1
|
Salgueiro BA, Saramago M, Tully MD, Arraiano CM, Moe E, Matos RG, Matias PM, Romão CV. Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1. Protein Sci 2024; 33:e5228. [PMID: 39584680 PMCID: PMC11586866 DOI: 10.1002/pro.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Non-structural protein 1 (Nsp1) is a key component of the infectious process caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for the COVID-19 pandemic. Our previous data demonstrated that Nsp1 can degrade both RNA and DNA in the absence of the ribosome, a process dependent on the metal ions Mn2+, Ca2+, or Mg2+ (Salgueiro et al., SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals. 2024;37:1127-1146). The protein is composed of two structural domains: the N-terminal domain (NTD) and C-terminal domain (CTD), connected by a loop. To elucidate the function of each structural domain, we generated four truncated versions of Nsp1 containing either the NTD or the CTD. Our results indicate that the Nsp1SARS-CoV2 domains play distinct functional roles. Specifically, the NTD is involved in nucleotide binding and regulation, while the CTD acts as the catalytic domain. Moreover, a tyrosyl radical was detected during the nuclease activity, and an in-depth analysis of the different constructs suggested that Y136 could be involved in this process. Indeed, our results show that Y136F Nsp1 variant lacks DNA nuclease activity but retains its RNA nuclease activity. Furthermore, we observed that the CTD has a propensity to associate with hydrophobic environments, suggesting that it might associate with cell membranes. However, the cellular function of this association requires further investigation. This study sheds light on the functions of the individual domains of Nsp1, providing valuable insights into its mechanism of action in Coronaviruses.
Collapse
Affiliation(s)
- Bruno A. Salgueiro
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Margarida Saramago
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Mark D. Tully
- ESRF, European Synchrotron Radiation FacilityGrenoble Cedex 9France
| | - Cecília M. Arraiano
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Elin Moe
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Rute G. Matos
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Pedro M. Matias
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- iBET – Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Célia V. Romão
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
2
|
Ma X, Zheng H, Chen H, Ma S, Wei Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb Pathog 2024; 195:106873. [PMID: 39173850 DOI: 10.1016/j.micpath.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihua Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, China
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Gu G, Fung TS, Hung WT, Osterrieder N, Go YY. Development and characterization of reverse genetics systems of feline infectious peritonitis virus for antiviral research. Vet Res 2024; 55:124. [PMID: 39334482 PMCID: PMC11438400 DOI: 10.1186/s13567-024-01373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a lethal, immune-mediated disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). In contrast to feline enteric coronavirus (FECV), which exclusively infects enterocytes and causes diarrhea, FIPV specifically targets macrophages, resulting in the development of FIP. The transmission and infection mechanisms of this complex, invariably fatal disease remain unclear, with no effective vaccines or approved drugs for its prevention or control. In this study, a full-length infectious cDNA clone of the wild-type FIPV WSU79-1149 strain was constructed to generate recombinant FIPV (rFIPV-WT), which exhibited similar growth kinetics and produced infectious virus titres comparable to those of the parental wild-type virus. In addition, the superfold green fluorescent protein (msfGFP) and Renilla luciferase (Rluc) reporter genes were incorporated into the rFIPV-WT cDNA construct to generate reporter rFIPV-msfGFP and rFIPV-Rluc viruses. While the growth characteristics of the rFIPV-msfGFP virus were similar to those of its parental rFIPV-WT, the rFIPV-Rluc virus replicated more slowly, resulting in the formation of smaller plaques than did the rFIPV-WT and rFIPV-msfGFP viruses. In addition, by replacing the S, E, M, and ORF3abc genes with msfGFP and Rluc genes, the replicon systems repFIPV-msfGFP and repFIPV-Rluc were generated on the basis of the cDNA construct of rFIPV-WT. Last, the use of reporter recombinant viruses and replicons in antiviral screening assays demonstrated their high sensitivity for quantifying the antiviral effectiveness of the tested compounds. This integrated system promises to significantly streamline the investigation of virus replication within host cells, enabling efficient screening for anti-FIPV compounds and evaluating emerging drug-resistant mutations within the FIPV genome.
Collapse
Affiliation(s)
- Guoqian Gu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - To Sing Fung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Wong Tsz Hung
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | | | - Yun Young Go
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ivanov KI, Yang H, Sun R, Li C, Guo D. The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression. FEMS Microbiol Rev 2024; 48:fuae023. [PMID: 39231808 PMCID: PMC11418652 DOI: 10.1093/femsre/fuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Guangzhou National Laboratory, Guangzhou, 510320, China
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland
| | - Haibin Yang
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ruixue Sun
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510320, China
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
5
|
Terasaki K, Makino S. Requirement of the N-terminal region of nonstructural protein 1 in cis for SARS-CoV-2 defective RNA replication. J Virol 2024; 98:e0090024. [PMID: 39194239 PMCID: PMC11406973 DOI: 10.1128/jvi.00900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
SARS-CoV-2 belongs to the family Coronaviridae and carries a single-stranded positive-sense RNA genome. During coronavirus (CoV) replication, defective or defective interfering RNAs that lack a large portion of the genome often emerge. These defective RNAs typically carry the necessary RNA elements that are required for replication and packaging. We identified the minimum requirement of the 5' proximal region necessary for viral RNA replication by using artificially generated SARS-CoV-2 minigenomes. The minigenomes consist of the 5'-proximal region, an open reading frame (ORF) that encodes a fusion protein consisting of the N-terminal of viral NSP1 and a reporter gene, and the 3' untranslated region of the SARS-CoV-2 genome. We used a modified SARS-CoV-2 variant to support replication of the minigenomes. A minigenome carrying the 5' proximal 634 nucleotides replicated, whereas those carrying shorter than 634 nucleotides did not, demonstrating that the entire 265 nt-long 5' untranslated region and N-terminal portion of the NSP1 coding region are required for the minigenome replication. Minigenome RNAs carrying a specific amino acid substitution or frame shift insertions in the partial NSP1 coding sequence abrogated minigenome replication. Introduction of synonymous mutations in the minigenome RNAs also affected the replication efficiency of the minigenomes. These data suggest that the expression of the N-terminal portion of NSP1 and the primary sequence of the 5' proximal 634 nucleotides are important for minigenome replication.IMPORTANCESARS-CoV-2, the causative agent of COVID-19, is highly transmissible and continues to have a significant impact on public health and the global economy. While several vaccines mitigate the severe consequences of SARS-CoV-2 infection, mutant viruses with reduced reactivity to current vaccines continue to emerge and circulate. This study aimed to identify the minimal 5' proximal region of SARS-CoV-2 genomic RNA required for SARS-CoV-2 defective RNA replication and investigate the importance of an ORF encoded in these defective RNAs. Identifying cis-acting replication signals of SARS-CoV-2 genomic RNA is critical for the development of antivirals that target these signals. Additionally, replication-competent defective RNAs can serve as therapeutic reagents to interfere with SARS-CoV-2 replication. Our findings provide valuable insights into the mechanisms of SARS-CoV-2 RNA replication and the development of reagents that suppress SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Terada Y, Amarbayasgalan S, Matsuura Y, Kamitani W. Regulation viral RNA transcription and replication by higher-order RNA structures within the nsp1 coding region of MERS coronavirus. Sci Rep 2024; 14:19594. [PMID: 39179600 PMCID: PMC11343750 DOI: 10.1038/s41598-024-70601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Coronavirus (CoV) possesses numerous functional cis-acting elements in its positive-strand genomic RNA. Although most of these RNA structures participate in viral replication, the functions of RNA structures in the genomic RNA of CoV in viral replication remain unclear. In this study, we investigated the functions of the higher-order RNA stem-loop (SL) structures SL5B, SL5C, and SL5D in the ORF1a coding region of Middle East respiratory syndrome coronavirus (MERS-CoV) in viral replication. Our approach, using reverse genetics of a bacterial artificial chromosome system, revealed that SL5B and SL5C play essential roles in the discontinuous transcription of MERS-CoV. In silico analyses predicted that SL5C interacts with a bulged stem-loop (BSL) in the 3' untranslated region, suggesting that the RNA structure of SL5C is important for viral RNA transcription. Conversely, SL5D did not affect transcription, but mediated the synthesis of positive-strand genomic RNA. Additionally, the RNA secondary structure of SL5 in the revertant virus of the SL5D mutant was similar to that of the wild-type, indicating that the RNA structure of SL5D can finely tune RNA replication in MERS-CoV. Our data indicate novel regulatory mechanisms of viral RNA transcription and replication by higher-order RNA structures in the MERS-CoV genomic RNA.
Collapse
Affiliation(s)
- Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sodbayasgalan Amarbayasgalan
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Suita, Japan
- Research Institute for Microbial Diseases (RIMD), Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| |
Collapse
|
7
|
Ueno S, Amarbayasgalan S, Sugiura Y, Takahashi T, Shimizu K, Nakagawa K, Kawabata-Iwakawa R, Kamitani W. Eight-amino-acid sequence at the N-terminus of SARS-CoV-2 nsp1 is involved in stabilizing viral genome replication. Virology 2024; 595:110068. [PMID: 38593595 DOI: 10.1016/j.virol.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Coronavirus disease 19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enveloped virus with a single-stranded positive-sense ribonucleic acid (RNA) genome. The CoV non-structural protein (nsp) 1 is a multifunctional protein that undergoes translation shutoff, messenger RNA (mRNA) cleavage, and RNA binding. The C-terminal region is involved in translational shutoff and RNA cleavage. The N-terminal region of SARS-CoV-2 nsp1 is highly conserved among isolated SARS-CoV-2 variants. However, the I-004 variant, isolated during the early SARS-CoV-2 pandemic, lost eight amino acids in the nsp1 region. In this study, we showed that the eight amino acids are important for viral replication in infected interferon-incompetent cells and that the recombinant virus that lost these amino acids had low pathogenicity in the lungs of hamster models. The loss of eight amino acids-induced mutations occurred in the 5' untranslated region (UTR), suggesting that nsp1 contributes to the stability of the viral genome during replication.
Collapse
Affiliation(s)
- Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | | | - Yoshiro Sugiura
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Yanagido, Gifu, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan.
| |
Collapse
|
8
|
Madhugiri R, Nguyen HV, Slanina H, Ziebuhr J. Alpha- and betacoronavirus cis-acting RNA elements. Curr Opin Microbiol 2024; 79:102483. [PMID: 38723345 DOI: 10.1016/j.mib.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
Coronaviruses have exceptionally large RNA genomes and employ multiprotein replication/transcription complexes to orchestrate specific steps of viral RNA genome replication and expression. Most of these processes involve viral cis-acting RNA elements that are engaged in vital RNA-RNA and/or RNA-protein interactions. Over the past years, a large number of studies provided interesting new insight into the structures and, to a lesser extent, functions of specific RNA elements for representative coronaviruses, and there is evidence to suggest that (a majority of) these RNA elements are conserved across genetically divergent coronavirus genera. It is becoming increasingly clear that at least some of these elements do not function in isolation but operate through complex and highly dynamic RNA-RNA interactions. This article reviews structural and functional aspects of cis-acting RNA elements conserved in alpha- and betacoronavirus 5'- and 3'-terminal genome regions, focusing on their critical roles in viral RNA synthesis and gene expression.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Hoang Viet Nguyen
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Slanina
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Deng J, Yang S, Li Y, Tan X, Liu J, Yu Y, Ding Q, Fan C, Wang H, Chen X, Liu Q, Guo X, Gong F, Zhou L, Chen Y. Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding. Signal Transduct Target Ther 2024; 9:140. [PMID: 38811528 PMCID: PMC11137015 DOI: 10.1038/s41392-024-01860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Previous studies through targeted mutagenesis of K-D-K-E motif have demonstrated that 2'-O-MTase activity is essential for efficient viral replication and immune evasion. However, the K-D-K-E catalytic motif of 2'-O-MTase is highly conserved across numerous viruses, including flaviviruses, vaccinia viruses, coronaviruses, and extends even to mammals. Here, we observed a stronger 2'-O-MTase activity in SARS-CoV-2 compared to SARS-CoV, despite the presence of a consistently active catalytic center. We further identified critical residues (Leu-36, Asn-138 and Ile-153) which served as determinants of discrepancy in 2'-O-MTase activity between SARS-CoV-2 and SARS-CoV. These residues significantly enhanced the RNA binding affinity of 2'-O-MTase and boosted its versatility toward RNA substrates. Of interest, a triple substitution (Leu36 → Ile36, Asn138 → His138, Ile153 → Leu153, from SARS-CoV-2 to SARS-CoV) within nsp16 resulted in a proportional reduction in viral 2'-O-methylation and impaired viral replication. Furthermore, it led to a significant upregulation of type I interferon (IFN-I) and proinflammatory cytokines both in vitro and vivo, relying on the cooperative sensing of melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). In conclusion, our findings demonstrated that alterations in residues other than K-D-K-E of 2'-O-MTase may affect viral replication and subsequently influence pathogenesis. Monitoring changes in nsp16 residues is crucial as it may aid in identifying and assessing future alteration in viral pathogenicity resulting from natural mutations occurring in nsp16.
Collapse
Affiliation(s)
- Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianyin Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiao Guo
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Feiyu Gong
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China.
| |
Collapse
|
10
|
Cromer J, Melton LF, Caughman KM, Nag A. Characterization of nsp1 Binding to the Viral RNA Leader Sequence of Severe Acute Respiratory Syndrome Coronavirus. Biochemistry 2024; 63:1235-1240. [PMID: 38718213 PMCID: PMC11112752 DOI: 10.1021/acs.biochem.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus (SCOV1 and SCOV2) acts as a host shutoff protein by blocking the translation of host mRNAs and triggering their decay. Surprisingly, viral RNA, which resembles host mRNAs containing a 5'-cap and a 3'-poly(A) tail, escapes significant translation inhibition and RNA decay, aiding viral propagation. Current literature proposes that, in SCOV2, nsp1 binds the viral RNA leader sequence, and the interaction may serve to distinguish viral RNA from host mRNA. However, a direct binding between SCOV1 nsp1 and the corresponding RNA leader sequence has not been established yet. Here, we show that SCOV1 nsp1 binds to the SCOV1 RNA leader sequence but forms multiple complexes at a high concentration of nsp1. These complexes are marginally different from complexes formed with SCOV2 nsp1. Finally, mutations of the RNA stem-loop did not completely abolish RNA binding by nsp1, suggesting that an RNA secondary structure is more important for binding than the sequence itself. Understanding the nature of binding of nsp1 to viral RNA will allow us to understand how this viral protein selectively suppresses host gene expression.
Collapse
Affiliation(s)
- Jonathan
L. Cromer
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Laurie F. Melton
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
| | - Kaitlin M. Caughman
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
- Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anita Nag
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
| |
Collapse
|
11
|
Gori Savellini G, Anichini G, Manetti F, Trivisani CI, Cusi MG. Deletion of 82-85 N-Terminal Residues in SARS-CoV-2 Nsp1 Restricts Virus Replication. Viruses 2024; 16:689. [PMID: 38793572 PMCID: PMC11125901 DOI: 10.3390/v16050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.
Collapse
Affiliation(s)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy (C.I.T.)
| | | | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
12
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
13
|
Anastasakis DG, Benhalevy D, Çuburu N, Altan-Bonnet N, Hafner M. Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1. PLoS One 2024; 19:e0297262. [PMID: 38277395 PMCID: PMC10817131 DOI: 10.1371/journal.pone.0297262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the innate immune machinery through multiple viral proteins, including nonstructural protein 1 (NSP1). While NSP1 is known to suppress translation of host mRNAs, the mechanisms underlying its immune evasion properties remain elusive. By integrating RNA-seq, ribosome footprinting, and ChIP-seq in A549 cells we found that NSP1 predominantly represses transcription of immune-related genes by favoring Histone 3 Lysine 9 dimethylation (H3K9me2). G9a/GLP H3K9 methyltransferase inhibitor UNC0638 restored expression of antiviral genes and restricted SARS-CoV-2 replication. Our multi-omics study unravels an epigenetic mechanism underlying host immune evasion by SARS-CoV-2 NSP1. Elucidating the factors involved in this phenomenon, may have implications for understanding and treating viral infections and other immunomodulatory diseases.
Collapse
Affiliation(s)
- Dimitrios G. Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Benhalevy
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Zhang X, Yang Z, Pan T, Sun Q, Chen Q, Wang PH, Li X, Kuang E. SARS-CoV-2 Nsp8 suppresses MDA5 antiviral immune responses by impairing TRIM4-mediated K63-linked polyubiquitination. PLoS Pathog 2023; 19:e1011792. [PMID: 37956198 PMCID: PMC10681309 DOI: 10.1371/journal.ppat.1011792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKKα/β, subsequently leading to IRF3 and NF-κB phosphorylation. However, the specific E3 ubiquitin ligase for MDA5 K63-polyubiquitination has not been well characterized. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral immune agents indicates that SARS-CoV-2 escapes from antiviral immune responses via several unknown mechanisms. Here, we report that SARS-CoV-2 nonstructural protein 8 (nsp8) acts as a suppressor of antiviral innate immune and inflammatory responses to promote infection of SARS-CoV-2. It downregulates the expression of type I interferon, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and TRIM4 and impairing TRIM4-mediated MDA5 K63-linked polyubiquitination. Our findings reveal that nsp8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ziwei Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qingyang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Maurina SF, O'Sullivan JP, Sharma G, Pineda Rodriguez DC, MacFadden A, Cendali F, Henen MA, Vögeli B, Kieft JS, Glasgow A, Steckelberg AL. An Evolutionarily Conserved Strategy for Ribosome Binding and Host Translation Inhibition by β-coronavirus Non-structural Protein 1. J Mol Biol 2023; 435:168259. [PMID: 37660941 PMCID: PMC10543557 DOI: 10.1016/j.jmb.2023.168259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Non-structural protein 1 (Nsp1), which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-Coronaviruses (β-CoV) inhibits translation through ribosome binding. The C-terminal domain (CTD) of all β-CoV Nsp1s confers high-affinity ribosome binding despite low sequence conservation. Modeling of interactions of four Nsp1s with the ribosome identified the few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a cis-acting viral RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aid future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2 and related human-pathogenic β-CoVs. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.
Collapse
Affiliation(s)
- Stephanie F Maurina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John P O'Sullivan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Geetika Sharma
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Tardivat Y, Sosnowski P, Tidu A, Westhof E, Eriani G, Martin F. SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome. Nucleic Acids Res 2023; 51:8677-8690. [PMID: 37503833 PMCID: PMC10484668 DOI: 10.1093/nar/gkad627] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the non-structural protein NSP1 inhibits translation of host mRNAs by binding to the mRNA entry channel of the ribosome and, together with the 5'-untranslated region (UTR) of the viral mRNAs, allows the evasion of that inhibition. Here, we show that NSP1 mediates endonucleolytic cleavages of both host and viral mRNAs in the 5'UTR, but with different cleavage patterns. The first pattern is observed in host mRNAs with cleavages interspersed regularly and close to the 5' cap (6-11 nt downstream of the cap). Those cleavage positions depend more on the position relative to the 5' cap than on the sequence itself. The second cleavage pattern occurs at high NSP1 concentrations and only in SARS-CoV-2 RNAs, with the cleavages clustered at positions 45, 46 and 49. Both patterns of cleavage occur with the mRNA and NSP1 bound to the ribosome, with the SL1 hairpin at the 5' end sufficient to protect from NSP1-mediated degradation at low NSP1 concentrations. We show further that the N-terminal domain of NSP1 is necessary and sufficient for efficient cleavage. We suggest that in the ribosome-bound NSP1 protein the catalytic residues of the N-terminal domain are unmasked by the remodelling of the α1- and α2-helices of the C-terminal domain.
Collapse
Affiliation(s)
- Yann Tardivat
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Piotr Sosnowski
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Gilbert Eriani
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
18
|
Maurina SF, O’Sullivan JP, Sharma G, Pineda Rodriguez DC, MacFadden A, Cendali F, Henen MA, Kieft JS, Glasgow A, Steckelberg AL. An evolutionarily conserved strategy for ribosome binding and inhibition by β-coronavirus non-structural protein 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544141. [PMID: 37333070 PMCID: PMC10274807 DOI: 10.1101/2023.06.07.544141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Nsp1, which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs through an unknown mechanism. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-CoV inhibits translation through ribosome binding. The C-terminal domain of all β-CoV Nsp1s confers high-affinity ribosome-binding despite low sequence conservation. Modeling of interactions of four Nsp1s to the ribosome identified few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a viral cis -acting RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aide future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2, but also related human-pathogenic β-coronaviruses. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.
Collapse
Affiliation(s)
- Stephanie F. Maurina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John P. O’Sullivan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Geetika Sharma
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- Current address: New York Structural Biology Center, New York, NY, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Chen SC, Xu CT, Chang CF, Chao TY, Lin CC, Fu PW, Yu CH. Optimization of 5'UTR to evade SARS-CoV-2 Nonstructural protein 1-directed inhibition of protein synthesis in cells. Appl Microbiol Biotechnol 2023; 107:2451-2468. [PMID: 36843199 PMCID: PMC9968647 DOI: 10.1007/s00253-023-12442-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Maximizing the expression level of therapeutic proteins in cells is the general goal for DNA/mRNA therapies. It is particularly challenging to achieve efficient protein expression in the cellular contexts with inhibited translation machineries, such as in the presence of cellular Nonstructural protein 1 (Nsp1) of coronaviruses (CoVs) that has been reported to inhibit overall protein synthesis of host genes and exogenously delivered mRNAs/DNAs. In this study, we thoroughly examined the sequence and structure contexts of viral and non-viral 5'UTRs that determine the protein expression levels of exogenously delivered DNAs and mRNAs in cells expressing SARS-CoV-2 Nsp1. It was found that high 5'-proximal A/U content promotes an escape from Nsp1-directed inhibition of protein synthesis and results in selective protein expression. Furthermore, 5'-proximal Cs were found to significantly enhance the protein expression in an Nsp1-dependent manner, while Gs located at a specific window close to the 5'-end counteract such enhancement. The distinct protein expression levels resulted from different 5'UTRs were found correlated to Nsp1-induced mRNA degradations. These findings ultimately enabled rational designs for optimized 5'UTRs that lead to strong expression of exogenous proteins regardless of the translationally repressive Nsp1. On the other hand, we have also identified several 5'-proximal sequences derived from host genes that are capable of mediating the escapes. These results provided novel perspectives to the optimizations of 5'UTRs for DNA/mRNA therapies and/or vaccinations, as well as shedding light on the potential host escapees from Nsp1-directed translational shutoffs. KEY POINTS: • The 5'-proximal SL1 and 5a/b derived from SARS-CoV-2 genomic RNA promote exogenous protein synthesis in cells expressing Nsp1 comparing with non-specific 5'UTRs. • Specific 5'-proximal sequence contexts are the key determinants of the escapes from Nsp1-directed translational repression and thereby enhance protein expressions. • Systematic mutagenesis identified optimized 5'UTRs that strongly enhance protein expression and promote resistance to Nsp1-induced translational repression and RNA degradation.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, New Taipei, Taiwan
| | - Cui-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Fu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Chao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chi Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Fu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Huang L, Qin W, Guo Z, Li X, Li F, Wang X. Application of weighted gene co-expression network and immune infiltration for explorations of key genes in the brain of elderly COVID-19 patients. Front Immunol 2023; 14:1157179. [PMID: 37063869 PMCID: PMC10102454 DOI: 10.3389/fimmu.2023.1157179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction Although many studies have demonstrated the existing neurological symptoms in COVID-19 patients, the mechanisms are not clear until now. This study aimed to figure out the critical molecular and immune infiltration situations in the brain of elderly COVID-19 patients. Methods GSE188847 was used for the differential analysis, WGCNA, and immune infiltration analysis. We also performed GO, KEGG, GSEA, and GSVA for the enrich analysis. Results 266 DEGs, obtained from the brain samples of COVID-19 and non-COVID-19 patients whose ages were over 70 years old, were identified. GO and KEGG analysis revealed the enrichment in synapse and neuroactive ligand-receptor interaction in COVID-19 patients. Further analysis found that asthma and immune system signal pathways were significant changes based on GSEA and GSVA. Immune infiltration analysis demonstrated the imbalance of CD8+ T cells, neutrophils, and HLA. The MEpurple module genes were the most significantly different relative to COVID-19. Finally, RPS29, S100A10, and TIMP1 were the critical genes attributed to the progress of brain damage. Conclusion RPS29, S100A10, and TIMP1 were the critical genes in the brain pathology of COVID-19 in elderly patients. Our research has revealed a new mechanism and a potential therapeutic target.
Collapse
Affiliation(s)
- Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
- Tianyuan Translational Medicine R&D Team, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Qin
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
- Institution of Pulmonary Vascular Disease, Jianghan University, Wuhan, China
| | - Zirui Guo
- Department of Materials (D-MATL), ETH Zurich, Zurich, Switzerland
| | - Xiaoyu Li
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Fajiu Li
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
- Institution of Pulmonary Vascular Disease, Jianghan University, Wuhan, China
| | - Xiang Wang
- Tianyuan Translational Medicine R&D Team, School of Medicine, Jianghan University, Wuhan, China
- Department of Histology and Embryology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
21
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
All Domains of SARS-CoV-2 nsp1 Determine Translational Shutoff and Cytotoxicity of the Protein. J Virol 2023; 97:e0186522. [PMID: 36847528 PMCID: PMC10062135 DOI: 10.1128/jvi.01865-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable β5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.
Collapse
|
23
|
Structural insights into the activity regulation of full-length non-structural protein 1 from SARS-CoV-2. Structure 2023; 31:128-137.e5. [PMID: 36610391 PMCID: PMC9817231 DOI: 10.1016/j.str.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Collapse
|
24
|
Severe COVID-19 May Impact Hepatic Fibrosis /Hepatic Stellate Cells Activation as Indicated by a Pathway and Population Genetic Study. Genes (Basel) 2022; 14:genes14010022. [PMID: 36672763 PMCID: PMC9858736 DOI: 10.3390/genes14010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) has affected over 112 million people and killed more than 2.5 million worldwide. When the pandemic was declared, Spain and Italy accounted for 29% of the total COVID-19 related deaths in Europe, while most infected patients did not present severe illness. We hypothesised that shared genomic characteristics, distinct from the rest of Europe, could be a contributor factor to a poor prognosis in these two populations. To identify pathways related to COVID-19 severity, we shortlisted 437 candidate genes associated with host viral intake and immune evasion from SARS-like viruses. From these, 21 were associated specifically with clinically aggressive COVID-19. To determine the potential mechanism of viral infections, we performed signalling pathway analysis with either the full list (n = 437) or the subset group (n = 21) of genes. Four pathways were significantly associated with the full gene list (Caveolar-mediated Endocytosis and the MSP-RON Signalling) or with the aggressive gene list (Hepatic Fibrosis/Hepatic Stellate Cell (HSC) Activation and the Communication between Innate and Adaptive Immune Cells). Single nucleotide polymorphisms (SNPs) from the ±1 Mb window of all genes related to these four pathways were retrieved from the dbSNP database. We then performed Principal Component analysis for these SNPs in individuals from the 1000 Genomes of European ancestry. Only the Hepatic Fibrosis/HSC Activation pathway showed population-specific segregation. The Spanish and Italian populations clustered together and away from the rest of the European ancestries, with the first segregating further from the rest. Additional in silico analysis identified potential genetic markers and clinically actionable therapeutic targets in this pathway, that may explain the severe disease.
Collapse
|
25
|
Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog 2022; 18:e1011041. [PMID: 36534661 PMCID: PMC9810206 DOI: 10.1371/journal.ppat.1011041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.
Collapse
Affiliation(s)
- Stacia M. Dolliver
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Mariel Kleer
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Maxwell P. Bui-Marinos
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Shan Ying
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Denys A. Khaperskyy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
26
|
Borsatto A, Akkad O, Galdadas I, Ma S, Damfo S, Haider S, Kozielski F, Estarellas C, Gervasio FL. Revealing druggable cryptic pockets in the Nsp1 of SARS-CoV-2 and other β-coronaviruses by simulations and crystallography. eLife 2022; 11:e81167. [PMID: 36412088 PMCID: PMC9681203 DOI: 10.7554/elife.81167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022] Open
Abstract
Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and β-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous β-coronaviruses.
Collapse
Affiliation(s)
- Alberto Borsatto
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Obaeda Akkad
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Shumeng Ma
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shymaa Damfo
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shozeb Haider
- School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| | - Frank Kozielski
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Carolina Estarellas
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry, University of BarcelonaBarcelonaSpain
| | - Francesco Luigi Gervasio
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
- Chemistry Department, University College LondonLondonUnited Kingdom
- Institute of Structural and Molecular Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
28
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
29
|
Slobodin B, Sehrawat U, Lev A, Hayat D, Zuckerman B, Fraticelli D, Ogran A, Ben-Shmuel A, Bar-David E, Levy H, Ulitsky I, Dikstein R. Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response. Nucleic Acids Res 2022; 50:8080-8092. [PMID: 35849342 PMCID: PMC9371909 DOI: 10.1093/nar/gkac615] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anastasia Lev
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Hayat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.,Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Davide Fraticelli
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Lou Z, Rao Z. The Life of SARS-CoV-2 Inside Cells: Replication-Transcription Complex Assembly and Function. Annu Rev Biochem 2022; 91:381-401. [PMID: 35729072 DOI: 10.1146/annurev-biochem-052521-115653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The persistence of the coronavirus disease 2019 (COVID-19) pandemic has resulted in increasingly disruptive impacts, and it has become the most devastating challenge to global health in a century. The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants challenges the currently available therapeutics for clinical application. Nonstructural proteins (also known as replicase proteins) with versatile biological functions play central roles in viral replication and transcription inside the host cells, and they are the most conserved target proteins among the SARS-CoV-2 variants. Specifically, they constitute the replication-transcription complexes (RTCs) dominating the synthesis of viral RNA. Knowledge of themolecular mechanisms of nonstructural proteins and their assembly into RTCs will benefit the development of antivirals targeting them against existing or potentially emerging variants. In this review, we summarize current knowledge of the structures and functions of coronavirus nonstructural proteins as well as the assembly and functions of RTCs in the life cycle of the virus.
Collapse
Affiliation(s)
- Zhiyong Lou
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; ,
| | - Zihe Rao
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; , .,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
31
|
Synergistic interactions of repurposed drugs that inhibit Nsp1, a major virulence factor for COVID-19. Sci Rep 2022; 12:10174. [PMID: 35715434 PMCID: PMC9204075 DOI: 10.1038/s41598-022-14194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nsp1 is one of the first proteins expressed from the SARS-CoV-2 genome and is a major virulence factor for COVID-19. A rapid multiplexed assay for detecting the action of Nsp1 was developed in cultured lung cells. The assay is based on the acute cytopathic effects induced by Nsp1. Virtual screening was used to stratify compounds that interact with two functional Nsp1 sites: the RNA-binding groove and C-terminal helix-loop-helix region. Experimental screening focused on compounds that could be readily repurposed to treat COVID-19. Multiple synergistic combinations of compounds that significantly inhibited Nsp1 action were identified. Among the most promising combinations are Ponatinib, Rilpivirine, and Montelukast, which together, reversed the toxic effects of Nsp1 to the same extent as null mutations in the Nsp1 gene.
Collapse
|
32
|
Role of Stress Granules in Suppressing Viral Replication by the Infectious Bronchitis Virus Endoribonuclease. J Virol 2022; 96:e0068622. [PMID: 35638780 DOI: 10.1128/jvi.00686-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.
Collapse
|
33
|
Dang S, Ren L, Wang J. Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape. Chin Med J (Engl) 2022; 135:1213-1222. [PMID: 35788093 PMCID: PMC9337262 DOI: 10.1097/cm9.0000000000002158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT The pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.
Collapse
Affiliation(s)
- Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Rezaei S, Pereira F, Uversky VN, Sefidbakht Y. Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2075546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, G.C., Tehran, Iran
| | - Filipe Pereira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- IDENTIFICA genetic testing, Maia, Portugal
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G.C., Tehran, Iran
| |
Collapse
|
35
|
Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, Zerna N, Sickmann A, Chekulaeva M. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA (NEW YORK, N.Y.) 2022; 28:766-779. [PMID: 35232816 PMCID: PMC9014875 DOI: 10.1261/rna.079086.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in the viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19, and 20) and another within NSP1 (R124), which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the antisense oligo (ASO) to efficiently and specifically down-regulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of antiviral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.
Collapse
Affiliation(s)
- Lucija Bujanic
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Nicolai von Kügelgen
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Anna Kalinina
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Katarzyna Ludwik
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - David Koppstein
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nadja Zerna
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
36
|
Anjum F, Mohammad T, Asrani P, Shafie A, Singh S, Yadav DK, Uversky VN, Hassan MI. Identification of intrinsically disorder regions in non-structural proteins of SARS-CoV-2: New insights into drug and vaccine resistance. Mol Cell Biochem 2022; 477:1607-1619. [PMID: 35211823 PMCID: PMC8869350 DOI: 10.1007/s11010-022-04393-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and caused coronavirus disease 2019 (COVID-19), which causes pneumonia and severe acute respiratory distress syndrome. It is a highly infectious pathogen that promptly spread. Like other beta coronaviruses, SARS-CoV-2 encodes some non-structural proteins (NSPs), playing crucial roles in viral transcription and replication. NSPs likely have essential roles in viral pathogenesis by manipulating many cellular processes. We performed a sequence-based analysis of NSPs to get insights into their intrinsic disorders, and their functions in viral replication were annotated and discussed in detail. Here, we provide newer insights into the structurally disordered regions of SARS-CoV-2 NSPs. Our analysis reveals that the SARS-CoV-2 proteome has a chunk of the disordered region that might be responsible for increasing its virulence. In addition, mutations in these regions are presumably responsible for drug and vaccine resistance. These findings suggested that the structurally disordered regions of SARS-CoV-2 NSPs might be invulnerable in COVID-19.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Purva Asrani
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP, Pune University Campus, Pune, 411007, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
37
|
Kumar P, Schexnaydre E, Rafie K, Kurata T, Terenin I, Hauryliuk V, Carlson LA. Clinically observed deletions in SARS-CoV-2 Nsp1 affect its stability and ability to inhibit translation. FEBS Lett 2022; 596:1203-1213. [PMID: 35434785 PMCID: PMC9081967 DOI: 10.1002/1873-3468.14354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Nonstructural protein 1 (Nsp1) of SARS‐CoV‐2 inhibits host cell translation through an interaction between its C‐terminal domain and the 40S ribosome. The N‐terminal domain (NTD) of Nsp1 is a target of recurring deletions, some of which are associated with altered COVID‐19 disease progression. Here, we characterize the efficiency of translational inhibition by clinically observed Nsp1 deletion variants. We show that a frequent deletion of residues 79–89 severely reduces the ability of Nsp1 to inhibit translation while not abrogating Nsp1 binding to the 40S. Notably, while the SARS‐CoV‐2 5′ untranslated region enhances translation of mRNA, it does not protect from Nsp1‐mediated inhibition. Finally, thermal stability measurements and structure predictions reveal a correlation between stability of the NTD and the efficiency of translation inhibition.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Erin Schexnaydre
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Karim Rafie
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medicine, University of Lund, 221 84, Lund, Sweden
| | - Ilya Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow, 119992, Russia
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, 221 84, Lund, Sweden.,Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden.,University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
38
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
39
|
Agback P, Agback T, Dominguez F, Frolova EI, Seisenbaeva GA, Kessler VG. Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle - elucidation of the complex structure using NMR data and theoretical calculation. NANOSCALE ADVANCES 2022; 4:1527-1532. [PMID: 36134379 PMCID: PMC9419012 DOI: 10.1039/d1na00855b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new potential sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In this study we investigated the interaction of this protein with two types of titania nanoparticles by NMR and discovered that while lactate capped particles essentially did not interact with the protein chain, the aminoalcohol-capped ones showed strong complexation with a distinct part of an ordered α-helix fragment. The structure of the forming complex was elucidated based on NMR data and theoretical calculation. To the best of our knowledge, this is the first time that a tailored titanium oxide nanoparticle was shown to interact specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein, possibly interfering with its functionality.
Collapse
Affiliation(s)
- Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015 SE-75007 Uppsala Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015 SE-75007 Uppsala Sweden
| | - Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham 1720 2nd Ave South Birmingham AL 35294 USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham 1720 2nd Ave South Birmingham AL 35294 USA
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015 SE-75007 Uppsala Sweden
| | - Vadim G Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015 SE-75007 Uppsala Sweden
| |
Collapse
|
40
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
41
|
Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, Lieberman J, Gehrke L, Shi M, Wang L, Iwasaki A, Wu H. Targeting stem-loop 1 of the SARS-CoV-2 5' UTR to suppress viral translation and Nsp1 evasion. Proc Natl Acad Sci U S A 2022; 119:e2117198119. [PMID: 35149555 PMCID: PMC8892331 DOI: 10.1073/pnas.2117198119] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5' untranslated region (5' UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5' UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2-induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus' own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, MA 02115
| | - Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520;
- HHMI, Chevy Chase, MD 20815
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
42
|
Boodhoo N, Matsuyama-Kato A, Shojadoost B, Behboudi S, Sharif S. The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100021. [PMID: 35187506 PMCID: PMC8837493 DOI: 10.1016/j.crviro.2022.100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Infection with pathogenic viruses is often sensed by innate receptors such as Toll-Like Receptors (TLRs) which stimulate type I and III interferons (IFNs) responses, to generate an antiviral state within many cell types. To counteract these antiviral systems, many viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode non-structural proteins (NSPs) that mediate immune evasion. Using an overexpression system in A549 cells, we demonstrated a significant increase (p ≤ 0.0001) in Vesicular Stomatitis Virus (VSV)-EGFP reporter virus replication in cell lines overexpressing either the SARS-CoV-2 NSP1 or NSP15 when compared to control A549 cells. The increase in VSV-EGFP virus output was associated with a decrease in TLR2, TLR4 and TLR9 protein expression and a lack of antiviral protein production. Truncation of both NSP1 and NSP15 led to an increase in cellular TLR2, TLR4 and TLR9 as well as a decrease in TLR2 expression respectively. This observation can be attributed to the presence of a functional domain in NSP1 and NSP15 between amino acid (aa) 120–180 and aa 230–346, respectively. Both TLR3 and TLR9 ligands but not TLR2 ligand were highly effective at overcoming NSP1 and NSP15 functional interference based on significant decrease (p ≤ 0.0001) in VSV-EGFP virus replication. NSP1 or NSP15 intracellular interactions are likely low affinity interactions that can be easily disrupted by stimulating cells with specific TLR3 and TLR9 ligands. This report provides insights into the role of SARS-CoV-2 NSP1 and NSP15 in limiting specific TLR pathway activation, as an evasive mechanism against host innate responses.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Pirbright, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
43
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM, Al-Hemaid F. Artesunate induces substantial topological alterations in the SARS-CoV-2 Nsp1 protein structure. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101810. [PMID: 35002180 PMCID: PMC8722475 DOI: 10.1016/j.jksus.2021.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 12/28/2021] [Indexed: 05/28/2023]
Abstract
The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
45
|
Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Marconi R, Paladino D, Raoss A, Riedmiller I, Ur Rehman H, Santini A, Succetti V, Volpini L. SARS-CoV-2 and the Host Cell: A Tale of Interactions. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.815388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of a virus to spread between individuals, its replication capacity and the clinical course of the infection are macroscopic consequences of a multifaceted molecular interaction of viral components with the host cell. The heavy impact of COVID-19 on the world population, economics and sanitary systems calls for therapeutic and prophylactic solutions that require a deep characterization of the interactions occurring between virus and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life cycle is therefore fundamental to understand the pathogenic mechanisms underlying the viral infection and to design antiviral therapies and prophylactic strategies. Two years into the SARS-CoV-2 pandemic, this review provides an overview of the interplay between SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal for virus replication and the antiviral cellular response. Starting with the interaction with the cell surface, following the virus replicative cycle through the characterization of the entry pathways, the survival and replication in the cytoplasm, to the mechanisms of egress from the infected cell, this review unravels the complex network of interactions between SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set the basis for the development of innovative antiviral strategies.
Collapse
|
46
|
Sasidharan S, Sarkar N, Saudagar P. Discovery of compounds inhibiting SARS-COV-2 multi-targets. J Biomol Struct Dyn 2022; 41:2602-2617. [PMID: 34994297 DOI: 10.1080/07391102.2021.2025149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic that has devastated the lives of millions. Researchers around the world are relentlessly working in hopes of finding a cure. Even though the virus shares similarities with reported SARS-CoV and MERS-CoV at the genomic and proteomic level, efforts to repurpose already known drugs against SARS-CoV-2 have resulted ineffective. In this succinct review, we discuss the different potential targets in SARS-CoV-2 at both the genomic and proteomic levels. In addition, we analyze the compounds inhibiting individual target protein as well as multiple targets of SARS-CoV-2. ACE-2 receptor in humans has also been considered a target, keeping the role of the receptor in mind. The mechanism of action of these compounds has also been highlighted along with their clinical manifestation. Towards the end of the review, a brief note on the drugs currently in clinical trials and the current status of the vaccines are also examined. In conclusion, compounds targeting multiple targets of the virus hold the key in putting an end to the coronavirus malady.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Neellohit Sarkar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
47
|
Suresh P, Gupta S, Anmol, Sharma U. Insight into coronaviruses and natural products-based approach for COVID-19 treatment. BIOACTIVE NATURAL PRODUCTS 2022. [PMCID: PMC9294970 DOI: 10.1016/b978-0-323-91099-6.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is a deep-rooted belief in mankind that for every illness, somewhere in the world, there exists a botanical-based healing agent in nature in the form of a natural product. Natural products are better equipped to become successful drugs because of their million years of coevolution in a biological milieu. Generally, most herbal formulations and natural products obtained from traditionally used medicinal plants are nontoxic and have rarely shown any adverse side effects on humans. Plants synthesize secondary metabolites primarily for their defense against microbes and herbivores, and because of this, these metabolites have good specificity and potency against harmful pathogens. Nowadays, mankind is facing the contagion effect of SARS-CoV-2 that has caused the ongoing pandemic of COVID-19, which has no specific and effective treatment. Hence this is the time to explore nature for effective, safe, and affordable remedies against this disease. This chapter includes an overview of coronaviruses, their therapeutic targets, and the progress made in identifying lead natural products against the coronaviruses. Additionally, molecular docking and pharmacokinetics analysis of anticoronaviral natural products have been performed to narrow down the possible lead molecules.
Collapse
|
48
|
Extended ensemble simulations of a SARS-CoV-2 nsp1-5'-UTR complex. PLoS Comput Biol 2022; 18:e1009804. [PMID: 35045069 PMCID: PMC8803185 DOI: 10.1371/journal.pcbi.1009804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/31/2022] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nonstructural protein 1 (nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 180-residue protein that blocks translation of host mRNAs in SARS-CoV-2-infected cells. Although it is known that SARS-CoV-2’s own RNA evades nsp1’s host translation shutoff, the molecular mechanism underlying the evasion was poorly understood. We performed an extended ensemble molecular dynamics simulation to investigate the mechanism of the viral RNA evasion. Simulation results suggested that the stem loop structure of the SARS-CoV-2 RNA 5’-untranslated region (SL1) binds to both nsp1’s N-terminal globular region and intrinsically disordered region. The consistency of the results was assessed by modeling nsp1-40S ribosome structure based on reported nsp1 experiments, including the X-ray crystallographic structure analysis, the cryo-EM electron density map, and cross-linking experiments. The SL1 binding region predicted from the simulation was open to the solvent, yet the ribosome could interact with SL1. Cluster analysis of the binding mode and detailed analysis of the binding poses suggest residues Arg124, Lys47, Arg43, and Asn126 may be involved in the SL1 recognition mechanism, consistent with the existing mutational analysis. The pandemic of COVID-19 is still rampant all over the world as of 2021 June. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative pathogen of COVID-19, encodes a protein called nsp1 (nonstructural protein 1), which modulates and hijacks the ribosome of the infected host cells. With nsp1, infected human cells selectively translate SARS-CoV-2’s RNA, which increases the virus reproduction efficiency while evading the host immunity. Though it has been known that nsp1 recognizes characteristic stem-loop structure at 5’-end of SARS-CoV-2’s RNA (called SL1), the molecular mechanism underlying the recognition has been poorly understood. We investigated the mechanism of selective translation using the all-atom molecular dynamics simulation of nsp1-SL1 complex. Our simulation results suggest that the binding between nsp1 and SL1 is multi-modal. The results also imply that both the N-terminal globular part and the C-terminal flexible tail of nsp1 are involved in the binding. The residues involved in nsp1-SL1 binding coincides with the known mutant analyses of SARS-CoV-1 and SARS-CoV-2, as well as experimental evidence about nsp1-ribosome interactions.
Collapse
|
49
|
Vasudevan S, Baraniuk JN. Understanding COVID-19 Pathogenesis: A Drug-Repurposing Effort to Disrupt Nsp-1 Binding to Export Machinery Receptor Complex. Pathogens 2021; 10:1634. [PMID: 34959589 PMCID: PMC8709492 DOI: 10.3390/pathogens10121634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Non-structural protein 1 (Nsp1) is a virulence factor found in all beta coronaviruses (b-CoVs). Recent studies have shown that Nsp1 of SARS-CoV-2 virus interacts with the nuclear export receptor complex, which includes nuclear RNA export factor 1 (NXF1) and nuclear transport factor 2-like export factor 1 (NXT1). The NXF1-NXT1 complex plays a crucial role in the transport of host messenger RNA (mRNA). Nsp1 interferes with the proper binding of NXF1 to mRNA export adaptors and its docking to the nuclear pore complex. We propose that drugs targeting the binding surface between Nsp1 and NXF1-NXT1 may be a useful strategy to restore host antiviral gene expression. Exploring this strategy forms the main goals of this paper. Crystal structures of Nsp1 and the heterodimer of NXF1-NXT1 have been determined. We modeled the docking of Nsp1 to the NXF1-NXT1 complex, and discovered repurposed drugs that may interfere with this binding. To our knowledge, this is the first attempt at drug-repurposing of this complex. We used structural analysis to screen 1993 FDA-approved drugs for docking to the NXF1-NXT1 complex. The top hit was ganirelix, with a docking score of -14.49. Ganirelix competitively antagonizes the gonadotropin releasing hormone receptor (GNRHR) on pituitary gonadotrophs, and induces rapid, reversible suppression of gonadotropin secretion. The conformations of Nsp1 and GNRHR make it unlikely that they interact with each other. Additional drug leads were inferred from the structural analysis of this complex, which are discussed in the paper. These drugs offer several options for therapeutically blocking Nsp1 binding to NFX1-NXT1, which may normalize nuclear export in COVID-19 infection.
Collapse
Affiliation(s)
- Sona Vasudevan
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - James N Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20007, USA
| |
Collapse
|
50
|
Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.2013327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Abdullahi Temitope Jamiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Sharafa Bello
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Toluwase Adedoja
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|