1
|
Jing SS, Liu LK, Liu HP. Insect cells of Spodoptera frugiperda support WSSV gene replication but not progeny virion assembly. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105160. [PMID: 38485065 DOI: 10.1016/j.dci.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.
Collapse
Affiliation(s)
- Shan-Shan Jing
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China.
| |
Collapse
|
2
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq revealed heterogeneous responses and functional differentiation of hemocytes against white spot syndrome virus infection in Litopenaeus vannamei. J Virol 2024; 98:e0180523. [PMID: 38323810 PMCID: PMC10949519 DOI: 10.1128/jvi.01805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Liu LK, Jian JT, Jing SS, Gao RL, Chi XD, Tian G, Liu HP. The crustacean DNA virus tegument protein VP26 binds to SNAP29 to inhibit SNARE complex assembly and autophagic degradation. J Virol 2024; 98:e0140823. [PMID: 38189252 PMCID: PMC10878264 DOI: 10.1128/jvi.01408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiu-Ting Jian
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shan-Shan Jing
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Dong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
| |
Collapse
|
4
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
5
|
Liu J, Shao Y, Li D, Li C. N6-methyladenosine helps Apostichopus japonicus resist Vibrio splendidus infection by targeting coelomocyte autophagy via the AjULK-AjYTHDF/AjEEF-1α axis. Commun Biol 2023; 6:547. [PMID: 37210465 DOI: 10.1038/s42003-023-04929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China.
| |
Collapse
|
6
|
Cao XT, Wu LJ, Xu FL, Li XC, Lan JF. PcTrim prevents early infection with white spot syndrome virus by inhibiting AP1-induced endocytosis. Cell Commun Signal 2023; 21:104. [PMID: 37158899 PMCID: PMC10165819 DOI: 10.1186/s12964-023-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 05/10/2023] Open
Abstract
Viruses have evolved various strategies to achieve early infection by initiating transcription of their own early genes via host transcription factors, such as NF-κb, STAT, and AP1. How the host copes with this immune escape has been a topic of interest. Tripartite motif (TRIM) family proteins with RING-type domains have E3 ubiquitin ligase activity and are known as host restriction factors. Trim has been reported to be associated with phagocytosis and is also believed to be involved in the activation of autophagy. Preventing the virus from entering the host cell may be the most economical way for the host to resist virus infection. The role of TRIM in the early stage of virus infection in host cells remains to be further interpreted. In the current study, a crayfish TRIM with a RING-type domain, designated as PcTrim, was significantly upregulated under white spot syndrome virus (WSSV) infection in the red swamp crayfish (Procambarus clarkii). Recombinant PcTrim significantly inhibited WSSV replication in crayfish. RNAi targeting PcTrim or blocking PcTrim with an antibody promoted WSSV replication in crayfish. Pulldown and co-IP assays showed that PcTrim can interact with the virus protein VP26. PcTrim restricts the expression level of dynamin, which is involved in the regulation of phagocytosis, by inhibiting AP1 entry into the nucleus. AP1-RNAi effectively reduced the expression levels of dynamin and inhibited host cell endocytosis of WSSV in vivo. Our study demonstrated that PcTrim might reduce early WSSV infection by binding to VP26 and then inhibiting AP1 activation, resulting in reduced endocytosis of WSSV in crayfish hemocytes. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
7
|
Huang HJ, Tang SL, Chang YC, Wang HC, Ng TH, Garmann RF, Chen YW, Huang JY, Kumar R, Chang SH, Wu SR, Chao CY, Matoba K, Kenji I, Gelbart WM, Ko TP, Wang HJA, Lo CF, Chen LL, Wang HC. Multiple Nucleocapsid Structural Forms of Shrimp White Spot Syndrome Virus Suggests a Novel Viral Morphogenetic Pathway. Int J Mol Sci 2023; 24:ijms24087525. [PMID: 37108688 PMCID: PMC10140842 DOI: 10.3390/ijms24087525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.
Collapse
Affiliation(s)
- Hui-Ju Huang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Hao-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tze Hann Ng
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Rees F Garmann
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA
| | - Yu-Wen Chen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Yan Huang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Hsiung Chang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Yu Chao
- Department of Physics and Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Kyoko Matoba
- Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Iwasaki Kenji
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Hwei-Jiung Andrew Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Chu-Fang Lo
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Sun M, Liu M, Shan H, Li K, Wang P, Guo H, Zhao Y, Wang R, Tao Y, Yang L, Zhang Y, Su X, Liu Y, Li C, Lin J, Chen XL, Zhang YZ, Shen QT. Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. SCIENCE ADVANCES 2023; 9:eadd2796. [PMID: 36812312 PMCID: PMC9946344 DOI: 10.1126/sciadv.add2796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
White spot syndrome virus (WSSV) is one of the largest DNA viruses and the major pathogen responsible for white spot syndrome in crustaceans. The WSSV capsid is critical for genome encapsulation and ejection and exhibits the rod-shaped and oval-shaped structures during the viral life cycle. However, the detailed architecture of the capsid and the structural transition mechanism remain unclear. Here, using cryo-electron microscopy (cryo-EM), we obtained a cryo-EM model of the rod-shaped WSSV capsid and were able to characterize its ring-stacked assembly mechanism. Furthermore, we identified an oval-shaped WSSV capsid from intact WSSV virions and analyzed the structural transition mechanism from the oval-shaped to rod-shaped capsids induced by high salinity. These transitions, which decrease internal capsid pressure, always accompany DNA release and mostly eliminate the infection of the host cells. Our results demonstrate an unusual assembly mechanism of the WSSV capsid and offer structural insights into the pressure-driven genome release.
Collapse
Affiliation(s)
- Meiling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingdong Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong Shan
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaqi Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Wang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Ying Zhang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Su
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunhui Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| | - Qing-Tao Shen
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| |
Collapse
|
9
|
Mindin Activates Autophagy for Lipid Utilization and Facilitates White Spot Syndrome Virus Infection in Shrimp. mBio 2023; 14:e0291922. [PMID: 36779788 PMCID: PMC10127999 DOI: 10.1128/mbio.02919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Mindin is a secreted extracellular matrix protein that is involved in regulating cellular events through interacting with integrin. Studies have demonstrated its role in host immunity, including phagocytosis, cell migration, and cytokine production. However, the function of Mindin in the host-virus interaction is largely unknown. In the present study, we report that Mindin facilitates virus infection by activating lipid utilization in an arthropod, kuruma shrimp (Marsupenaeus japonicus). Shrimp Mindin facilitates white spot syndrome virus infection by facilitating viral entry and replication. By activating autophagy, Mindin induces lipid droplet consumption, the hydrolysis of triglycerides into free fatty acids, and ATP production, ultimately providing energy for virus infection. Moreover, integrin is essential for Mindin-mediated autophagy and lipid utilization. Therefore, by revealing the mechanism by which Mindin facilitates virus infection through regulating lipid metabolism, the present study reveals the significance of Mindin in the host-virus interaction. IMPORTANCE White spot syndrome virus (WSSV) is an enveloped double-stranded DNA virus that has had a serious influence on worldwide shrimp farming in the last 30 years. We have demonstrated that WSSV hijacks host autophagy and lipid metabolism for reproduction in kuruma shrimp (Marsupenaeus japonicus). These findings revealed the mechanism by which WSSV exploits host machinery for its infection and provided serial targets for WSSV prevention and control in shrimp farming.
Collapse
|
10
|
Millard RS, Bickley LK, Bateman KS, Verbruggen B, Farbos A, Lange A, Moore KA, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses. Front Immunol 2022; 13:1057421. [PMID: 36636327 PMCID: PMC9831657 DOI: 10.3389/fimmu.2022.1057421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction All decapod crustaceans are considered potentially susceptible to White Spot Syndrome Virus (WSSV) infection, but the degree of White Spot Disease (WSD) susceptibility varies widely between species. The European shore crab Carcinus maenas can be infected with the virus for long periods of time without signs of disease. Given the high mortality rate of susceptible species, the differential susceptibility of these resistant hosts offers an opportunity to investigate mechanisms of disease resistance. Methods Here, the temporal transcriptional responses (mRNA and miRNA) of C. maenas following WSSV injection were analysed and compared to a previously published dataset for the highly WSSV susceptible Penaeus vannamei to identify key genes, processes and pathways contributing to increased WSD resistance. Results We show that, in contrast to P. vannamei, the transcriptional response during the first 2 days following WSSV injection in C. maenas is limited. During the later time points (7 days onwards), two groups of crabs were identified, a recalcitrant group where no replication of the virus occurred, and a group where significant viral replication occurred, with the transcriptional profiles of the latter group resembling those of WSSV-susceptible species. We identify key differences in the molecular responses of these groups to WSSV injection. Discussion We propose that increased WSD resistance in C. maenas may result from impaired WSSV endocytosis due to the inhibition of internal vesicle budding by dynamin-1, and a delay in movement to the nucleus caused by the downregulation of cytoskeletal transcripts required for WSSV cytoskeleton docking, during early stages of the infection. This response allows resistant hosts greater time to fine-tune immune responses associated with miRNA expression, apoptosis and the melanisation cascade to defend against, and clear, invading WSSV. These findings suggest that the initial stages of infection are key to resistance to WSSV in the crab and highlight possible pathways that could be targeted in farmed crustacean to enhance resistance to WSD.
Collapse
Affiliation(s)
- Rebecca S. Millard
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,*Correspondence: Rebecca S. Millard, ; Eduarda M. Santos,
| | - Lisa K. Bickley
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Kelly S. Bateman
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Bas Verbruggen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Audrey Farbos
- University of Exeter Sequencing Facility, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Anke Lange
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Karen A. Moore
- University of Exeter Sequencing Facility, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Grant D. Stentiford
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Charles R. Tyler
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Eduarda M. Santos
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom,*Correspondence: Rebecca S. Millard, ; Eduarda M. Santos,
| |
Collapse
|
11
|
Jian JT, Liu LK, Liu HP. Autophagy and white spot syndrome virus infection in crustaceans. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100047. [DOI: 10.1016/j.fsirep.2021.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
|
12
|
Tran NT, Zhou Y, Chen L, Sun Z, Li S. SpBNIP3 regulates apoptosis and autophagy in mud crab (Scylla paramamosain) during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104465. [PMID: 35690229 DOI: 10.1016/j.dci.2022.104465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3), which is a pro-apoptotic protein in the BCL-2 family involves a variety of cell signaling pathways, including mitochondrial dysfunction, mitochondrial autophagy, and apoptosis in vertebrates. However, the role of BNIP3 in the regulation of apoptosis and/or autophagy in crustaceans suffering virus infection is still limited. In this study, the mud crab (Scylla paramamosain) BNIP3 (SpBNIP3) was identified and studied to elucidate its association with the white spot syndrome virus (WSSV) infection. SpBNIP3 was widely expressed in all tested tissues and significantly down-regulated in the hemocytes of mud crab after WSSV infection. Knockdown of SpBNIP3 using RNA interference increased the apoptosis rate and Caspase 3 activity but decreased the mitochondrial membrane potential and autophagy levels, as well as viral copy number in mud crabs infected with WSSV. Additionally, the relationship between the viral infection and the autophagy of hemocytes was observed. The level of autophagy was reduced upon WSSV infection, and the activation of autophagy enriched the viral copy number. Taken together, the results of this study provide a new finding on the mechanism that SpBNIP3 may participate in the WSSV infection through the regulation of apoptosis and autophagy processes in mud crabs.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Lianjie Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zaiqiao Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
13
|
Zheng S, Meng F, Li D, Liu L, Ge D, Wang Q, Liu H. A Deacetylase CqSIRT1 Promotes WSSV Infection by Binding to Viral Envelope Proteins in Cherax quadricarinatus. Viruses 2022; 14:v14081733. [PMID: 36016356 PMCID: PMC9414731 DOI: 10.3390/v14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Sirtuin 1 (SIRT1), a member of the class III lysine deacetylases, exhibits powerful functional diversity in physiological processes and disease occurrences. However, the potential molecular mechanism underlying the role of SIRT1 during viral infection in crustaceans is poorly understood. Herein, SIRT1 was functionally characterized from the red claw crayfish Cherax quadricarinatus, which possesses typically conserved deacetylase domains and strong evolutionary relationships across various species. Moreover, gene knockdown of CqSIRT1 in crayfish haematopoietic tissue (Hpt) cell culture inhibited white spot syndrome virus (WSSV) late envelope gene vp28 transcription. In contrast, enhancement of deacetylase activity using a pharmacological activator promoted the replication of WSSV. Mechanically, CqSIRT1 was co-localized with viral envelope protein VP28 in the nuclei of Hpt cells and directly bound to VP28 with protein pulldown and co-immunoprecipitation assays. Furthermore, CqSIRT1 also interacted with another two viral envelope proteins, VP24 and VP26. To the best of our knowledge, this is the first report that WSSV structural proteins are linked to lysine deacetylases, providing a better understanding of the role of CqSIRT1 during WSSV infection and novel insights into the basic mechanism underlying the function of lysine deacetylases in crustaceans.
Collapse
Affiliation(s)
- Shucheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fanjuan Meng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dongli Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lingke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Di Ge
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Correspondence: (Q.W.); (H.L.)
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Correspondence: (Q.W.); (H.L.)
| |
Collapse
|
14
|
Sun X, Zhang S. Exosomes from WSSV-infected shrimp contain viral components that mediate virus infection. J Gen Virol 2022; 103. [PMID: 36018853 DOI: 10.1099/jgv.0.001776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes have been described as vesicles that mediate intercellular communication and thus affect normal and pathological processes. Furthermore, many viruses have been reported to deliver viral components to host cells through exosomes. However, the roles of exosomes in invertebrates response to virus infection are poorly understood. In this study, we found that exosomes purified from white spot syndrome virus (WSSV)-infected hemocytes of shrimp could promote viral replication. These exosomes contained WSSV genomic DNA and nucleocapsid protein VP15, suggesting that exosomes can transfer viral genetic materials between cells, although the exosomes did not have similar infection ability to viruses. Remarkably, in exosomes WSSV DNA was bound to VP15 protein, and moreover VP15 silencing significantly suppressed WSSV infection and reduced the WSSV genome fragments in exosomes, indicating that the presence of VP15 is required for the packing of WSSV DNA inside the exosomes and thereby assists virus to complete immune escape. The above results not only contribute to elucidation of the infection and transmission mechanisms of WSSV, but are also of great significance for further study of virus-host interaction and reasonable prevention measures. Taken together, our findings provide a novel insight into the regulation of virus transmission via exosomes and highlight potential therapeutic strategies.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
15
|
Zhu M, Zhan M, Xi C, Gong J, Shen H. Molecular characterization and expression of the autophagy-related gene Atg14 in WSSV-infected Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 125:200-211. [PMID: 35513250 DOI: 10.1016/j.fsi.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Atg14 (autophagy-related gene 14), also known as Atg14L or Barkor (Beclin-1 associated autophagy-related key regulator), plays an important role in a variety of biological processes including immunity, development, tumor inhibition, longevity, and protection against some cardiac and neurodegenerative diseases. However, very few studies have characterized Atg14 expression in invertebrates, particularly crustaceans. Here, a novel Atg14 gene from Procambarus clarkii (named PcAtg14) was characterized via RACE technology. Bioinformatics analysis showed that the total length of the PcAtg14 gene sequence was 2,880 bp, and it was predicted to encode 488 amino acids. The results of homology comparison showed that PcAtg14 exhibited the highest homology with crustacean the American lobster (Homarus americanus). Quantitative real-time PCR expression analysis showed that PcAtg14 was expressed in all tissues of P. clarkii, with the hepatopancreas having the highest expression and the eyestalk exhibiting the lowest expression. Upon white spot syndrome virus (WSSV) infection, the relative expression of PcAtg14 in the hepatopancreas, muscle, hemocyte, gill, heart and epidermis were significantly up-regulated at different time periods. After PcAtg14 gene silencing via RNA interference (RNAi), the proliferation of WSSV in P. clarkii was significantly inhibited, which coincided with a significant increase in P. clarkii mortality and an increase in the expression of autophagy-related genes (ATGs). Transmission electron microscopy analysis demonstrated an increase in the number of autophagosomes in the hepatopancreas of the PcAtg14 gene silencing group compared to the control group after WSSV infection. Collectively, these results indicated that PcAtg14 suppressed autophagy by reduce the fusion of autophagosomes and lysosomes, thereby promoting WSSV replication in P. clarkii. The findings here therefore provide novel insights into the immune mechanisms through which P. clarkii responds to WSSV infection.
Collapse
Affiliation(s)
- Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
16
|
Invasion and Propagation of White Spot Syndrome Virus: Hijacking of the Cytoskeleton, Intracellular Transport Machinery, and Nuclear Import Transporters. J Virol 2022; 96:e0220521. [PMID: 35638850 DOI: 10.1128/jvi.02205-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of white spot syndrome virus (WSSV) is largely unclear. In this study, we found that actin nucleation and clathrin-mediated endocytosis were recruited for internalization of WSSV into crayfish hematopoietic tissue (Hpt) cells. This internalization was followed by intracellular transport of the invading virions via endocytic vesicles and endosomes. After envelope fusion within endosomes, the penetrated nucleocapsids were transported along microtubules toward the periphery of the nuclear pores. Furthermore, the nuclear transporter CqImportin α1/β1, via binding of ARM repeat domain within CqImportin α1 to the nuclear localization sequences (NLSs) of viral cargoes and binding of CqImportin β1 to the nucleoporins CqNup35/62 with the action of CqRan for docking to nuclear pores, was hijacked for both targeting of the incoming nucleocapsids toward the nuclear pores and import of the expressed viral structural proteins containing NLS into the cell nucleus. Intriguingly, dysfunction of CqImportin α1/β1 resulted in significant accumulation of incoming nucleocapsids on the periphery of the Hpt cell nucleus, leading to substantially decreased introduction of the viral genome into the nucleus and remarkably reduced nuclear import of expressed viral structural proteins with NLS; both of these effects were accompanied by significantly inhibited viral propagation. Accordingly, the survival rate of crayfish post-WSSV challenge was significantly increased after dysfunction of CqImportin α1/β1, also showing significantly reduced viral propagation, and was induced either by gene silencing or by pharmacological blockade via dietary administration of ivermectin per os. Collectively, our findings improve our understanding of WSSV pathogenesis and support future antiviral designing against WSSV. IMPORTANCE As one of the largest animal DNA viruses, white spot syndrome virus (WSSV) has been causing severe economical loss in aquaculture due to the limited knowledge on WSSV pathogenesis for an antiviral strategy. We demonstrate that the actin cytoskeleton, endocytic vesicles, endosomes, and microtubules are hijacked for WSSV invasion; importantly, the nuclear transporter CqImportin α1/β1 together with CqRan were recruited, via binding of CqImportin β1 to the nucleoporins CqNup35/62, for both the nuclear pore targeting of the incoming nucleocapsids and the nuclear import of expressed viral structural proteins containing the nuclear localization sequences (NLSs). This is the first report that NLSs from both viral structure proteins and host factor are elaborately recruited together to facilitate WSSV infection. Our findings provide a novel explanation for WSSV pathogenesis involving systemic hijacking of host factors, which can be used for antiviral targeting against WSSV disease, such as the blockade of CqImportin α1/β1 with ivermectin.
Collapse
|
17
|
Tang X, Liu T, Li X, Sheng X, Xing J, Chi H, Zhan W. Protein phosphorylation in hemocytes of Fenneropenaeus chinensis in response to white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:106-114. [PMID: 35092807 DOI: 10.1016/j.fsi.2022.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation and dephosphorylation are the most common and important regulatory mechanisms in signal transduction, which play a vital role in immune defense response. Our previous study has found the level of tyrosine phosphorylation was significantly changed in the hemocytes of Fenneropenaeus chinensis upon white spot syndrome virus (WSSV) infection. In order to explore the relationship between protein phosphorylation and WSSV infection, the quantitative phosphoproteomics was employed to identify differential phosphorylated proteins in hemocytes of F. chinensis before and after WSSV infection, and elucidate the role of key differential phosphorylated proteins in WSSV infection process. The results showed that a total of 147 differential phosphorylated proteins were identified in the hemocytes, including 64 phosphorylated proteins and 83 dephosphorylated proteins, which were mostly enriched in pyruvate metabolism, TCA cycle, glycolysis, and ribosomal biosynthesis. Functional analysis of differential phosphorylated proteins showed that they were involved in cell apoptosis, cell phagocytosis, cell metabolism and antiviral infection. A total of 236 differential phosphorylation sites were found, including 91 modified sites in the phosphorylation proteins and 145 modified sites in the dephosphorylation proteins. Motif analysis showed that these phosphorylation sites could activate mitogen-activated protein kinase, P70 S6 kinase and other kinases in hemocytes. Moveover, the phosphorylation levels of eukaryotic protein initiation factor 4E binding proteins and histone H3 were further determined by ELISA and Western blotting, which both exhibited a significant increase post WSSV infection and reach their peak levels at 6 and 12 h, respectively. Moreover, we found that lactate, a metabolite closely related to pyruvate metabolism, TCA cycle and glycolysis, was significantly increased in the hemocytes after WSSV infection. This study revealed the protein phosphorylation response in hemocytes of F. chinensis to WSSV infection, which help to clarify the response characteristics and virus resistance mechanism of hemocytes in F. chinensis, and also facilitate further understanding of the interaction between WSSV and shrimp hemocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ting Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoai Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
18
|
Liu LK, Liu MJ, Li DL, Liu HP. Recent insights into anti-WSSV immunity in crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103947. [PMID: 33253753 DOI: 10.1016/j.dci.2020.103947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
White spot syndrome virus (WSSV) is currently the most severely viral pathogen for farmed crustaceans such as shrimp and crayfish, which has been causing huge economic losses for crustaceans farming worldwide every year. Unfortunately, study on the molecular mechanisms of WSSV has been restricted by the lack of crustacean cell lines for WSSV propagation as well as the incompletely annotated genomes for host species, resulting in limited elucidation for WSSV pathogenesis at present. In addition to the findings of anti-WSSV response in shrimp, some of novel cellular events involved in WSSV infection have been recently revealed in crayfish, including endocytosis and intracellular transport of WSSV, innate immune pathways in response to WSSV infection, and regulation of viral gene expression by host genes. Despite these advances, many fundamental gaps in WSSV pathogenesis are still remaining, for example, how WSSV genome enters into nucleus and how the progeny virions are fully assembled in the host cell nucleus. In this review, recent findings in WSSV infection mechanism and the antiviral immunity against WSSV in crayfish are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis as well as new ideas for the target design of antiviral drugs against WSSV in crustaceans farming.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Man-Jun Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Dong-Li Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Hai-Peng Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|