI , Bethesda , MD , USA
| | | | - Charles P Lai
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu , Taiwan
| | - Cecilia Lässer
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Italia di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo , Palermo , Italy
| | - Taral R Lunavat
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magdalena J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht & Regenerative Medicine Center , Utrecht , the Netherlands
| | - Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School , Boston , MA , USA
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Maria Mittelbrunn
- Instituto de Investigación del Hospital 12 de Octubre , Madrid , Spain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School , Frankfurt am Main , Germany
| | - Kamalika Mukherjee
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Muhammed Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo , Sao Paulo , Brazil
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, VU University Medical Center , Amsterdam , the Netherlands
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich (TUM) Weihenstephan , Freising , Germany
| | - Raymond M Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht , Utrecht , the Netherlands
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical & Health Sciences, Hiroshima University , Hiroshima , Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932 , Paris , France
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Nuclear Research Center, Faculty of Science, Universidad de la República , Montevideo , Uruguay
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology and Department of Neurology, The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
18
|
Qin J, Li W, Gao SJ, Lu C. KSHV microRNAs: Tricks of the Devil. Trends Microbiol 2017; 25:648-661. [PMID: 28259385 DOI: 10.1016/j.tim.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 01/02/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a vascular tumor frequently found in immunodeficient individuals. KSHV encodes 12 pre-microRNAs (pre-miRNAs), which are processed into 25 mature microRNAs (miRNAs). KSHV miRNAs maintain KSHV latency, enhance angiogenesis and dissemination of the infected cells, and interfere with the host immune system by regulating viral and cellular gene expression, ultimately contributing to KS development. In this review, we briefly introduce the biogenesis of miRNAs and then describe the recent advances in defining the roles and mechanisms of action of KSHV miRNAs in KS development.
Collapse
Affiliation(s)
- Jie Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China; Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China; Department of Microbiology, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China; Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China; Department of Microbiology, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
19
|
Li S, Bai L, Dong J, Sun R, Lan K. Kaposi's Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:91-127. [PMID: 29052134 DOI: 10.1007/978-981-10-5765-6_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as Human herpesvirus 8 (HHV-8), is a member of the lymphotropic gammaherpesvirus subfamily and a human oncogenic virus. Since its discovery in AIDS-associated KS tissues by Drs. Yuan Chang and Patrick Moore, much progress has been made in the past two decades. There are four types of KS including classic KS, endemic KS, immunosuppressive therapy-related KS, and AIDS-associated KS. In addition to KS, KSHV is also involved in the development of primary effusion lymphoma (PEL) and certain types of multicentric Castleman's disease. KSHV manipulates numerous viral proteins to promote the progression of angiogenesis and tumorigenesis. In this chapter, we review the epidemiology and molecular biology of KSHV and the mechanisms underlying KSHV-induced diseases.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lei Bai
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jiazhen Dong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Rui Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
20
|
Happel C, Ramalingam D, Ziegelbauer JM. Virus-Mediated Alterations in miRNA Factors and Degradation of Viral miRNAs by MCPIP1. PLoS Biol 2016; 14:e2000998. [PMID: 27893764 PMCID: PMC5125562 DOI: 10.1371/journal.pbio.2000998] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma, encodes 25 mature viral miRNAs. MCP-1-induced protein-1 (MCPIP1), a critical regulator of immune homeostasis, has been shown to suppress miRNA biosynthesis via cleavage of precursor miRNAs through its RNase domain. We demonstrate that MCPIP1 can directly cleave KSHV and EBV precursor miRNAs and that MCPIP1 expression is repressed following de novo KSHV infection. In addition, repression with siRNAs to MCPIP1 in KSHV-infected cells increased IL-6 and KSHV miRNA expression, supporting a role for MCPIP1 in IL-6 and KSHV miRNA regulation. We also provide evidence that KSHV miRNAs repress MCPIP1 expression by targeting the 3'UTR of MCPIP1. Conversely, expression of essential miRNA biogenesis components Dicer and TRBP is increased following latent KSHV infection. We propose that KSHV infection inhibits a negative regulator of miRNA biogenesis (MCPIP1) and up-regulates critical miRNA processing components to evade host mechanisms that inhibit expression of viral miRNAs. KSHV-mediated alterations in miRNA biogenesis represent a novel mechanism by which KSHV interacts with its host and a new mechanism for the regulation of viral miRNA expression.
Collapse
Affiliation(s)
- Christine Happel
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhivya Ramalingam
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Since the discovery of Epstein-Barr virus in Burkitt's lymphoma 50 years ago, only one other virus, namely Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8, has been confirmed to be a direct cause of B-cell lymphoma. Here we will review the evidence for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus as causal lymphoma agents. RECENT FINDINGS A deeper understanding of specific mechanisms by which Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus cause B-cell lymphomas has been acquired over the past years, in particular with respect to viral protein interactions with host cell pathways, and microRNA functions. Specific therapies based on knowledge of viral functions are beginning to be evaluated, mostly in preclinical models. SUMMARY Understanding the causal associations of specific infectious agents with certain B-cell lymphomas has allowed more accurate diagnosis and classification. A deeper knowledge of the specific mechanisms of transformation is essential to begin assessing whether virus-targeted treatment modalities may be used in the future.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
23
|
Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. mBio 2015; 6:e00668. [PMID: 26045540 PMCID: PMC4462627 DOI: 10.1128/mbio.00668-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.
Collapse
|
24
|
Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells. Pathol Oncol Res 2015; 21:875-80. [PMID: 25648438 DOI: 10.1007/s12253-015-9902-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/09/2015] [Indexed: 01/23/2023]
Abstract
This study aimed to identify target genes regulated by KSHV miRNAs in KSHV-infected lymphoma cells. Original Ago HITS-CLIP data of BC-3 and BCBL-1 cell lines were downloaded from SRA database in NCBI, including mRNA and miRNA samples. The raw mRNA reads were mapped into human reference genome hg19 via TopHat for read alignment. PCR duplicates were removed via the SAM tool and the peaks of reads were analyzed via Cufflinks. For miRNA data, the raw data were mapped to the mature miRNA sequences based on miRBase via Bowtie. Peak intersection was computed by using intersectBed in BEDtools. Then, the mature miRNA seeds were identified and then were aligned with 3' UTR merged peaks. The regulationships of miRNAs and their corresponding genes were analyzed based on the signal of RNA-induced silencing complex. Totally, 7 KSHV-related genes regulated by KSHV miRNAs were identified, including IPO5, EDA, NT5C3, WSB1, KCNS1, PRAM1 and MTRNR2L6. Among them, EDA, MTRNR2L6 and IPO5 were regulated by multiple KSHV miRNAs, such as kshv-miR-K12-1-5p, kshv-miR-K12-4-3p and kshv-miR-K12-3-5p, respectively. Furthermore, expression of kshv-miR-K12-1-5p and kshv-miR-K12-3-5p in BCBL-1 cell line were lower than that in BC-3 cell line, conversely, expression of kshv-miR-K12-4-3p in BCBL-1 cell line were higher than that in BC-3 cell line. In conclusion, potential target genes regulated by KSHV miRNAs in KSHV-infected lymphoma cells might play key roles in the nosogenesis of this disease. These findings might provide the basis for deep understanding of KSHV-infected tumors and further molecular experiments.
Collapse
|
25
|
Transcriptome analysis of Kaposi's sarcoma-associated herpesvirus during de novo primary infection of human B and endothelial cells. J Virol 2014; 89:3093-111. [PMID: 25552714 DOI: 10.1128/jvi.02507-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed after de novo infections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14(+) monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performed de novo PBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins during de novo infections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during a de novo infection. This study determined the kinetics of the viral gene expression during de novo KSHV infections and the functional role of the incoming viral transcripts in establishing latency.
Collapse
|
26
|
Qin Z, Peruzzi F, Reiss K, Dai L. Role of host microRNAs in Kaposi's sarcoma-associated herpesvirus pathogenesis. Viruses 2014; 6:4571-80. [PMID: 25421888 PMCID: PMC4246238 DOI: 10.3390/v6114571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA species that can bind to both untranslated and coding regions of target mRNAs, causing their degradation or post-transcriptional modification. Currently, over 2500 miRNAs have been identified in the human genome. Burgeoning evidence suggests that dysregulation of human miRNAs can play a role in the pathogenesis of a variety of diseases, including cancer. In contrast, only a small subset of human miRNAs has been functionally validated in the pathogenesis of oncogenic viruses, in particular, Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV is the etiologic agent of several human cancers, such as primary effusion lymphoma (PEL) and Kaposi’s sarcoma (KS), which are mostly seen in acquired immune deficiency syndrome (AIDS) patients or other immuno-suppressed subpopulation. This review summarizes recent literature outlining mechanisms for KSHV/viral proteins regulation of cellular miRNAs contributing to viral pathogenesis, as well as recent findings about the unique signature of miRNAs induced by KSHV infection or KSHV-related malignancies.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| | - Francesca Peruzzi
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Department of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave., New Orleans, LA 70112, USA.
| | - Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Department of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave., New Orleans, LA 70112, USA.
| | - Lu Dai
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|
27
|
Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J Virol 2014; 89:415-27. [PMID: 25320320 DOI: 10.1128/jvi.02591-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus with latent and lytic reactivation cycles. The mechanism by which KSHV evades the innate immune system to establish latency has not yet been precisely elucidated. Toll-like receptors (TLRs) are the first line of defense against viral infections. Myeloid differentiation factor 88 (MyD88) is a key adaptor that interacts with all TLRs except TLR3 to produce inflammatory factors and type I interferons (IFNs), which are central components of innate immunity against microbial infection. Here, we found that KSHV replication and transcription activator (RTA), which is an immediate-early master switch protein of viral cycles, downregulates MyD88 expression at the protein level by degrading MyD88 through the ubiquitin (Ub)-proteasome pathway. We identified the interaction between RTA and MyD88 in vitro and in vivo and demonstrated that RTA functions as an E3 ligase to ubiquitinate MyD88. MyD88 also was repressed at the early stage of de novo infection as well as in lytic reactivation. We also found that RTA inhibited lipopolysaccharide (LPS)-triggered activation of the TLR4 pathway by reducing IFN production and NF-κB activity. Finally, we showed that MyD88 promoted the production of IFNs and inhibited KSHV LANA-1 gene transcription. Taken together, our results suggest that KSHV RTA facilitates the virus to evade innate immunity through the degradation of MyD88, which might be critical for viral latency control. IMPORTANCE MyD88 is an adaptor for all TLRs other than TLR3, and it mediates inflammatory factors and IFN production. Our study demonstrated that the KSHV RTA protein functions as an E3 ligase to degrade MyD88 through the ubiquitin-proteasome pathway and block the transmission of TLRs signals. Moreover, we found that KSHV inhibited MyD88 expression during the early stage of de novo infection as well as in lytic reactivation. These results provide a potential mechanism for the virus to evade innate immunity.
Collapse
|
28
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These cancers often occur in the context of immunosuppression, which has made KSHV-associated malignancies an increasing global health concern with the persistence of the AIDS epidemic. KSHV has also been linked to several acute inflammatory diseases. KSHV exists between a lytic and latent lifecycle, which allows the virus to transition between active replication and quiescent infection. KSHV encodes a number of proteins and small RNAs that are thought to inadvertently transform host cells while performing their functions of helping the virus persist in the infected host. KSHV also has an arsenal of components that aid the virus in evading the host immune response, which help the virus establish a successful lifelong infection. In this comprehensive chapter, we will discuss the diseases associated with KSHV infection, the biology of latent and lytic infection, and individual proteins and microRNAs that are known to contribute to host cell transformation and immune evasion.
Collapse
Affiliation(s)
- Louise Giffin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
29
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|
30
|
Contrant M, Fender A, Chane-Woon-Ming B, Randrianjafy R, Vivet-Boudou V, Richer D, Pfeffer S. Importance of the RNA secondary structure for the relative accumulation of clustered viral microRNAs. Nucleic Acids Res 2014; 42:7981-96. [PMID: 24831544 PMCID: PMC4081064 DOI: 10.1093/nar/gku424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Micro (mi)RNAs are small non-coding RNAs with key regulatory functions. Recent advances in the field allowed researchers to identify their targets. However, much less is known regarding the regulation of miRNAs themselves. The accumulation of these tiny regulators can be modulated at various levels during their biogenesis from the transcription of the primary transcript (pri-miRNA) to the stability of the mature miRNA. Here, we studied the importance of the pri-miRNA secondary structure for the regulation of mature miRNA accumulation. To this end, we used the Kaposi's sarcoma herpesvirus, which encodes a cluster of 12 pre-miRNAs. Using small RNA profiling and quantitative northern blot analysis, we measured the absolute amount of each mature miRNAs in different cellular context. We found that the difference in expression between the least and most expressed viral miRNAs could be as high as 60-fold. Using high-throughput selective 2′-hydroxyl acylation analyzed by primer extension, we then determined the secondary structure of the long primary transcript. We found that highly expressed miRNAs derived from optimally structured regions within the pri-miRNA. Finally, we confirmed the importance of the local structure by swapping stem-loops or by targeted mutagenesis of selected miRNAs, which resulted in a perturbed accumulation of the mature miRNA.
Collapse
Affiliation(s)
- Maud Contrant
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Aurélie Fender
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Béatrice Chane-Woon-Ming
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Ramy Randrianjafy
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Delphine Richer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| |
Collapse
|
31
|
Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 2014; 59:505-17. [PMID: 23913306 PMCID: PMC4298796 DOI: 10.1002/hep.26659] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED In hepatocellular carcinoma (HCC), dysregulated expression of microRNA-224 (miR-224) and impaired autophagy have been reported separately. However, the relationship between them has not been explored. In this study we determined that autophagy is down-regulated and inversely correlated with miR-224 expression in hepatitis B virus (HBV)-associated HCC patient specimens. These results were confirmed in liver tumors of HBV X gene transgenic mice. Furthermore, miR-224 was preferentially recruited and degraded during autophagic progression demonstrated by real-time polymerase chain reaction and miRNA in situ hybridization electron microscopy after extraction of autophagosomes. Our in vitro study demonstrated that miR-224 played an oncogenic role in hepatoma cell migration and tumor formation through silencing its target gene Smad4. In HCC patients, the expression of low-Atg5, high-miR-224, and low-Smad4 showed significant correlation with HBV infection and a poor overall survival rate. Autophagy-mediated miR-224 degradation and liver tumor suppression were further confirmed by the autophagy inducer amiodarone and miR-224 antagonist using an orthotopic SD rat model. CONCLUSION A noncanonical pathway links autophagy, miR-224, Smad4, and HBV-associated HCC. These findings open a new avenue for the treatment of HCC.
Collapse
Affiliation(s)
- Sheng-Hui Lan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Shan-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Roberto Zuchini
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Department of Internal Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Xi-Zhang Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Ih-Jen Su
- National Health Research InstitutesDivision of Clinical Research, Tainan, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Yen-Ju Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research InstituteHsinchu, Taiwan
| | - Cheng-Tao Wu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research InstituteHsinchu, Taiwan
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Address reprint requests to: Hsiao-Sheng Liu, Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, #1 University road, Tainan, Taiwan; Tel: +1886-6-2353535, ext. 5630; Fax: 1886-6-2082705; E-mail:
| |
Collapse
|
32
|
Cesarman E. Gammaherpesviruses and Lymphoproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 9:349-72. [DOI: 10.1146/annurev-pathol-012513-104656] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
33
|
Yang CQ, Miao LF, Pan X, Wu CC, Rayner S, Mocarski ES, Ye HQ, Luo MH. Natural antisense transcripts of UL123 packaged in human cytomegalovirus virions. Arch Virol 2013; 159:147-51. [PMID: 23884634 DOI: 10.1007/s00705-013-1793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
In this study, we demonstrated that antisense transcripts of human cytomegalovirus (HCMV) UL123, UL21.5 and cellular GAPDH genes were present in highly purified virions. These virion RNAs were delivered into the host cells upon infection, and de novo synthesized ones appeared in the infected cell at the immediate early stage. Although the sequence of UL123 antisense transcripts in virions is uncertain, we found that these transcripts in Towne-infected human fibroblasts had novel transcriptional start sites (TSSs) with various 5'-terminal deletions of open reading frame (ORF) 59. These findings not only provide new insight into the composition of HCMV virions but also reveal a possible viral strategy for initiating latent infection and switching between latent and productive infections.
Collapse
Affiliation(s)
- Cui-Qing Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 2013; 9:e1003484. [PMID: 23874201 PMCID: PMC3715412 DOI: 10.1371/journal.ppat.1003484] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/24/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17–92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS. Circulating microRNAs (miRNAs), such as those found in exosomes, have emerged as diagnostic tools and hold promise as minimally invasive, stable biomarkers. Transfer of tumor-derived exosomal miRNAs to surrounding cells may be an important form of cellular communication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common AIDS-defining cancer worldwide. Here, we survey systemically circulating miRNAs and reveal potential biomarkers for KS and Primary Effusion Lymphoma (PEL). This expands previous tissue culture studies by profiling clinical samples and by using two new mouse models of KSHV tumorigenesis. Profiling of circulating miRNAs revealed that oncogenic and viral miRNAs were present in exosomes from KS patient plasma, pleural effusions and mouse models of KS. Analysis of human oncogenic miRNAs, including the well-known miR-17-92 cluster, revealed that several miRNAs were preferentially incorporated into exosomes in our KS mouse model. Gene ontology analysis of upregulated miRNAs showed that the majority of pathways affected were known targets of KSHV signaling pathways. Transfer of these oncogenic exosomes to immortalized hTERT-HUVEC cells enhanced cell migration and IL-6 secretion. These circulating miRNAs and KS derived exosomes may therefore be part of the paracrine signaling mechanism that mediates KSHV pathogenesis.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Body Fluids/metabolism
- Body Fluids/virology
- Cell Line
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/virology
- Exosomes/metabolism
- Exosomes/ultrastructure
- Exosomes/virology
- Gene Expression Profiling
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/metabolism
- Humans
- Interleukin-6/metabolism
- Mice
- MicroRNAs/blood
- MicroRNAs/metabolism
- Pleural Cavity
- Pleural Effusion, Malignant/etiology
- RNA, Neoplasm/blood
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Up-Regulation
- Viral Load
Collapse
Affiliation(s)
- Pauline E. Chugh
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sezgin Ozgur
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David H. Henry
- Department of Oncology, Joan Karnell Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prema Menezes
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack Griffith
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Krug LT. Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 2013; 3:276-84. [PMID: 23684513 DOI: 10.1016/j.coviro.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
Technological advances in genome-wide transcript analysis, referred to as the transcriptome, using microarrays and deep RNA sequencing methodologies are rapidly extending our understanding of the genetic content of the gammaherpesviruses (γHVs). These vast transcript analyses continue to uncover the complexity of coding transcripts due to alternative splicing, translation initiation and termination, as well as regulatory RNAs of the γHVs. A full assessment of the transcriptome requires that our analysis be extended to the virion and exosomes of infected cells since viral and host mRNAs, miRNAs, and other noncoding RNAs seem purposefully incorporated to exert function upon delivery to naïve cells. Understanding the regulation, biogenesis and function of the recently discovered transcripts will extend beyond pathogenesis and oncogenic events to offer key insights for basic RNA processes of the cell.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|