1
|
Subedi S, Nag N, Shukla H, Padhi AK, Tripathi T. Comprehensive analysis of liquid-liquid phase separation propensities of HSV-1 proteins and their interaction with host factors. J Cell Biochem 2023. [PMID: 37796176 DOI: 10.1002/jcb.30480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
In recent years, it has been shown that the liquid-liquid phase separation (LLPS) of virus proteins plays a crucial role in their life cycle. It promotes the formation of viral replication organelles, concentrating viral components for efficient replication and facilitates the assembly of viral particles. LLPS has emerged as a crucial process in the replication and assembly of herpes simplex virus-1 (HSV-1). Recent studies have identified several HSV-1 proteins involved in LLPS, including the myristylated tegument protein UL11 and infected cell protein 4; however, a complete proteome-level understanding of the LLPS-prone HSV-1 proteins is not available. We provide a comprehensive analysis of the HSV-1 proteome and explore the potential of its proteins to undergo LLPS. By integrating sequence analysis, prediction algorithms and an array of tools and servers, we identified 10 HSV-1 proteins that exhibit high LLPS potential. By analysing the amino acid sequences of the LLPS-prone proteins, we identified specific sequence motifs and enriched amino acid residues commonly found in LLPS-prone regions. Our findings reveal a diverse range of LLPS-prone proteins within the HSV-1, which are involved in critical viral processes such as replication, transcriptional regulation and assembly of viral particles. This suggests that LLPS might play a crucial role in facilitating the formation of specialized viral replication compartments and the assembly of HSV-1 virion. The identification of LLPS-prone proteins in HSV-1 opens up new avenues for understanding the molecular mechanisms underlying viral pathogenesis. Our work provides valuable insights into the LLPS landscape of HSV-1, highlighting potential targets for further experimental validation and enhancing our understanding of viral replication and pathogenesis.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
2
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
3
|
Xu JJ, Gao F, Wu JQ, Zheng H, Tong W, Cheng XF, Liu Y, Zhu H, Fu X, Jiang Y, Li L, Kong N, Li G, Tong G. Characterization of Nucleocytoplasmic Shuttling of Pseudorabies Virus Protein UL46. Front Vet Sci 2020; 7:484. [PMID: 32974393 PMCID: PMC7472561 DOI: 10.3389/fvets.2020.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudorabies virus (PRV) is the etiological agent of Aujeszky's disease, which has caused severe economic loss in China since its re-emergence in 2011. UL46, a late gene of herpesvirus, codes for the abundant but non-essential viral phosphoproteins 11 and 12 (VP11/12). In this study, VP11/12 was found to localize inside both the nucleus and cytoplasm. The nuclear localization signal (NLS) of VP11/12 was identified as 3RRARGTRRASWKDASR18. Further research identified α5 and α7 to be the receptors for NLS and the chromosome region maintenance 1 (CRM1) to be the receptor for the nuclear export signal. Moreover, we found that PRV VP11/12 interacts with EP0 and the stimulator of interferon genes protein (STING), whereas the NLS of VP11/12 is the important part for VP11/12 to interact with UL48. To our knowledge, this is the first study to provide reliable evidence verifying the nuclear localization of VP11/12 and its role as an additional shuttling tegument protein for PRV. In addition, this is also the first study to elucidate the interactions between PRV VP11/12 and EP0 as well as between PRV VP11/12 and STING, while identifying the precise interaction sites of PRV VP11/12 and VP16.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinling Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The Role of the Human Cytomegalovirus UL133-UL138 Gene Locus in Latency and Reactivation. Viruses 2020; 12:E714. [PMID: 32630219 PMCID: PMC7411667 DOI: 10.3390/v12070714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic UL133-UL138 locus encodes determinants of both latency and reactivation. In this review, we survey the model systems used to investigate latency and new findings from these systems. Particular focus is given to the roles of the UL133, UL135, UL136 and UL138 proteins in regulating viral latency and how their known host interactions contribute to regulating host signaling pathways towards the establishment of or exit from latency. Understanding the mechanisms underlying viral latency and reactivation is important in developing strategies to block reactivation and prevent CMV disease in immunocompromised individuals, such as transplant patients.
Collapse
Affiliation(s)
- Luwanika Mlera
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
| | - Kristen Maness
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Linh N. Tran
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| |
Collapse
|
5
|
Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells 2020; 9:cells9040970. [PMID: 32326388 PMCID: PMC7226951 DOI: 10.3390/cells9040970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses can infect a broad range of vertebrate hosts, including birds, horses, primates, and humans, in which infection can lead to rash, fever, encephalitis, and arthralgia or arthritis. They are most often transmitted by mosquitoes in which they establish persistent, asymptomatic infections. Currently, there are no vaccines or antiviral therapies for any alphavirus. Several Old World alphaviruses, including Semliki Forest virus, Ross River virus and chikungunya virus, activate or hyperactivate the phosphatidylinositol-3-kinase (PI3K)-AKT pathway in vertebrate cells, potentially influencing many cellular processes, including survival, proliferation, metabolism and autophagy. Inhibition of PI3K or AKT inhibits replication of several alphaviruses either in vitro or in vivo, indicating the importance for viral replication. In this review, we discuss what is known about the mechanism(s) of activation of the pathway during infection and describe those effects of PI3K-AKT activation which could be of advantage to the alphaviruses. Such knowledge may be useful for the identification and development of therapies.
Collapse
|
6
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
7
|
Li H, Zhu J, He M, Luo Q, Liu F, Chen R. Marek's Disease Virus Activates the PI3K/Akt Pathway Through Interaction of Its Protein Meq With the P85 Subunit of PI3K to Promote Viral Replication. Front Microbiol 2018; 9:2547. [PMID: 30405592 PMCID: PMC6206265 DOI: 10.3389/fmicb.2018.02547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022] Open
Abstract
It is known that viruses can active the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in host cells to support cell survival and viral replication; however, the role of PI3K/Akt signaling in the pathogenic mechanisms induced by Marek’s disease virus (MDV) which causes a neoplastic Marek’s disease in poultry, remains unknown. In this study, we showed that MDV activated the PI3K/Akt pathway in chicken embryo fibroblasts (CEFs) at the early phase of infection, whereas treatment with a PI3K inhibitor LY294002 prior to MDV infection decreased viral replication and DNA synthesis. Flow cytometry analysis showed that inhibition of the PI3K/Akt pathway could significantly increase apoptosis in MDV-infected host cells, indicating that activation of PI3K/Akt signaling could facilitate viral replication through support of cell survival during infection. Evaluation of the underlying molecular mechanism by co-immunoprecipitation and laser confocal microscopy revealed that a viral protein Meq interacted with both p85α and p85β regulatory subunits of PI3K and could induce PI3K/Akt signaling in Meq-overexpressing chicken fibroblasts. Our results showed, for the first time, that MDV activated PI3K/Akt signaling in host cells through interaction of its Meq protein with the regulatory p85 subunit of PI3K to delay cell apoptosis and promote viral replication. This study provides clues for further studies of the molecular mechanisms underlying MDV infection and pathogenicity for the host.
Collapse
Affiliation(s)
- Huimin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Minyi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 2018; 10:v10030105. [PMID: 29495654 PMCID: PMC5869498 DOI: 10.3390/v10030105] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions.
Collapse
|
9
|
Mazzon M, Castro C, Thaa B, Liu L, Mutso M, Liu X, Mahalingam S, Griffin JL, Marsh M, McInerney GM. Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLoS Pathog 2018; 14:e1006835. [PMID: 29377936 PMCID: PMC5805360 DOI: 10.1371/journal.ppat.1006835] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/08/2018] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
| | - Margit Mutso
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Xiang Liu
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Suresh Mahalingam
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
| |
Collapse
|
10
|
Yao D, Ruan L, Xu J, Shi H, Xu X. Characterization of a novel non-receptor tyrosine kinase Src from Litopenaeus vannamei and its response to white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 68:377-385. [PMID: 28743627 DOI: 10.1016/j.fsi.2017.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Src family kinases (SFKs), a class of non-receptor tyrosine kinases, mediate a wide aspect of cellular signaling pathways that regulate cell proliferation, differentiation, motility and survival. In this study, we identified and characterized for the first time a novel SFK homologue from Litopenaeus vannamei (designated as LvSrc). Sequence analysis showed that LvSrc had a high homology with the identified SFKs, especially those from invertebrates. LvSrc contained the conserved SH3, SH2 and tyrosine kinase domains, as well as the potential phosphorylation and lipid modification sites. Immunofluorescence analysis demonstrated that LvSrc was mostly localized at the plasma membrane and partly resided in the perinuclear vesicle and nucleus or whole cell. Infection with white spot syndrome virus (WSSV) could up-regulate the transcription and expression levels of LvSrc and further induced its phosphorylation, suggesting that LvSrc was implicated in WSSV infection. Furthermore, our co-immunoprecipitation result confirmed the interaction between Src and focal adhesion kinase (FAK) in shrimp, while the phosphorylation of FAK was markedly enhanced by co-expression with LvSrc. In sum, our studies suggested that LvSrc might act in the FAK-regulated signaling pathway during WSSV infection, which would give us a better insight in understanding the role of SKFs in host-virus interactions in crustaceans.
Collapse
Affiliation(s)
- Defu Yao
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China; Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Lingwei Ruan
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China.
| | - Jingxiang Xu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Hong Shi
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Xun Xu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Lahmidi S, Strunk U, Smiley JR, Pearson A, Duplay P. Herpes simplex virus 1 infection of T cells causes VP11/12-dependent phosphorylation and degradation of the cellular protein Dok-2. Virology 2017; 511:66-73. [PMID: 28841444 DOI: 10.1016/j.virol.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that HSV-1 infection of lymphocytes induces the tyrosine phosphorylation of several proteins that might correspond to viral or host proteins. VP11/12, a viral tegument protein, is the major HSV-induced tyrosine phosphorylated protein identified thus far. In this report, we demonstrated that the cellular adaptor proteins Dok-2 and Dok-1 are tyrosine phosphorylated upon HSV-1 infection. In addition, HSV-1 induced the selective degradation of Dok-2. Finally, we provide evidence that Dok-2 interacts with VP11/12, and that HSV-induced tyrosine phosphorylation and degradation of Dok-2 require VP11/12. Inactivation of either the Src Family Kinases binding motifs or the SHC binding motif of VP11/12 eliminated the interaction of Dok-2 with VP11/12. Elimination of the binding of Dok-2 to VP11/12 prevented Dok-2 phosphorylation and degradation. We propose that HSV-induced Dok phosphorylation and Dok-2 degradation is an immune evasion mechanism to inactivate T cells that might play an important role in HSV pathogenesis.
Collapse
Affiliation(s)
- Soumia Lahmidi
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Ulrike Strunk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - James R Smiley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Angela Pearson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Pascale Duplay
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
12
|
Martin C, Leyton L, Hott M, Arancibia Y, Spichiger C, McNiven MA, Court FA, Concha MI, Burgos PV, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase. Front Cell Infect Microbiol 2017; 7:371. [PMID: 28879169 PMCID: PMC5572415 DOI: 10.3389/fcimb.2017.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.
Collapse
Affiliation(s)
- Carolina Martin
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Luis Leyton
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Melissa Hott
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Yennyfer Arancibia
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Carlos Spichiger
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Center for Basic Research in Digestive Diseases, Mayo ClinicRochester, MN, United States
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Margarita I Concha
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Faculty of Medicine, Institute of Physiology, Universidad Austral de ChileValdivia, Chile.,Facultad de Ciencia y Facultad de Medicina, Centro de Biología Celular y Biomedicina, Universidad San SebastiánSantiago, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| |
Collapse
|
13
|
Evasion of the STING DNA-Sensing Pathway by VP11/12 of Herpes Simplex Virus 1. J Virol 2017; 91:JVI.00535-17. [PMID: 28592536 DOI: 10.1128/jvi.00535-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023] Open
Abstract
The stimulator of interferon (IFN) genes (STING) is a broad antimicrobial factor that restricts herpes simplex virus (HSV) by activating type I interferon and proinflammatory responses upon sensing of foreign DNA. UL46 is one of the most abundant tegument proteins of HSV-1, but a well-established function has yet to be found. We found that the HSV-1 UL46 protein interacts with and colocalizes with STING. A ΔUL46 virus displayed growth defects and activated innate immunity, but both effects were alleviated in STING knockdown cells. UL46 was also required for the inhibition of the 2',3'-cyclic GMP-AMP (cGAMP)-dependent immune responses during infection. In cells expressing UL46, out of the context of the infection, innate immunity to a ΔICP0 virus was largely compromised, and that permitted ICP0-deficient mutants to replicate. The UL46-expressing cell lines also rescued the defects of the ΔUL46 virus and enhanced wild-type virus infection. The UL46-expressing cell lines did not activate interferon-stimulated gene (ISG) transcription following treatment with the noncanonical cyclic dinucleotide 2',3'-cGAMP, suggesting that the STING pathway may be compromised. Indeed, we found that both proteins STING and IFI16 were eliminated in cells constitutively expressing UL46 and that the accumulation of their transcripts was blocked. Finally, we demonstrated that UL46 via its N terminus binds to STING and, via its C terminus, to TBK1. These interactions appear to modulate the functions of STING during HSV-1 infection. Taken together, our studies describe a novel function for one of the least-studied proteins of HSV, the tegument protein UL46, and that function involves the evasion of foreign DNA-sensing pathways.IMPORTANCE Herpes simplex virus 1 (HSV-1) afflicts 80% of the population worldwide, causing various diseases. After initial infection, the virus establishes latent reservoirs in sensory neurons and persists for life. Here we describe novel interactions between HSV-1 and the DNA sensor STING. We found that (i) HSV-1 tegument protein UL46 interacts with and colocalizes with STING; (ii) UL46 expressed out of the context of the infection blocks type I interferon triggered by STING stimuli, through the elimination of STING and of interferon-inducible protein 16 (IFI16); (iii) a ΔUL46 virus displayed growth defects, which were rescued in STING knockdown cells; (iv) the ΔUL46 virus failed to block innate immunity triggered by ligands of STING such as 2',3'-cGAMP and also activated IFN-β and ISG expression; and (v) UL46 binds to both STING and TBK1 through different domains. We conclude that UL46 counteracts the actions of STING during HSV-1 infection.
Collapse
|
14
|
Strunk U, Ramos DG, Saffran HA, Smiley JR. Role of Herpes simplex virus 1 VP11/12 tyrosine-based binding motifs for Src family kinases, p85, Grb2 and Shc in activation of the phosphoinositide 3-kinase-Akt pathway. Virology 2016; 498:31-35. [DOI: 10.1016/j.virol.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
|
15
|
Human Herpesvirus 6A U14 Is Important for Virus Maturation. J Virol 2015; 90:1677-81. [PMID: 26559847 DOI: 10.1128/jvi.02492-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) U14 is a virion protein with little known function in virus propagation. Here, we elucidated its function by constructing and analyzing U14-mutated viruses. We found that U14 is essential for HHV-6A propagation. We then constructed a mutant virus harboring dysfunctional U14. This virus showed severely reduced growth and retarded maturation. Taken together, these data indicate that U14 plays an important role during HHV-6A maturation.
Collapse
|
16
|
Desai DV, Kulkarni SS. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol 2015; 28:546-55. [PMID: 26331265 DOI: 10.1089/vim.2015.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus proteins interact with host (human) proteins and create an environment conducive for its replication. Genital ulceration due to herpes simplex virus type 2 (HSV-2) infections is an important clinical manifestation reported to increase the risk of human immunodeficiency virus type 1 (HIV-1) acquisition and replication in HIV-1/HSV-2 coinfection. Dampening the innate and adaptive immune responses of the skin-resident dendritic cells, HSV-2 not only helps itself, but creates a "yellow brick road" for one of the most dreaded viruses HIV, which is transmitted mainly through the sexual route. Although, data from clinical trials show that HSV-2 suppression reduces HIV-1 viral load, there are hardly any reports presenting conclusive evidence on the impact of HSV-2 coinfection on HIV-1 disease progression. Be that as it may, understanding the interplay between these three characters (HSV, host, and HIV-1) is imperative. This review endeavors to collate studies on the influence of HSV-derived proteins on the host response and HIV-1 replication. Studying such complex interactions may help in designing and developing common strategies for the two viruses to keep these "partners in crime" at bay.
Collapse
Affiliation(s)
- Dipen Vijay Desai
- Department of Virology, ICMR-National AIDS Research Institute , Pune, India
| | | |
Collapse
|
17
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Berard AR, Coombs KM, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res 2015; 14:2121-42. [PMID: 25815715 DOI: 10.1021/pr5012284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection.
Collapse
Affiliation(s)
- Alicia R Berard
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Kevin M Coombs
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4.,§Manitoba Institute of Child Health, University of Manitoba, Room 641 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alberto Severini
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,∥National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3P6
| |
Collapse
|
19
|
Herpes simplex virus protein kinases US3 and UL13 modulate VP11/12 phosphorylation, virion packaging, and phosphatidylinositol 3-kinase/Akt signaling activity. J Virol 2014; 88:7379-88. [PMID: 24741093 DOI: 10.1128/jvi.00712-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key roles in diverse cellular activities and promotes cell growth and survival. It is therefore unsurprising that most viruses modify this pathway in order to facilitate their replication and spread. Previous work has suggested that the herpes simplex virus 1 (HSV-1) tegument proteins VP11/12 and US3 protein kinase modulate the PI3K/Akt pathway, albeit in opposing ways: VP11/12 binds and activates Src family kinases (SFKs), is tyrosine phosphorylated, recruits PI3K in an SFK-dependent fashion, and is required for HSV-induced phosphorylation of Akt on its activating residues; in contrast, US3 inhibits Akt activation and directly phosphorylates downstream Akt targets. We examined if US3 negatively regulates Akt by dampening the signaling activity of VP11/12. Consistent with this hypothesis, the enhanced Akt activation that occurs during US3-null infection requires VP11/12 and correlates with an increase in SFK-dependent VP11/12 tyrosine phosphorylation. In addition, deleting US3 leads to a striking increase in the relative abundances of several VP11/12 species that migrate with reduced mobility during SDS-PAGE. These forms arise through phosphorylation, strictly require the viral UL13 protein kinase, and are excluded from virions. Taken in combination, these data indicate that US3 dampens SFK-dependent tyrosine and UL13-dependent serine/threonine phosphorylation of VP11/12, thereby inhibiting VP11/12 signaling and promoting virion packaging of VP11/12. These results illustrate that protein phosphorylation events mediated by viral protein kinases serve to coordinate the roles of VP11/12 as a virion component and intracellular signaling molecule. IMPORTANCE Herpesvirus tegument proteins play dual roles during the viral life cycle, serving both as structural components of the virus particle and as modulators of cellular and viral functions in infected cells. How these two roles are coordinated during infection and virion assembly is a fundamental and largely unanswered question. Here we addressed this issue with herpes simplex virus VP11/12, a tegument protein that activates the cellular PI3K/Akt signaling pathway. We showed that protein phosphorylation mediated by the viral US3 and UL13 kinases serves to orchestrate its functions: UL13 appears to inhibit VP11/12 virion packaging, while US3 antagonizes UL13 action and independently dampens VP11/12 signaling activity.
Collapse
|
20
|
Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown. J Virol 2014; 88:6003-11. [PMID: 24623429 DOI: 10.1128/jvi.00501-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Herpesvirus capsid morphogenesis occurs in the nucleus, while final maturation takes place in the cytosol, requiring translocation of capsids through the nuclear envelope. The nuclear egress complex, consisting of homologs of herpes simplex virus pUL31 and pUL34, is required for efficient nuclear egress via primary envelopment and de-envelopment. Recently, we described an alternative mode of nuclear escape by fragmentation of the nuclear envelope induced by replication-competent pUL31 and pUL34 deletion mutants of the alphaherpesvirus pseudorabies virus (PrV), which had been selected by serial passaging in cell culture. Both passaged viruses carry congruent mutations in seven genes, including UL46, which encodes one of the major tegument proteins. Herpesvirus pUL46 homologs have recently been shown to activate the PI3K-Akt and ERK1/2 signaling pathways, which are involved in regulation of mitosis and apoptosis. Since in uninfected cells fragmentation of the nuclear envelope occurs during mitosis and apoptosis, we analyzed whether pUL46 of PrV is involved in signaling events impairing the integrity of the nuclear envelope. We show here that PrV pUL46 is able to induce phosphorylation of ERK1/2 and, thus, expression of ERK1/2 target genes but fails to activate the PI3K-Akt pathway. Deletion of UL46 from PrV-ΔUL34Pass and PrV-ΔUL31Pass or replacement by wild-type UL46 resulted in enhanced nuclear envelope breakdown, indicating that the mutations in pUL46 may limit the extent of NEBD. Thus, although pUL46 induces ERK1/2 phosphorylation, controlling the integrity of the nuclear envelope is independent of the ERK1/2 signaling pathway. IMPORTANCE Herpesvirus nucleocapsids can leave the nucleus by regulated, vesicle-mediated transport through the nuclear envelope, designated nuclear egress, or by inducing nuclear envelope breakdown (NEBD). The viral proteins involved in NEBD are unknown. We show here that the pseudorabies virus tegument protein pUL46 induces the ERK1/2 signaling pathway and modulates NEBD. However, these two processes are independent and ERK1/2 signaling induced by pUL46 is not involved in herpesvirus-induced NEBD.
Collapse
|