1
|
Miao Q, Nguyen W, Zhu J, Liu G, van Oers MM, Tang B, Yan K, Larcher T, Suhrbier A, Pijlman GP. A getah virus-like-particle vaccine provides complete protection from viremia and arthritis in wild-type mice. Vaccine 2024; 42:126136. [PMID: 39004524 DOI: 10.1016/j.vaccine.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Getah virus (GETV) is an emerging mosquito-borne virus with economic impact on the livestock industry in East Asia. In this study, we successfully produced GETV virus-like particles (VLPs) in insect cells using the baculovirus expression vector system. We show that the GETV envelope glycoproteins were successfully expressed at the surface of the insect cell and were glycosylated. VLPs were isolated from the culture fluid as enveloped particles of 60-80 nm in diameter. Two 1 µg vaccinations with this GETV VLP vaccine, without adjuvant, generated neutralizing antibody responses and protected wild-type C57/BL6 mice against GETV viremia and arthritic disease. The GETV VLP vaccine may find application as a horse and/or pig vaccine in the future.
Collapse
Affiliation(s)
- Qiuhong Miao
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands; Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Jie Zhu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Weber WC, Andoh TF, Kreklywich CN, Streblow ZJ, Denton M, Streblow MM, Powers JM, Sulgey G, Medica S, Dmitriev I, Curiel DT, Haese NN, Streblow DN. Nonreciprocity in CHIKV and MAYV Vaccine-Elicited Protection. Vaccines (Basel) 2024; 12:970. [PMID: 39340002 PMCID: PMC11435824 DOI: 10.3390/vaccines12090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the ability of a non-replicating human adenovirus (AdV)-vectored vaccine expressing the MAYV structural polyprotein to protect against disease in mice following challenge with MAYV, CHIKV and UNAV. Herein, we evaluated mouse immunity and protective efficacy for an AdV-CHIKV full structural polyprotein vaccine in combination with heterologous AdV-MAYV prime/boost regimens versus vaccine coadministration. Heterologous prime/boost regimens skewed immunity toward the prime vaccine antigen but allowed for a boost of cross-neutralizing antibodies, while vaccine co-administration elicited robust, balanced responses capable of boosting. All immunization strategies protected against disease from homologous virus infection, but reciprocal protective immunity differences were revealed upon challenge with heterologous viruses. In vivo passive transfer experiments reproduced the inequity in reciprocal cross-protection after heterologous MAYV challenge. We detected in vitro antibody-dependent enhancement of MAYV replication, suggesting a potential mechanism for the lack of cross-protection. Our findings provide important insights into rational alphavirus vaccine design that may have important implications for the evolving alphavirus vaccine landscape.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - John M. Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Igor Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA; (I.D.); (D.T.C.)
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA; (I.D.); (D.T.C.)
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; (W.C.W.); (T.F.A.); (C.N.K.); (Z.J.S.); (M.D.); (J.M.P.); (G.S.); (S.M.); (N.N.H.)
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
4
|
Wei LLL, Tom R, Kim YC. Mayaro Virus: An Emerging Alphavirus in the Americas. Viruses 2024; 16:1297. [PMID: 39205271 PMCID: PMC11359717 DOI: 10.3390/v16081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. Currently, MAYV outbreaks are restricted to South and Central America, with some cases reported in Africa as well as several imported cases in Europe. However, in recent years, MAYV has become a growing global concern due to its potential to emerge into urban transmission cycles. Challenges faced with diagnostics, as well as a lack of specific antivirals or licensed vaccines further exacerbate the potential global health threat posed by MAYV. In this review, we discuss this emerging arboviral threat with a particular focus on the current treatment and vaccine development efforts. Overall, MAYV remains a neglected arbovirus due to its limited area of transmission. However, with the potential of its urbanisation and expanding circulation, the threat MAYV poses to global health cannot be overlooked. Further research into the improvement of current diagnostics, as well as the development of efficacious antivirals and vaccines will be crucial to help prevent and manage potential MAYV outbreaks.
Collapse
Affiliation(s)
- Lily Li Lin Wei
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Rufaro Tom
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Young Chan Kim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
- Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Graham VA, Easterbrook L, Kennedy E, Rayner E, Findlay-Wilson S, Flett L, Wise EL, Treagus S, Fotheringham S, Kempster S, Almond N, Dowall S. Pathogenesis of Rift Valley Fever Virus in a BALB/c Mouse Model Is Affected by Virus Culture Conditions and Sex of the Animals. Viruses 2023; 15:2369. [PMID: 38140610 PMCID: PMC10747589 DOI: 10.3390/v15122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease in livestock and humans. Whilst initially restricted to the African continent, recent spread to the Arabian Peninsula has highlighted the likelihood of entry into new regions. Due to the absence of a regulatory-approved human vaccine, work is ongoing to develop and assess countermeasures. As such, small animal models play a pivotal role in providing information on disease pathogenesis and elucidating which intervention strategies confer protection. To develop and establish the BALB/c mouse model, we challenged mice with RVFV grown from two separate cell lines: one derived from mosquitoes (C6/36) and the other mammalian derived (Vero E6). Following infection, we assessed the clinical course of disease progression at days 1 and 3 post-challenge and evaluated viral tropism and immune analytes. The results demonstrated that RVFV infection was affected by the cell line used to propagate the challenge virus, with those grown in insect cells resulting in a more rapid disease progression. The lowest dose that caused uniform severe disease remained the same across both virus preparations. In addition, to demonstrate reproducibility, the lowest dose was used for a subsequent infection study using male and female animals. The results further demonstrated that male mice succumbed to infection more rapidly than their female counterparts. Our results establish an RVFV mouse model and key parameters that affect the course of disease progression in BALB/c mice.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Louise Wise
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Samantha Treagus
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| |
Collapse
|
6
|
Weber WC, Labriola CS, Kreklywich CN, Ray K, Haese NN, Andoh TF, Denton M, Medica S, Streblow MM, Smith PP, Mizuno N, Frias N, Fisher MB, Barber-Axthelm AM, Chun K, Uttke S, Whitcomb D, DeFilippis V, Rakshe S, Fei SS, Axthelm MK, Smedley JV, Streblow DN. Mayaro virus pathogenesis and immunity in rhesus macaques. PLoS Negl Trop Dis 2023; 17:e0011742. [PMID: 37983245 PMCID: PMC10695392 DOI: 10.1371/journal.pntd.0011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nina Frias
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Miranda B. Fisher
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Chun
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Danika Whitcomb
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|