1
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Kephart SM, Hom N, Lee KK. Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography. Trends Biochem Sci 2024; 49:916-931. [PMID: 39054240 PMCID: PMC11455608 DOI: 10.1016/j.tibs.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA; Biological Structure Physics and Design Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Volovik MV, Batishchev OV. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms. Biomolecules 2024; 14:1118. [PMID: 39334885 PMCID: PMC11430820 DOI: 10.3390/biom14091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
4
|
Denieva ZG, Sokolov VS, Batishchev OV. HIV-1 Gag Polyprotein Affinity to the Lipid Membrane Is Independent of Its Surface Charge. Biomolecules 2024; 14:1086. [PMID: 39334852 PMCID: PMC11429625 DOI: 10.3390/biom14091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The binding of the HIV-1 Gag polyprotein to the plasma membrane is a critical step in viral replication. The association with membranes depends on the lipid composition, but its mechanisms remain unclear. Here, we report the binding of non-myristoylated Gag to lipid membranes of different lipid compositions to dissect the influence of each component. We tested the contribution of phosphatidylserine, PI(4,5)P2, and cholesterol to membrane charge density and Gag affinity to membranes. Taking into account the influence of the membrane surface potential, we quantitatively characterized the adsorption of the protein onto model lipid membranes. The obtained Gag binding constants appeared to be the same regardless of the membrane charge. Furthermore, Gag adsorbed on uncharged membranes, suggesting a contribution of hydrophobic forces to the protein-lipid interaction. Charge-charge interactions resulted in an increase in protein concentration near the membrane surface. Lipid-specific interactions were observed in the presence of cholesterol, resulting in a two-fold increase in binding constants. The combination of cholesterol with PI(4,5)P2 showed cooperative effects on protein adsorption. Thus, we suggest that the affinity of Gag to lipid membranes results from a combination of electrostatic attraction to acidic lipids, providing different protein concentrations near the membrane surface, and specific hydrophobic interactions.
Collapse
Affiliation(s)
| | | | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (Z.G.D.); (V.S.S.)
| |
Collapse
|
5
|
Batishchev OV, Kalutskii MA, Varlamova EA, Konstantinova AN, Makrinsky KI, Ermakov YA, Meshkov IN, Sokolov VS, Gorbunova YG. Antimicrobial activity of photosensitizers: arrangement in bacterial membrane matters. Front Mol Biosci 2023; 10:1192794. [PMID: 37255538 PMCID: PMC10226669 DOI: 10.3389/fmolb.2023.1192794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Porphyrins are well-known photosensitizers (PSs) for antibacterial photodynamic therapy (aPDT), which is still an underestimated antibiotic-free method to kill bacteria, viruses, and fungi. In the present work, we developed a comprehensive tool for predicting the structure and assessment of the photodynamic efficacy of PS molecules for their application in aPDT. We checked it on a series of water-soluble phosphorus(V) porphyrin molecules with OH or ethoxy axial ligands and phenyl/pyridyl peripheral substituents. First, we used biophysical approaches to show the effect of PSs on membrane structure and their photodynamic activity in the lipid environment. Second, we developed a force field for studying phosphorus(V) porphyrins and performed all-atom molecular dynamics simulations of their interactions with bacterial lipid membranes. Finally, we obtained the structure-activity relationship for the antimicrobial activity of PSs and tested our predictions on two models of Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii. Our approach allowed us to propose a new PS molecule, whose MIC50 values after an extremely low light dose of 5 J/cm2 (5.0 ± 0.4 μg/mL for E. coli and 4.9 ± 0.8 μg/mL for A. baumannii) exceeded those for common antibiotics, making it a prospective antimicrobial agent.
Collapse
Affiliation(s)
- Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim A. Kalutskii
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Varlamova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill I. Makrinsky
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury A. Ermakov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Loshkareva AS, Popova MM, Shilova LA, Fedorova NV, Timofeeva TA, Galimzyanov TR, Kuzmin PI, Knyazev DG, Batishchev OV. Influenza A Virus M1 Protein Non-Specifically Deforms Charged Lipid Membranes and Specifically Interacts with the Raft Boundary. MEMBRANES 2023; 13:76. [PMID: 36676883 PMCID: PMC9864314 DOI: 10.3390/membranes13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.
Collapse
Affiliation(s)
- Anna S. Loshkareva
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina M. Popova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Liudmila A. Shilova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - Timur R. Galimzyanov
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Petr I. Kuzmin
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
7
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Kondrashov O, Akimov S. Effect of solid support and membrane tension on adsorption and lateral interaction of amphipathic peptides. J Chem Phys 2022; 157:074902. [DOI: 10.1063/5.0096536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A wide class of antimicrobial amphipathic peptides is aimed to selectively form through pores in bacterial membranes. The partial incorporation of the peptides into the lipid monolayer leads to elastic deformation of the membrane. The deformation influences both the adsorption of the peptides and their lateral interaction. Detailed study of pore formation mechanisms requires an accurate determination of the surface concentration of the peptides at their given bulk concentration. Widely used methods to register the adsorption are atomic force microscopy (AFM), surface plasmon resonance refractometry (SPRR), and inner field compensation (IFC). AFM and SPRR utilize membranes deposited onto a solid support, while IFC operates with model membranes under substantial lateral tension. Here, we theoretically studied the effect of the solid support and lateral tension on the elastic deformations of the membrane induced by partially incorporated amphipathic peptides, and thus on the peptide adsorption energy and lateral interaction. We demonstrated that under conditions typical for AFM, SPRR, and IFC the adsorption energy can increase by up to 1.5 kBT per peptide leading to about 4 times decreased surface concentration as compared to free-standing tensionless membranes. In addition, the effective lateral size of the peptide molecule increases by about 10 %, which can have an impact on the quantitative description of the adsorption isotherms. Our results allow estimating the effects of the solid support and lateral tension on the adsorption and interaction of amphipathic peptides at the membrane surface and taking them into account in interpretation of experimental observations.
Collapse
Affiliation(s)
| | - Sergey Akimov
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Russia
| |
Collapse
|
9
|
Abstract
The M1 of influenza A virus (IAV) is important for the virus life cycle, especially for the assembly and budding of viruses, which is a multistep process that requires host factors. Identifying novel host proteins that interact with M1 and understanding their functions in IAV replication are of great interest in antiviral drug development. In this study, we identified 19 host proteins in DF1 cells suspected to interact with the M1 protein of an H5N6 virus through immunoprecipitation (IP)/mass spectrometry. Among them, PSMD12, a 26S proteasome regulatory subunit, was shown to interact with influenza M1, acting as a positive host factor in IAV replication in avian and human cells. The data showed that PSMD12 promoted K63-linked ubiquitination of M1 at the K102 site. H5N6 and PR8 with an M1-K102 site mutant displayed a significantly weaker replication ability than the wild-type viruses. Mechanistically, PSMD12 promoted M1-M2 virus-like particle (VLP) release, and an M1-K102 mutation disrupted the formation of supernatant M1-M2 VLPs. An H5N6 M1-K102 site mutation or knockdown PSMD12 disrupted the budding release of the virus in chicken embryo fibroblast (CEF) cells, which was confirmed by transmission electron microscopy. Further study confirmed that M1-K102 site mutation significantly affected the virulence of H5N6 and PR8 viruses in mice. In conclusion, we report the novel host factor PSMD12 which affects the replication of influenza virus by mediating K63-linked ubiquitination of M1 at K102. These findings provide novel insight into the interactions between IAV and host cells, while suggesting an important target for anti-influenza virus drug research. IMPORTANCE M1 is proposed to play multiple biologically important roles in the life cycle of IAV, which relies largely on host factors. This study is the first one to identify that PSMD12 interacts with M1, mediates K63-linked ubiquitination of M1 at the K102 site, and thus positively regulates influenza virus proliferation. PSMD12 promoted M1-M2 VLP egress, and an M1-K102 mutation affected the M1-M2 VLP formation. Furthermore, we demonstrate the importance of this site to the morphology and budding of influenza viruses by obtaining mutant viruses, and the M1 ubiquitination regulator PSMD12 has a similar function to the M1 K102 mutation in regulating virus release and virus morphology. Additionally, we confirm the reduced virulence of H5N6 and PR8 (H1N1) viruses carrying the M1-K102 site mutation in mice. These findings provide novel insights into IAV interactions with host cells and suggest a valid and highly conserved candidate target for antiviral drug development.
Collapse
|
10
|
Kordyukova LV, Konarev PV, Fedorova NV, Shtykova EV, Ksenofontov AL, Loshkarev NA, Dadinova LA, Timofeeva TA, Abramchuk SS, Moiseenko AV, Baratova LA, Svergun DI, Batishchev OV. The Cytoplasmic Tail of Influenza A Virus Hemagglutinin and Membrane Lipid Composition Change the Mode of M1 Protein Association with the Lipid Bilayer. MEMBRANES 2021; 11:772. [PMID: 34677538 PMCID: PMC8541430 DOI: 10.3390/membranes11100772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Petr V. Konarev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Nataliya V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Eleonora V. Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Nikita A. Loshkarev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Lubov A. Dadinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Tatyana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia;
| | - Sergei S. Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Laboratory of Physical Chemistry of Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei V. Moiseenko
- Laboratory of Electron Microscopy, Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Lyudmila A. Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | | | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Bennet D, Harris AF, Lacombe J, Brooks C, Bionda N, Strickland AD, Eisenhut T, Zenhausern F. Evaluation of supercritical CO 2 sterilization efficacy for sanitizing personal protective equipment from the coronavirus SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146519. [PMID: 33774282 PMCID: PMC7969838 DOI: 10.1016/j.scitotenv.2021.146519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
The purpose of this research is to evaluate the supercritical carbon dioxide (scCO2) sterilization-based NovaClean process for decontamination and reprocessing of personal protective equipment (PPE) such as surgical masks, cloth masks, and N95 respirators. Preliminarily, Bacillus atrophaeus were inoculated into different environments (dry, hydrated, and saliva) to imitate coughing and sneezing and serve as a "worst-case" regarding challenged PPE. The inactivation of the microbes by scCO2 sterilization with NovaKill or H2O2 sterilant was investigated as a function of exposure times ranging from 5 to 90 min with a goal of elucidating possible mechanisms. Also, human coronavirus SARS-CoV-2 and HCoV-NL63 were inoculated on the respirator material, and viral activity was determined post-treatment. Moreover, we investigated the reprocessing ability of scCO2-based decontamination using wettability testing and surface mapping. Different inactivation mechanisms have been identified in scCO2 sanitization, such as membrane damage, germination defect, and dipicolinic acid leaks. Moreover, the viral sanitization results showed a complete inactivation of both coronavirus HCoV-NL63 and SARS-CoV-2. We did not observe changes in PPE morphology, topographical structure, or material integrity, and in accordance with the WHO recommendation, maintained wettability post-processing. These experiments establish a foundational understanding of critical elements for the decontamination and reuse of PPE in any setting and provide a direction for future research in the field.
Collapse
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA.
| | - Ashlee F Harris
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 N 5th St., Phoenix, AZ 85004, USA
| | - Carla Brooks
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA
| | | | | | | | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine, 475 N Fifth Street, AZ 85004, Phoenix, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 N 5th St., Phoenix, AZ 85004, USA; School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
12
|
Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure 2021; 29:834-845.e5. [PMID: 33932324 PMCID: PMC8086150 DOI: 10.1016/j.str.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Spike (S) glycoprotein of SARS-CoV2 exists chiefly in two conformations, open and closed. Most previous structural studies on S protein have been conducted at pH 8.0, but knowledge of the conformational propensities under both physiological and endosomal pH conditions is important to inform vaccine development. Our current study employed single-particle cryoelectron microscopy to visualize multiple states of open and closed conformations of S protein at physiological pH 7.4 and near-physiological pH 6.5 and pH 8.0. Propensities of open and closed conformations were found to differ with pH changes, whereby around 68% of S protein exists in open conformation at pH 7.4. Furthermore, we noticed a continuous movement in the N-terminal domain, receptor-binding domain (RBD), S2 domain, and stalk domain of S protein conformations at various pH values. Several key residues involving RBD-neutralizing epitopes are differentially exposed in each conformation. This study will assist in developing novel therapeutic measures against SARS-CoV2.
Collapse
|
13
|
Batishchev OV, Kuzmina NV, Mozhaev AA, Goryashchenko AS, Mileshina ED, Orsa AN, Bocharov EV, Deyev IE, Petrenko AG. Activity-dependent conformational transitions of the insulin receptor-related receptor. J Biol Chem 2021; 296:100534. [PMID: 33713705 PMCID: PMC8058561 DOI: 10.1016/j.jbc.2021.100534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
The insulin receptor (IR), insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor-related receptor (IRR) form a mini family of predimerized receptor-like tyrosine kinases. IR and IGF-1R bind to their peptide agonists triggering metabolic and cell growth responses. In contrast, IRR, despite sharing with them a strong sequence homology, has no peptide-like agonist but can be activated by mildly alkaline media. The spatial structure and activation mechanisms of IRR have not been established yet. The present work represents the first account of a structural analysis of a predimerized receptor-like tyrosine kinase by high-resolution atomic force microscopy in their basal and activated forms. Our data suggest that in neutral media, inactive IRR has two conformations, where one is symmetrical and highly similar to the inactive Λ/U-shape of IR and IGF-1R ectodomains, whereas the second is drop-like and asymmetrical resembling the IRR ectodomain in solution. We did not observe complexes of IRR intracellular catalytic domains of the inactive receptor forms. At pH 9.0, we detected two presumably active IRR conformations, Γ-shaped and T-shaped. Both of conformations demonstrated formation of the complex of their intracellular catalytic domains responsible for autophosphorylation. The existence of two active IRR forms correlates well with the previously described positive cooperativity of the IRR activation. In conclusion, our data provide structural insights into the molecular mechanisms of alkali-induced IRR activation under mild native conditions that could be valuable for interpretation of results of IR and IGF-IR structural studies.
Collapse
Affiliation(s)
- Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Natalia V Kuzmina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Mozhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Goryashchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina D Mileshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander N Orsa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia
| | - Igor E Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G Petrenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Petukhov MV, Konarev PV, Dadinova LA, Fedorova NV, Volynsky PE, Svergun DI, Batishchev OV, Shtykova EV. Quasi-Atomistic Approach to Modeling of Liposomes. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ermakov YA, Sokolov VS, Akimov SA, Batishchev OV. Physicochemical and Electrochemical Aspects of the Functioning of Biological Membranes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Glucosylceramide synthase maintains influenza virus entry and infection. PLoS One 2020; 15:e0228735. [PMID: 32032363 PMCID: PMC7006932 DOI: 10.1371/journal.pone.0228735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus is an enveloped virus wrapped in a lipid bilayer derived from the host cell plasma membrane. Infection by influenza virus is dependent on these host cell lipids, which include sphingolipids. Here we examined the role of the sphingolipid, glucosylceramide, in influenza virus infection by knocking out the enzyme responsible for its synthesis, glucosylceramide synthase (UGCG). We observed diminished influenza virus infection in HEK 293 and A549 UGCG knockout cells and demonstrated that this is attributed to impaired viral entry. We also observed that entry mediated by the glycoproteins of other enveloped viruses that enter cells by endocytosis is also impaired in UGCG knockout cells, suggesting a broader role for UGCG in viral entry by endocytosis.
Collapse
|
17
|
Effects of Sterols on the Interaction of SDS, Benzalkonium Chloride, and A Novel Compound, Kor105, with Membranes. Biomolecules 2019; 9:biom9100627. [PMID: 31635312 PMCID: PMC6843611 DOI: 10.3390/biom9100627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Sterols change the biophysical properties of lipid membranes. Here, we analyzed how sterols affect the activity of widely used antimicrobial membrane-active compounds, sodium dodecyl sulfate (SDS) and benzalkonium chloride (BAC). We also tested a novel benzalkonium-like substance, Kor105. Our data suggest that benzalkonium and Kor105 disturb the ordering of the membrane lipid packaging, and this disturbance is dampened by cholesterol. The disturbance induced by Kor105 is stronger than that induced by BAC because of the higher rigidity of the Kor105 molecule due to a shorter linker between the phenyl group and quaternary nitrogen. On the contrary, individual SDS molecules do not cause the disturbance. Thus, in the tested range of concentrations, SDS-membrane interaction is not influenced by cholesterol. To study how sterols influence the biological effects of these chemicals, we used yeast strains lacking Lam1-4 proteins. These proteins transport sterols from the plasma membrane into the endoplasmic reticulum. We found that the mutants are resistant to BAC and Kor105 but hypersensitive to SDS. Together, our findings show that sterols influence the interaction of SDS versus benzalkonium chloride and Kor105 with the membranes in a completely different manner.
Collapse
|
18
|
Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Biosci Rep 2019; 39:BSR20191024. [PMID: 31324731 PMCID: PMC6682550 DOI: 10.1042/bsr20191024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context, M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains).
Collapse
|
19
|
Hom N, Gentles L, Bloom JD, Lee KK. Deep Mutational Scan of the Highly Conserved Influenza A Virus M1 Matrix Protein Reveals Substantial Intrinsic Mutational Tolerance. J Virol 2019; 93:e00161-19. [PMID: 31019050 PMCID: PMC6580950 DOI: 10.1128/jvi.00161-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus matrix protein M1 is involved in multiple stages of the viral infectious cycle. Despite its functional importance, our present understanding of this essential viral protein is limited. The roles of a small subset of specific amino acids have been reported, but a more comprehensive understanding of the relationship between M1 sequence, structure, and virus fitness remains elusive. In this study, we used deep mutational scanning to measure the effect of every amino acid substitution in M1 on viral replication in cell culture. The map of amino acid mutational tolerance we have generated allows us to identify sites that are functionally constrained in cell culture as well as sites that are less constrained. Several sites that exhibit low tolerance to mutation have been found to be critical for M1 function and production of viable virions. Surprisingly, significant portions of the M1 sequence, especially in the C-terminal domain, whose structure is undetermined, were found to be highly tolerant of amino acid variation, despite having extremely low levels of sequence diversity among natural influenza virus strains. This unexpected discrepancy indicates that not all sites in M1 that exhibit high sequence conservation in nature are under strong constraint during selection for viral replication in cell culture.IMPORTANCE The M1 matrix protein is critical for many stages of the influenza virus infection cycle. Currently, we have an incomplete understanding of this highly conserved protein's function and structure. Key regions of M1, particularly in the C terminus of the protein, remain poorly characterized. In this study, we used deep mutational scanning to determine the extent of M1's tolerance to mutation. Surprisingly, nearly two-thirds of the M1 sequence exhibits a high tolerance for substitutions, contrary to the extremely low sequence diversity observed across naturally occurring M1 isolates. Sites with low mutational tolerance were also identified, suggesting that they likely play critical functional roles and are under selective pressure. These results reveal the intrinsic mutational tolerance throughout M1 and shape future inquiries probing the functions of this essential influenza A virus protein.
Collapse
Affiliation(s)
- Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Lauren Gentles
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jesse D Bloom
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Glucosylceramidase Maintains Influenza Virus Infection by Regulating Endocytosis. J Virol 2019; 93:JVI.00017-19. [PMID: 30918081 PMCID: PMC6613767 DOI: 10.1128/jvi.00017-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023] Open
Abstract
Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease. Influenza virus is an RNA virus encapsulated in a lipid bilayer derived from the host cell plasma membrane. Previous studies showed that influenza virus infection depends on cellular lipids, including the sphingolipids sphingomyelin and sphingosine. Here we examined the role of a third sphingolipid, glucosylceramide, in influenza virus infection following clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR-Cas9)-mediated knockout (KO) of its metabolizing enzyme glucosylceramidase (GBA). After confirming GBA knockout of HEK 293 and A549 cells by both Western blotting and lipid mass spectrometry, we observed diminished infection in both KO cell lines by a PR8 (H1N1) green fluorescent protein (GFP) reporter virus. We further showed that the reduction in infection correlated with impaired influenza virus trafficking to late endosomes and hence with fusion and entry. To examine whether GBA is required for other enveloped viruses, we compared the results seen with entry mediated by the glycoproteins of Ebola virus, influenza virus, vesicular stomatitis virus (VSV), and measles virus in GBA knockout cells. Entry inhibition was relatively robust for Ebola virus and influenza virus, modest for VSV, and mild for measles virus, suggesting a greater role for viruses that enter cells by fusing with late endosomes. As the virus studies suggested a general role for GBA along the endocytic pathway, we tested that hypothesis and found that trafficking of epidermal growth factor (EGF) to late endosomes and degradation of its receptor were impaired in GBA knockout cells. Collectively, our findings suggest that GBA is critically important for endocytic trafficking of viruses as well as of cellular cargos, including growth factor receptors. Modulation of glucosylceramide levels may therefore represent a novel accompaniment to strategies to antagonize “late-penetrating” viruses, including influenza virus. IMPORTANCE Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease.
Collapse
|
21
|
Abstract
Internal acidification of the influenza virus, mediated by the M2 proton channel, is a key step in its life cycle. The interior M1 protein shell dissolves at pH~5.5 to 6.0, allowing the release of vRNA to the cytoplasm upon fusion of the viral envelope with the endosomal membrane. Previous models have described the mechanisms and rate constants of M2-mediated transport but did not describe the kinetics of pH changes inside the virus or consider exterior pH changes due to endosome maturation. Therefore, we developed a mathematical model of M2-mediated virion acidification. We find that ~32,000 protons are required to acidify a typically-sized virion. Predicted acidification kinetics were consistent with published in vitro experiments following internal acidification. Finally, we applied the model to the in vivo situation. For all rates of endosomal maturation considered, internal acidification lagged ~1 min behind endosomal acidification to pH 6. For slow endosomal maturation requiring several minutes or more, internal and endosomal pH decay together in pseudo-equilibrium to the late endosomal pH~5.0. For fast endosomal maturation (≲2 min), a lag of tens of seconds continued toward the late endosomal pH. Recent experiments suggest in vivo maturation is in this “fast” regime where lag is considerable. We predict that internal pH reaches the threshold for M1 shell solvation just before the external pH triggers membrane fusion mediated by the influenza protein hemagglutinin, critical because outward proton diffusion through a single small fusion pore is faster than the collective M2-mediated transport inward.
Collapse
|
22
|
Höfer CT, Di Lella S, Dahmani I, Jungnick N, Bordag N, Bobone S, Huang Q, Keller S, Herrmann A, Chiantia S. Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1123-1134. [PMID: 30902626 DOI: 10.1016/j.bbamem.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1-protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.
Collapse
Affiliation(s)
- C T Höfer
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - S Di Lella
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - I Dahmani
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - N Jungnick
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - N Bordag
- Leibniz-Institute for Molecular Pharmacology (FMP), Biophysics of Membrane Proteins, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - S Bobone
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Q Huang
- School of Life Sciences, Fudan University, 220 Handan Rd, WuJiaoChang, Yangpu Qu, Shanghai Shi 200433, China
| | - S Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - A Herrmann
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - S Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
23
|
Shtykova EV, Petoukhov MV, Dadinova LA, Fedorova NV, Tashkin VY, Timofeeva TA, Ksenofontov AL, Loshkarev NA, Baratova LA, Jeffries CM, Svergun DI, Batishchev OV. Solution Structure, Self-Assembly, and Membrane Interactions of the Matrix Protein from Newcastle Disease Virus at Neutral and Acidic pH. J Virol 2019; 93:e01450-18. [PMID: 30567981 PMCID: PMC6401449 DOI: 10.1128/jvi.01450-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) is an enveloped paramyxovirus. The matrix protein of the virus (M-NDV) has an innate propensity to produce virus-like particles budding from the plasma membrane of the expressing cell without recruiting other viral proteins. The virus predominantly infects the host cell via fusion with the host plasma membrane or, alternatively, can use receptor-mediated endocytic pathways. The question arises as to what are the mechanisms supporting such diversity, especially concerning the assembling and membrane binding properties of the virus protein scaffold under both neutral and acidic pH conditions. Here, we suggest a novel method of M-NDV isolation in physiological ionic strength and employ a combination of small-angle X-ray scattering, atomic force microscopy with complementary structural techniques, and membrane interaction measurements to characterize the solution behavior/structure of the protein as well as its binding to lipid membranes at pH 4.0 and pH 7.0. We demonstrate that the minimal structural unit of the protein in solution is a dimer that spontaneously assembles in a neutral milieu into hollow helical oligomers by repeating the protein tetramers. Acidic pH conditions decrease the protein oligomerization state to the individual dimers, tetramers, and octamers without changing the density of the protein layer and lipid membrane affinity, thus indicating that the endocytic pathway is a possible facilitator of NDV entry into a host cell through enhanced scaffold disintegration.IMPORTANCE The matrix protein of the Newcastle disease virus (NDV) is one of the most abundant viral proteins that regulates the formation of progeny virions. NDV is an avian pathogen that impacts the economics of bird husbandry due to its resulting morbidity and high mortality rates. Moreover, it belongs to the Avulavirus subfamily of the Paramyxoviridae family of Mononegavirales that include dangerous representatives such as respiratory syncytial virus, human parainfluenza virus, and measles virus. Here, we investigate the solution structure and membrane binding properties of this protein at both acidic and neutral pH to distinguish between possible virus entry pathways and propose a mechanism of assembly of the viral matrix scaffold. This work is fundamental for understanding the mechanisms of viral entry as well as to inform subsequent proposals for the possible use of the virus as an adequate template for future drug or vaccine delivery.
Collapse
Affiliation(s)
- E V Shtykova
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M V Petoukhov
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- EMBL/DESY, Hamburg, Germany
| | - L A Dadinova
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - N V Fedorova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - V Yu Tashkin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - T A Timofeeva
- D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, Moscow, Russian
| | - A L Ksenofontov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - N A Loshkarev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - L A Baratova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | - D I Svergun
- D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, Moscow, Russian
| | - O V Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| |
Collapse
|
24
|
Gamage S, Howard M, Makita H, Cross B, Hastings G, Luo M, Abate Y. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS One 2018; 13:e0199112. [PMID: 29894493 PMCID: PMC5997350 DOI: 10.1371/journal.pone.0199112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Enveloped viruses, such as HIV, Ebola and Influenza, are among the most deadly known viruses. Cellular membrane penetration of enveloped viruses is a critical step in the cascade of events that lead to entry into the host cell. Conventional ensemble fusion assays rely on collective responses to membrane fusion events, and do not allow direct and quantitative studies of the subtle and intricate fusion details. Such details are accessible via single particle investigation techniques, however. Here, we implement nano-infrared spectroscopic imaging to investigate the chemical and structural modifications that occur prior to membrane fusion in the single archetypal enveloped virus, influenza X31. We traced in real-space structural and spectroscopic alterations that occur during environmental pH variations in single virus particles. In addition, using nanospectroscopic imaging we quantified the effectiveness of an antiviral compound in stopping viral membrane disruption (a novel mechanism for inhibiting viral entry into cells) during environmental pH variations.
Collapse
Affiliation(s)
- Sampath Gamage
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, United States of America
| | - Marquez Howard
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, United States of America
| | - Hiroki Makita
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia, United States of America
| | - Brendan Cross
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia, United States of America
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia, United States of America
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - Yohannes Abate
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
26
|
Chiang MJ, Musayev FN, Kosikova M, Lin Z, Gao Y, Mosier PD, Althufairi B, Ye Z, Zhou Q, Desai UR, Xie H, Safo MK. Maintaining pH-dependent conformational flexibility of M1 is critical for efficient influenza A virus replication. Emerg Microbes Infect 2017; 6:e108. [PMID: 29209052 PMCID: PMC5750462 DOI: 10.1038/emi.2017.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
The M gene segment of influenza A virus has been shown to be a contributing factor to the high growth phenotype. However, it remains largely unknown why matrix protein 1 (M1), the major structural protein encoded by M gene, exhibits pH-dependent conformational changes during virus replication. Understanding the mechanisms underlying efficient virus replication can help to develop strategies not only to combat influenza infections but also to improve vaccine supplies. M(NLS-88R) and M(NLS-88E) are two M1 mutants differing by only a single amino acid: G88R vs G88E. G88R but not G88E was the compensatory mutation naturally selected by the virus after its nuclear localization signal was disrupted. Our study shows that, compared with M(NLS-88E) M1, M(NLS-88R) M1 dissociated quickly from viral ribonucleoproteins (vRNPs) at higher pH and took less time to dissemble in vitro, despite forming thicker matrix layer and having stronger association with vRNP in assembled virions. Correspondingly, M(NLS-88R) replicated more efficiently and was genetically more stable than M(NLS-88E). Crystallographic analysis indicated that M(NLS-88R) M1, like wild-type M1, is able to switch from a face-to-back-oriented conformation to a face-to-face-oriented conformation when pH drops from neutral to acidic, whereas G88E mutation causes M(NLS-88E) M1 to be trapped in a face-to-face-arranged conformation regardless of environmental pH. Our results suggest that maintaining M1 pH-dependent conformational flexibility is critical for efficient virus replication, and position 88 is a key residue controlling M1 pH-dependent conformational changes. Our findings provide insights into developing M1-based antiviral agents.
Collapse
Affiliation(s)
- Meng-Jung Chiang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Faik N Musayev
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Martina Kosikova
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhengshi Lin
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yamei Gao
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bashayer Althufairi
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhiping Ye
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Qibing Zhou
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hang Xie
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Switching between Successful and Dead-End Intermediates in Membrane Fusion. Int J Mol Sci 2017; 18:ijms18122598. [PMID: 29207481 PMCID: PMC5751201 DOI: 10.3390/ijms18122598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022] Open
Abstract
Fusion of cellular membranes during normal biological processes, including proliferation, or synaptic transmission, is mediated and controlled by sophisticated protein machinery ensuring the preservation of the vital barrier function of the membrane throughout the process. Fusion of virus particles with host cell membranes is more sparingly arranged and often mediated by a single fusion protein, and the virus can afford to be less discriminative towards the possible different outcomes of fusion attempts. Formation of leaky intermediates was recently observed in some fusion processes, and an alternative trajectory of the process involving formation of π-shaped structures was suggested. In this study, we apply the methods of elasticity theory and Lagrangian formalism augmented by phenomenological and molecular geometry constraints and boundary conditions to investigate the traits of this trajectory and the drivers behind the choice of one of the possible scenarios depending on the properties of the system. The alternative pathway proved to be a dead end, and, depending on the parameters of the participating membranes and fusion proteins, the system can either reversibly enter the corresponding “leaky” configuration or be trapped in it. A parametric study in the biologically relevant range of variables emphasized the fusion protein properties crucial for the choice of the fusion scenario.
Collapse
|
28
|
Shtykova EV, Dadinova LA, Fedorova NV, Golanikov AE, Bogacheva EN, Ksenofontov AL, Baratova LA, Shilova LA, Tashkin VY, Galimzyanov TR, Jeffries CM, Svergun DI, Batishchev OV. Influenza virus Matrix Protein M1 preserves its conformation with pH, changing multimerization state at the priming stage due to electrostatics. Sci Rep 2017; 7:16793. [PMID: 29196731 PMCID: PMC5711849 DOI: 10.1038/s41598-017-16986-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Influenza A virus matrix protein M1 plays an essential role in the virus lifecycle, but its functional and structural properties are not entirely defined. Here we employed small-angle X-ray scattering, atomic force microscopy and zeta-potential measurements to characterize the overall structure and association behavior of the full-length M1 at different pH conditions. We demonstrate that the protein consists of a globular N-terminal domain and a flexible C-terminal extension. The globular N-terminal domain of M1 monomers appears preserved in the range of pH from 4.0 to 6.8, while the C-terminal domain remains flexible and the tendency to form multimers changes dramatically. We found that the protein multimerization process is reversible, whereby the binding between M1 molecules starts to break around pH 6. A predicted electrostatic model of M1 self-assembly at different pH revealed a good agreement with zeta-potential measurements, allowing one to assess the role of M1 domains in M1-M1 and M1-lipid interactions. Together with the protein sequence analysis, these results provide insights into the mechanism of M1 scaffold formation and the major role of the flexible and disordered C-terminal domain in this process.
Collapse
Affiliation(s)
- Eleonora V Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Liubov A Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey E Golanikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia
| | - Elena N Bogacheva
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | - Liudmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Liudmila A Shilova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Vsevolod Yu Tashkin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur R Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- National University of Science and Technology "MISiS", Moscow, Russia
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Hamburg, Germany
| | - Oleg V Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| |
Collapse
|
29
|
Shilova LA, Knyazev DG, Fedorova NV, Shtykova EV, Batishchev OV. Study of adsorption of Influenza virus matrix protein M1 on lipid membranes by the technique of fluorescent probes. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Charged amino acid variability related to N-glyco -sylation and epitopes in A/H3N2 influenza: Hem -agglutinin and neuraminidase. PLoS One 2017; 12:e0178231. [PMID: 28708860 PMCID: PMC5510802 DOI: 10.1371/journal.pone.0178231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The A/H3N2 influenza viruses circulated in humans have been shown to undergo antigenic drift, a process in which amino acid mutations result from nucleotide substitutions. There are few reports regarding the charged amino acid mutations. The purpose of this paper is to explore the relations between charged amino acids, N-glycosylation and epitopes in hemagglutinin (HA) and neuraminidase (NA). METHODS A total of 700 HA genes (691 NA genes) of A/H3N2 viruses were chronologically analyzed for the mutational variants in amino acid features, N-glycosylation sites and epitopes since its emergence in 1968. RESULTS It was found that both the number of HA N-glycosylation sites and the electric charge of HA increased gradually up to 2016. The charges of HA and HA1 increased respectively 1.54-fold (+7.0 /+17.8) and 1.08-fold (+8.0/+16.6) and the number of NGS in nearly doubled (7/12). As great diversities occurred in 1990s, involving Epitope A, B and D mutations, the charged amino acids in Epitopes A, B, C and D in HA1 mutated at a high frequency in global circulating strains last decade. The charged amino acid mutations in Epitopes A (T135K) has shown high mutability in strains near years, resulting in a decrease of NGT135-135. Both K158N and K160T not only involved mutations charged in epitope B, but also caused a gain of NYT158-160. Epitope B and its adjacent N-glycosylation site NYT158-160 mutated more frequently, which might be under greater immune pressure than the rest. CONCLUSIONS The charged amino acid mutations in A/H3N2 Influenza play a significant role in virus evolution, which might cause an important public health issue. Variability related to both the epitopes (A and B) and N-glycosylation is beneficial for understanding the evolutionary mechanisms, disease pathogenesis and vaccine research.
Collapse
|
31
|
Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. J Virol 2017; 91:JVI.00267-17. [PMID: 28356535 DOI: 10.1128/jvi.00267-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells.IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.
Collapse
|
32
|
Formation of the layer of influenza A virus M1 matrix protein on lipid membranes at pH 7.0. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1644-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Yoshikawa T, Tamura M, Tokonami S, Iida T. Optical Trap-Mediated High-Sensitivity Nanohole Array Biosensors with Random Nanospikes. J Phys Chem Lett 2017; 8:370-374. [PMID: 28056504 DOI: 10.1021/acs.jpclett.6b02262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We clarify an unconventional principle of the light-driven operation of a biosensor for enhanced sensitivity with the help of random nanospikes added to the surface of a nanohole array. Such a system is capable of optically guiding viruses and trapping them in the vicinity of a highly sensitive site by an anomalous light-induced force arising from random-nanospike-modulated extraordinary optical transmission and the plasmonic mirror image in a virus as a dielectric submicron object. In particular, after guiding the viruses near the apex of nanospikes, there are conditions where the spectral peak shift of extraordinary optical transmission can be greatly increased and reach several hundred nanometers in comparison with that of a conventional nanohole array without random nanospikes. These results will allow for the development of a simple, rapid, and highly sensitive virus detection method based on optical trapping with the help of random-nanospike-modulated extraordinary optical transmission, facilitating convenient medical diagnosis and food inspection.
Collapse
Affiliation(s)
- Takayasu Yoshikawa
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mamoru Tamura
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiho Tokonami
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Iida
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
34
|
Broad Spectrum Anti-Influenza Agents by Inhibiting Self-Association of Matrix Protein 1. Sci Rep 2016; 6:32340. [PMID: 27573445 PMCID: PMC5004101 DOI: 10.1038/srep32340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Abstract
The matrix protein 1 (M1) of influenza A virus (IAV) exists as a three-dimensional oligomeric structure in mature virions with high sequence conservation across different IAV subtypes, which makes it a potential broad spectrum antiviral target. We hypothesized that impairing self-association of M1 through a small molecule 'wedge', which avidly binds to an M1-M1 interface, would result in a completely new class of anti-influenza agents. To establish this proof-of-principle, we performed virtual screening on a library of >70,000 commercially available small molecules that resulted in several plausible 'wedges'. Biophysical studies showed that the best molecule bound the M1 protein potently and weakened M1-M1 self-association. Most importantly, the agent reduced the thickness of the M1 layer in mature virions and inhibited in ovo propagation of multiple IAV strains including H1N1, pandemic H1N1, H3N2 and H5N1, which supports the "wedge" hypothesis. These results demonstrate that M1 is a promising druggable target for the discovery of a completely new line of broad spectrum anti-IAV agents.
Collapse
|
35
|
Blijleven JS, Boonstra S, Onck PR, van der Giessen E, van Oijen AM. Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol 2016; 60:78-88. [PMID: 27401120 DOI: 10.1016/j.semcdb.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022]
Abstract
Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.
Collapse
Affiliation(s)
- Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
36
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Chlanda P, Zimmerberg J. Protein-lipid interactions critical to replication of the influenza A virus. FEBS Lett 2016; 590:1940-54. [PMID: 26921878 DOI: 10.1002/1873-3468.12118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) assembles on the plasma membrane where viral proteins localize to form a bud encompassing the viral genome, which ultimately pinches off to give rise to newly formed infectious virions. Upon entry, the virus faces the opposite task-fusion with the endosomal membrane and disassembly to deliver the viral genome to the cytoplasm. There are at least four influenza proteins-hemagglutinin (HA), neuraminidase (NA), matrix 1 protein (M1), and the M2 ion channel-that are known to directly interact with the cellular membrane and modify membrane curvature in order to both assemble and disassemble membrane-enveloped virions. Here, we summarize and discuss current knowledge of the interactions of lipids and membrane proteins involved in the IAV replication cycle.
Collapse
Affiliation(s)
- Petr Chlanda
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|