1
|
Huang W, Li PH, He RN, Lei YR, Huang CF, Lin YX, Lan YM, Chen ZA, Zhang ZP, Qin QW, Sun YH. The regulatory role of Epinephelus Coioides miR-21 in the infection and replication of iridovirus SGIV. Virology 2024; 603:110325. [PMID: 39681060 DOI: 10.1016/j.virol.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Iridovirus SGIV is a highly pathogenic virus of fish that can cause more than 90% mortality in Epinephelus coioides, a marine farmed fish in South China. miRNAs can be involved in regulating the development of virus-induced diseases. In this study, SGIV infection could significantly inhibit the expression of E. coioides miR-21. And, overexpressing miR-21 could inhibit the expressions of viral key genes (ICP18, VP19, LITAF and MCP), SGIV-induced CPE, and viral titers. Overexpression of miR-21 promoted the promoter activity of AP-1/NF-κB, SGIV-induced apoptosis, and activities of caspase 3/9. Inhibiting miR-21 could produce the opposite results. E. Coioides PDCD4 is a targeting gene of miR-21, and we speculate that PDCD4 downregulation may, at least in part, explain the observed antiviral effects. These studies indicate that miR-21 could inhibit the infection and replication of SGIV, which might provide a molecular basis for further exploring the mechanism of SGIV invasion.
Collapse
Affiliation(s)
- Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Pin-Hong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ru-Nan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yu-Rong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Cui-Fen Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yun-Xiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yin-Mei Lan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Zi-An Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ze-Peng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, 511450, Guangzhou, Guangdong, PR China.
| | - Yan-Hong Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
2
|
Gholamhosseinzadeh E, Ghalehnoei H, Kazemi Veisari A, Jafari N, Goli HR. Evaluation of the Rock1 and microRNA-148a expression in biopsies collected from patients with Helicobacter pylori induced gastritis. BMC Gastroenterol 2024; 24:251. [PMID: 39112943 PMCID: PMC11308716 DOI: 10.1186/s12876-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Helicobacter pylori infection is one of the most common chronic bacterial infections, especially in developing countries. MicroRNA-148a is involved in the regulation of various genes, including Rock1, which is altered in gastric cancer. Decreased expression of mir-148a leads to tumor metastasis and increased Rock1 gene expression in gastric cancer. This study aimed to investigate the expression of these genes in biopsies collected from patients with H. pylori induced gastritis. METHODS Informed consent forms were gotten from the studied patients with gastritis who needed endoscopy. Gastric biopsies were taken by a gastroenterologist from patients with inflammation. Rapid urease test, stool antigen detection, and histopathological staining were used to determine the H. pylori infected patients. Real time PCR was used to evaluate the miRNA and Rock1 expression levels. RESULTS The Rock1 expression level in biopsies that were positive for H. pylori was significantly increased compared to our control gastritis group that were H. pylori-negative, but the results were not statistically significant. Moreover, the mir-148a expression level in H. pylori-positive patients with gastritis was increased compared to our control group. However, the results were not statistically significant. We did not find a significant relation between the expression levels of Rock1 and mir-148a in samples with gastritis infected or uninfected by H. pylori. This result may be due to the small sample size. CONCLUSION We suggest that this test should be carried out with more samples, and the comparison should be done between biopsies with inflammation and no inflammation in a patient.
Collapse
Affiliation(s)
- Ebrahim Gholamhosseinzadeh
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran.
| |
Collapse
|
3
|
Liu C, Gao Q, Dong J, Cai H. Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation. Mol Neurobiol 2024; 61:2556-2568. [PMID: 37914905 DOI: 10.1007/s12035-023-03735-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Autophagy has been involved in protection of ischemia/reperfusion (I/R)-induced injury in many tissues including the brain. The upstream stimulatory factor 2 (Usf2) was proposed as a regulator in aging and degenerative brain diseases; however, the its role in autophagy during cerebral I/R injury remains unclear. Here, the middle cerebral artery occlusion (MCAO) operation was applied to establish an I/R mouse model. We showed that Usf2 was significantly upregulated in I/R-injured brain, accompanied by decreased levels of autophagy. Then, oxygen-glucose deprivation/recovery (OGD/R) treatment was used to establish a cellular I/R model in HT22 neurons, and lentiviral interference vector against Usf2 (LV-sh-Usf2) was used to infect the neurons. Our results showed that Usf2 was significantly upregulated in OGD/R-treated HT22 neurons that displayed an increased level in cell apoptosis and decreased levels in cell viability and autophagy, and interference of Usf2 largely rescued the effects of OGD/R on cell viability, apoptosis, and autophagy, suggesting an important role of Usf2 in neuron autophagy. In the mechanism exploration, we found that, as a transcription factor, Usf2 bound to the promoter of YTHDF1, a famous reader of N6-Methyladenosine (m6A), also induced by OGD/R, and promoted its transcription. Overexpression of YTHDF1 was able to reverse the improvement of Usf2 interference on viability and autophagy of HT22 neurons. Moreover, YTHDF1 suppressed autophagy to induce HT22 cell apoptosis through increasing m6A-mediated stability of Cdc25A, a newly identified autophagy inhibitor. Finally, we demonstrated that interference of Usf2 markedly improved autophagy and alleviated I/R-induced injury in MCAO mice.
Collapse
Affiliation(s)
- Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Qing Gao
- Department of Anesthesia Operation, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Zhang C, Liu Y, Yang F, Liu Y, Wang N, Li Y, Liu Y, Qiu Z, Zhang L, You X, Gan L. MicroRNA-194-5p/Heparin-binding EGF-like growth factor signaling mediates dexamethasone-induced activation of pseudorabies virus in rat pheochromocytoma cells. Vet Microbiol 2024; 290:109974. [PMID: 38262115 DOI: 10.1016/j.vetmic.2023.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
Pseudorabies virus (PRV) is a neurotropic virus, which infects a wide range of mammals. The activity of PRV is gradually suppressed in hosts that have tolerated the primary infection. Increased glucocorticoid levels resulting from stressful stimuli overcome repression of PRV activity. However, the host cell mechanism involved in the activation processes under stressful conditions remains unclear. In this study, infection of rat PC-12 pheochromocytoma cells with neuronal properties using PRV at a multiplicity of infection (MOI) = 1 for 24 h made the activity of PRV be the relatively repressed state, and then incubation with 0.5 μM of the corticosteroid dexamethasone (DEX) for 4 h overcomes the relative repression of PRV activity. RNA-seq deep sequencing and bioinformatics analyses revealed different microRNA and mRNA profiles of PC-12 cells with/without PRV and/or DEX treatment. qRT-PCR and western blot analyses confirmed the negative regulatory relationship of miRNA-194-5p and its target heparin-binding EGF-like growth factor (Hbegf); a dual-luciferase reporter assay revealed that Hbegf is directly targeted by miRNA-194-5p. Further, miRNA-194-5p mock transfection contributed to PRV activation, Hbegf was downregulated in DEX-treated PRV infection cells, and Hbegf overexpression contributed to returning activated PRV to the repression state. Moreover, miRNA-194-5p overexpression resulted in reduced levels of HBEGF, c-JUN, and p-EGFR, whereas Hbegf overexpression suppressed the reduction caused by miRNA-194-5p overexpression. Overall, this study is the first to report that changes in the miR-194-5p-HBEGF/EGFR pathway in neurons are involved in DEX-induced activation of PRV, laying a foundation for the clinical prevention of stress-induced PRV activation.
Collapse
Affiliation(s)
- Chen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yuxuan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yifan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yuhang Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yanqing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xiaoyan You
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
| |
Collapse
|
5
|
Yao J, Zhu Y, Zhang G, Zhou X, Shang H, Li L, Xu T. Action mechanisms and characteristics of miRNAs to regulate virus replication. Virology 2024; 590:109966. [PMID: 38100983 DOI: 10.1016/j.virol.2023.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
MicroRNAs (miRNAs) have the potential to be explored as antiviral products. It is known that miRNAs have different kinds of target mRNAs and different target sites in mRNAs, and that the action-modes of miRNAs at different target sites may be different. But there is no evidence demonstrating the significance of the differences for the regulation of viruses by miRNAs, which might be crucial for the exploration of miRNA-based antiviral products. Here the experimental studies about the antiviral effects of miRNAs, with validated target mRNAs and target sites in the mRNAs, were systematically collected, based on which the mechanisms whereby miRNAs regulated virus replication were systematically reviewed. And miRNAs' down-regulation rates on target mRNAs and antiviral rates were compared among the miRNAs with different target sites, to analyze the characteristics of action-modes of miRNAs at different target sites during virus replication.
Collapse
Affiliation(s)
- Jia Yao
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Genrong Zhang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Xianfeng Zhou
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Hongcai Shang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China; Shang Hongcai, Key Laboratory of Chinese Internal Medicine of MOE and Beijing University of Chinese Medicine, 11 Eastern Section of the North Third Ring Road, Chaoyang District, Beijing, 100029, PR China.
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| |
Collapse
|
6
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
7
|
Huang SN, Pan YT, Zhou YP, Wang XZ, Mei MJ, Yang B, Li D, Zeng WB, Cheng S, Sun JY, Cheng H, Zhao F, Luo MH. Human Cytomegalovirus IE1 Impairs Neuronal Migration by Downregulating Connexin 43. J Virol 2023; 97:e0031323. [PMID: 37097169 PMCID: PMC10231247 DOI: 10.1128/jvi.00313-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.
Collapse
Affiliation(s)
- Sheng-Nan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Jie Mei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Dong Li
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shuang Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Zhao
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
miRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023; 15:v15020429. [PMID: 36851643 PMCID: PMC9965283 DOI: 10.3390/v15020429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.
Collapse
|
9
|
Jiang X, Liu S, Fu YR, Liu XJ, Li XJ, Yang B, Jiang HF, Shen ZZ, Alemu EA, Vazquez P, Tang Y, Kaarbø M, McVoy MA, Rayner S, Luo MH. Human cytomegalovirus infection perturbs neural progenitor cell fate via the expression of viral microRNAs. J Med Virol 2023; 95:e28574. [PMID: 36772841 DOI: 10.1002/jmv.28574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Human cytomegalovirus (HCMV) preferentially targets neural progenitor cells (NPCs) in congenitally infected fetal brains, inducing neurodevelopmental disorders. While HCMV expresses several microRNAs (miRNAs) during infection, their roles in NPC infection are unclear. Here, we characterized expression of cellular and viral miRNAs in HCMV-infected NPCs during early infection by microarray and identified seven differentially expressed cellular miRNAs and six significantly upregulated HCMV miRNAs. Deep learning approaches were used to identify potential targets of significantly upregulated HCMV miRNAs against differentially expressed cellular messenger RNA (mRNAs), and the associations with miRNA-mRNA expression changes were observed. Gene ontology enrichment analysis indicated cellular gene targets were significantly enriched in pathways involved in neurodevelopment and cell-cycle processes. Viral modulation of selected miRNAs and cellular gene targets involved in neurodevelopmental processes were further validated by real-time quantitative reverse transcription polymerase chain reaction. Finally, a predicted 3' untranslated region target site of hcmv-miR-US25-1 in Jag1, a factor important for neurogenesis, was confirmed by mutagenesis. Reduction of Jag1 RNA and protein levels in NPCs was observed in response to transient expression of hcmv-miR-US25-1. A hcmv-miR-US25-1 mutant virus (ΔmiR-US25) displayed limited ability to downregulate Jag1 mRNA levels and protein levels during the early infection stage compared with the wild type virus. Our collective experimental and computational investigation of miRNAs and cellular mRNAs expression in HCMV-infected NPCs yields new insights into the roles of viral miRNAs in regulating NPC fate and their contributions to HCMV neuropathogenesis.
Collapse
Affiliation(s)
- Xuan Jiang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China.,Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Siqing Liu
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ya-Ru Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, China
| | - Xi-Juan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hai-Fei Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhang-Zhou Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Medical School, Huangshi, China
| | | | - Pavel Vazquez
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yaping Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Ma XH, Yao YX, Wang XZ, Zhou YP, Huang SN, Li D, Mei MJ, Wu JP, Pan YT, Cheng S, Jiang X, Sun JY, Zeng WB, Gong S, Cheng H, Luo MH, Yang B. MORC3 restricts human cytomegalovirus infection by suppressing the major immediate-early promoter activity. J Med Virol 2022; 94:5492-5506. [PMID: 35879101 DOI: 10.1002/jmv.28025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.
Collapse
Affiliation(s)
- Xue-Hui Ma
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yong-Xuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Jie Mei
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Peng Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xuan Jiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Bo Zeng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Sitang Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min-Hua Luo
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Yu Z, Wang J, Nan F, Shi W, Zhang X, Jiang S, Wang B. Human Cytomegalovirus Induced Aberrant Expression of Non-coding RNAs. Front Microbiol 2022; 13:918213. [PMID: 35770158 PMCID: PMC9234646 DOI: 10.3389/fmicb.2022.918213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus whose genome consists of double stranded linear DNA. HCMV genome can generate non-coding RNAs (ncRNAs) through transcription in its host cells. Besides that, HCMV infection also changes the ncRNAs expression profile of the host cells. ncRNAs play a key role in maintaining the normal physiological activity of cells, and the disorder of ncRNAs expression has numerous adverse effects on cells. However, until now, the relationship between ncRNAs and HCMV-induced adverse effects are not summarized in detail. This review aims to give a systematic summary of the role of HCMV infection in ncRNAs expression while providing insights into the molecular mechanism of unnormal cellular events caused by ncRNAs disorder. ncRNAs disorder induced by HCMV infection is highly associated with cell proliferation, apoptosis, tumorigenesis, and immune regulation, as well as the development of cardiovascular diseases, and the potential role of biomarker. We summarize the studies on HCMV associated ncRNAs disorder and suggest innovative strategies for eliminating the adverse effects caused by HCMV infection.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jing Wang
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wenyi Shi
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Bin Wang,
| |
Collapse
|
12
|
Human cytomegalovirus-induced immune regulation is correlated with poor prognosis in patients with colorectal cancer. Clin Exp Med 2022; 23:427-436. [PMID: 35437646 DOI: 10.1007/s10238-022-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/23/2022] [Indexed: 11/03/2022]
Abstract
Evidence suggests that human cytomegalovirus (HCMV) infection may be implicated in the progression of colorectal cancer (CRC). However, the correlation between HCMV infection and survival outcomes in patients with CRC remains unclear. Here, we constructed a flow algorithm to identify HCMV sequences based on the RNA-seq data of patients with CRC derived from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The patients' clinical information matrix was used to calculate the Euclidean distance to filter out suitable patients not infected with HCMV, combined with patients' survival outcomes, to reveal how HCMV infection is involved in CRC progression. HCMV infection is widespread in patients with CRC, and the prevalence of HCMV infection ranges from 10 to 36% in four independent CRC datasets, with infection being concentrated in carcinoma tissue rather than in normal tissue. In addition, HCMV-positive patients had a poor survival prognosis, with three HCMV genes, UL82, UL42, and UL117, associated with poor patient survival outcomes. Most importantly, we suppose that the regulation of immune function by HCMV may be key to the poor prognosis of patients with CRC. We found that HCMV infection was associated with poor prognosis in CRC patients and identified three prognosis-associated HCMV genes. The regulation of immune function caused by HCMV infection was the key factor, while HCMV-positive patients with CRC mostly presented with a state of immunosuppression. This may provide new ideas for the personalized treatment of patients with CRC, especially with respect to immunotherapy.
Collapse
|
13
|
Exosome-derived miR-127-5p promotes embryonic-like stem cells differentiation into pacemaker cell through NKx2.5 down-regulation. Biochem Biophys Res Commun 2022; 611:68-77. [PMID: 35483221 DOI: 10.1016/j.bbrc.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
Available evidence suggests the involvement of microRNAs (miRNAs) in the pathological process of several diseases. Nonetheless, molecular mechanism underlying biological effects of miRNAs such as pacemaker exosome-derived miR-127-5p in embryonic-like stem cells (ESCs) differentiation into pacemaker cell is yet to be clarified. Through real time quantitative polymerase chain reaction (qPCR) or western blotting (WB) techniques, levels of miRNAs, miR-127-5p, and NKx2.5 expressions were quantitatively measured. Cellular differentiation (CD) was probed with flow cytometric (FC) and WB techniques. Prediction of miR-127-5p association with NKx2.5 was studied through bioinformatics tools before verification with luciferase assays. Promotion of ESCs differentiation to pacemaker through miR-127-5p was measured with qPCR and WB techniques. Through the same assaying methods, up-regulation of pace-making genes (Shox2, HCN4, Cx45, Tbx3 and Tbx18) expression was observed in Nkx2.5 knockdown group. However, Nkx2.5 expression was down-regulated during differentiation of pacemaker-like cells into ESCs. Furthermore, techniques (such as qPCR, WB, immunofluorescent staining and FC) were employed to demonstrate that overexpressed miR-127-5p could suppress NKx2.5 expression. Through NKx2.5 targeting, ESCs could be differentiated into pacemaker-like cells with miR-127-5p possibly serving as a crucial positive regulator. On the account of our findings, further researches are needed to unearth the possible underlying mechanism and role of exosome-derived miRNAs in cell signaling.
Collapse
|
14
|
Cheng S, Zhao F, Wen L, Yang B, Wang XZ, Huang SN, Jiang X, Zeng WB, Sun JY, Zhang FK, Shen HJ, Fortunato E, Luo MH, Cheng H. iTRAQ-Based Proteomics Analysis of Human Cytomegalovirus Latency and Reactivation in T98G Cells. J Virol 2022; 96:e0147621. [PMID: 34730396 PMCID: PMC8791298 DOI: 10.1128/jvi.01476-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.
Collapse
Affiliation(s)
- Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Le Wen
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Yang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fu-Kun Zhang
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Hong-Jie Shen
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Elizabeth Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Human Cytomegalovirus Hijacks WD Repeat Domain 11 for Virion Assembly Compartment Formation and Virion Morphogenesis. J Virol 2022; 96:e0182721. [PMID: 35020472 DOI: 10.1128/jvi.01827-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 200 predicted open reading frames and exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was up-regulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and co-localized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside of the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. Importance During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for anti-viral treatment.
Collapse
|
16
|
Baluni M, Ghildiyal S, Fatima T, Tiwari R, Upadhyay S, Dhole TN, Reddy DH, Singh D. Differential expression of circulating microRNAs in serum: Potential biomarkers to track Japanese encephalitis virus infection. J Med Virol 2021; 94:531-539. [PMID: 34698413 DOI: 10.1002/jmv.27419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
Japanese encephalitis is one of the serious vector-borne viral encephalitis diseases found worldwide and poses a major threat to public health. Most Japanese encephalitis virus (JEV) infections are subclinical; only 1: 250 to 1:1000 infected persons develop clinical presentations. Delay in proper diagnosis of JE affects the timeliness of treatment initiation and increases the mortality rate in patients. Therefore, there is an extreme need to develop potential biomarkers, which might improve the diagnosis and can become the basis for development of new therapeutics. The microRNAs (miRNAs/or miRs) are small noncoding RNAs of 17-24 nucleotides that are known to regulate about 60% of human genes. Although miRNAs have been found to regulate various aspects of innate and adaptive immune responses, less information on circulating miRNAs in JE is known. The study of JEV infected human serum miRNAs will provide novel information for the diagnosis of JE as well as for the improvement of disease outcome. Total RNA, including miRNA, was extracted from serum followed by the complementary DNA (cDNA) synthesis by using sequence-specific primers. cDNA was amplified using target-specific TaqMan MicroRNA Assay. Real-time polymerase chain reaction data was normalized using both exogenous (cel-miR-39) and endogenous (hsa-miR-93) controls. We have found significantly altered expression of miR-155 and miR-21 in serum of JEV infected patients as compared to healthy controls, revealing their role as a a noninvasive biomarker in JE. A significant correlation between miRNAs and JE was observed that offers the basis for miRNAs to serve as a new component to develop possible therapeutic strategies for JE in near future.
Collapse
Affiliation(s)
- Manjari Baluni
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sneha Ghildiyal
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tanzeem Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rashmi Tiwari
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shivbrat Upadhyay
- Department of Biochemistry, ERA's Medical College and Hospital, Sarfarazganj, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - D Himanshu Reddy
- Department of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dharamveer Singh
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
17
|
Localization of the WD repeat-containing protein 5 to the Virion Assembly Compartment Facilitates Human Cytomegalovirus Assembly. J Virol 2021; 95:JVI.02101-20. [PMID: 33504601 PMCID: PMC8103678 DOI: 10.1128/jvi.02101-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that human cytomegalovirus (HCMV) utilizes the cellular protein WD repeat-containing protein 5 (WDR5) to facilitate capsid nuclear egress. Here, we further show that HCMV infection results in WDR5 localization in a juxtanuclear region, and that its localization to this cellular site is associated with viral replication and late viral gene expression. Furthermore, WDR5 accumulated in the virion assembly compartment (vAC) and co-localized with vAC markers of gamma-tubulin (γ-tubulin), early endosomes, and viral vAC marker proteins pp65, pp28, and glycoprotein B (gB). WDR5 co-immunoprecipitated with multiple virion proteins, including MCP, pp150, pp65, pIRS1, and pTRS1, which may explain WDR5 accumulation in the vAC during infection. WDR5 fractionated with virions either in the presence or absence of Triton X-100 and was present in purified viral particles, suggesting that WDR5 was incorporated into HCMV virions. Thus, WDR5 localized to the vAC and was incorporated into virions, raising the possibility that in addition to capsid nuclear egress, WDR5 could also participate in cytoplasmic HCMV virion morphogenesis.Importance Human cytomegalovirus (HCMV) has a large (∼235-kb) genome that contains over 170 ORFs and exploits numerous cellular factors to facilitate its replication. In the late phase of HCMV infection cytoplasmic membranes are reorganized to establish the virion assembly compartment (vAC), which has been shown to necessary for efficient assembly of progeny virions. We previously reported that WDR5 facilitates HCMV nuclear egress. Here, we show that WDR5 is localized to the vAC and incorporated into virions, perhaps contributing to efficient virion maturation. Thus, findings in this study identified a potential role for WDR5 in HCMV assembly in the cytoplasmic phase of virion morphogenesis.
Collapse
|
18
|
Zhang S, Cheng Z, Wang Y, Han T. The Risks of miRNA Therapeutics: In a Drug Target Perspective. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:721-733. [PMID: 33654378 PMCID: PMC7910153 DOI: 10.2147/dddt.s288859] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
RNAi therapeutics have been growing. Patisiran and givosiran, two siRNA-based drugs, were approved by the Food and Drug Administration in 2018 and 2019, respectively. However, there is rare news on the advance of miRNA drugs (another therapeutic similar to siRNA drug). Here we report the existing obstacles of miRNA therapeutics by analyses for resources available in a drug target perspective, despite being appreciated when it began. Only 10 obtainable miRNA drugs have been in clinical trials with none undergoing phase III, while over 60 siRNA drugs are in complete clinical trial progression including two approvals. We mechanically compared the two types of drug and found that their major distinction lay in the huge discrepancy of the target number of two RNA molecules, which was caused by different complementary ratios. One miRNA generally targets tens and even hundreds of genes. We named it “too many targets for miRNA effect” (TMTME). Further, two adverse events from the discontinuation of two miRNA therapeutics were exactly answered by TMTME. In summary, TMTME is inevitable because of the special complementary approach between miRNA and its target. It means that miRNA therapeutics would trigger a series of unknown and unpreventable consequences, which makes it a considerable alternative for application.
Collapse
Affiliation(s)
- Song Zhang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanan Wang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
19
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
20
|
Lv YL, Jia Y, Wan Z, An ZL, Yang S, Han FF, Gong LL, Xuan LL, Ren LL, Zhang W, Liu H, Liu LH. Curcumin inhibits the formation of atherosclerosis in ApoE -/- mice by suppressing cytomegalovirus activity in endothelial cells. Life Sci 2020; 257:117658. [PMID: 32621921 DOI: 10.1016/j.lfs.2020.117658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Curcumin (Cur) is a hydrophobic polyphenol compound derived from the rhizome of the herb Curcuma longa. Cur has a wide spectrum of biological and pharmacological activities. It has been shown that human cytomegalovirus (HCMV) infection was an important risk factor for atherosclerosis (AS) and Cur exhibited an outstanding anti-HCMV effect. However, anti-AS effects of Cur remain unclear when HCMV infected endothelial cells. AIMS This study will investigate the anti-AS activities and mechanism of Cur,when HCMV infected in vivo and in vitro. MATERIALS AND METHODS Cur (0.5, 1, and 2 μM) was used to explore the anti-AS activities and mechanism after HCMV infected endothelial cells in vitro. ApoE-/- mice were fed a high fat and cholesterol diet (HD) and given 4000,000 copies/mouse MCMV infection by intraperitoneal and treated with ganciclovir (5 mg/kg/d), Cur (25, 15 mg/kg/d) for 10 weeks in vivo. KEY FINDINGS As our results showed that Cur inhibited CMV replication and proliferation, reduced the intracellular ROS overproduction, decreased the release of inflammatory cytokines, down-regulated the level of HMGB1-TLRS-NF-κB signaling pathway-related proteins in vitro experiments. Cur reduced the serum levels of LDL-C, TC and TG, significantly decreased the formation of atherosclerotic plaque in the aorta, reduced the lipid deposition in liver and inflammatory damage in heart, lung and kidney in vivo experiments. SIGNIFICANCE This study showed that Cur prevent AS progression by inhibiting CMV activity and CMV-induced HMGB1-TLRS-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yangjie Jia
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zirui Wan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zhuo-Ling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ling-Ling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lu-Lu Ren
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
21
|
Smith M, Zuckerman M, Kandanearatchi A, Thompson R, Davenport M. Using next-generation sequencing of microRNAs to identify host and/or pathogen nucleic acid signatures in samples from children with biliary atresia - a pilot study. Access Microbiol 2020; 2:acmi000127. [PMID: 32974591 PMCID: PMC7497833 DOI: 10.1099/acmi.0.000127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Biliary atresia (BA) is a progressive disease affecting infants resulting in inflammatory obliteration and fibrosis of the extra- and intra-hepatic biliary tree. BA may be grouped into type 1 isolated; type 2 syndromic, where other congenital malformations may be present; type 3 cystic BA, where there is cyst formation within an otherwise obliterated biliary tree; and cytomegalovirus-associated BA. The cause of BA is unclear, with immune dysregulation, inflammation and infection, particularly with cytomegalovirus (CMV), all implicated. In this study a total of 50/67 samples were tested for CMV DNA using quantitative real-time PCR. Ten liver tissue and 8 bile samples from 10 patients representing the range of BA types were also analysed by next-generation sequencing. CMV DNA was found in 8/50 (16 %) patients and a total of 265 differentially expressed microRNAs were identified. No statistically significant differences between the various types of BA were found. However, differences were identified in the expression patterns of 110 microRNAs in bile and liver tissue samples (P<0.05). A small number of bacterial and viral sequences were found, although their relevance to BA remains to be determined. No direct evidence of viral causes of BA were found, although clear evidence of microRNAs associated with hepatocyte and cholangiocyte differentiation together with fibrosis and inflammation were identified. These include miR-30 and the miR-23 cluster (liver and bile duct development) and miR-29, miR-483, miR-181, miR-199 and miR-200 (inflammation and fibrosis).
Collapse
Affiliation(s)
- Melvyn Smith
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | - Mark Zuckerman
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | | | - Richard Thompson
- Institute of Liver Studies and Paediatric Liver Services, Denmark Hill, London
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS
| |
Collapse
|
22
|
Kalejta RF, Albright ER. Expanding the Known Functional Repertoire of the Human Cytomegalovirus pp71 Protein. Front Cell Infect Microbiol 2020; 10:95. [PMID: 32226778 PMCID: PMC7080695 DOI: 10.3389/fcimb.2020.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus pp71 protein is packaged within the tegument of infectious virions and performs multiple functions in host cells to prime them for productive, lytic replication. Here we review the known and hypothesized functions of pp71 in regulating proteolysis, infection outcome (lytic or latent), histone deposition, transcription, translation, immune evasion, cell cycle progression, and pathogenesis. We also highlight recent advances in CMV-based vaccine candidates informed by an improved understanding of pp71 function.
Collapse
Affiliation(s)
| | - Emily R. Albright
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
23
|
He Q, Liu H, Huang C, Wang R, Luo M, Lu W. Herpes Simplex Virus 1-Induced Blood-Brain Barrier Damage Involves Apoptosis Associated With GM130-Mediated Golgi Stress. Front Mol Neurosci 2020; 13:2. [PMID: 32038167 PMCID: PMC6992570 DOI: 10.3389/fnmol.2020.00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex encephalitis (HSE) caused by herpes simplex virus 1 (HSV-1) infection can lead to a high mortality rate and severe neurological sequelae. The destruction of the blood-brain barrier (BBB) is an important pathological mechanism for the development of HSE. However, the specific mechanism underlying the BBB destruction remains unclear. Our previous study found that the Golgi apparatus (GA) plays a crucial role in maintaining the integrity of the BBB. Therefore, this present study aimed to investigate the role of the GA in the destruction of the BBB and its underlying mechanisms. Mouse brain endothelial cells (Bend.3) were cultured to establish a BBB model in vitro, and then infected with HSV-1. The results showed that HSV-1 infection caused downregulation of the Golgi-associated protein GM130, accompanied by Golgi fragmentation, cell apoptosis, and downregulation of tight junction proteins occludin and claudin 5. Knockdown of GM130 with small interfering RNA in uninfected Bend.3 cells triggered Golgi fragmentation, apoptosis, and downregulation of occludin and claudin 5. However, overexpression of GM130 in HSV-1 infected Bend.3 cells by transient transfection partially attenuated the aforementioned damage caused by HSV-1 infection. When the pan-caspase inhibitor Z-VAD-fmk was used after HSV-1 infection to inhibit apoptosis, the protein levels of GM130, occludin and claudin 5 were partially restored. Taken together, these observations indicate that HSV-1 infection of Bend.3 cells triggers a GM130-mediated Golgi stress response that is involved in apoptosis, which in turn results in downregulation of occludin and claudin 5 protein levels. Meanwhile, GM130 downregulation is partially due to apoptosis triggered by HSV-1 infection. Our findings reveal an association between the GA and the BBB during HSV-1 infection and identify potentially novel targets for protecting the BBB and therapeutic approaches for patients with HSE.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuxin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Yan B, Ma H, Jiang S, Shi J, Yang Z, Zhu W, Kong C, Chen L, Yan H, Ma C. microRNA-221 restricts human cytomegalovirus replication via promoting type I IFN production by targeting SOCS1/NF-κB pathway. Cell Cycle 2019; 18:3072-3084. [PMID: 31550968 DOI: 10.1080/15384101.2019.1667706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HCMV is a common pathogen for human with relatively high prevalence, which could be life-threatened in immunodeficient patients and lead to significant birth defects in newborns. In this study, we firstly report that HCMV infection significantly enhances the expression of microRNA-221 (miR-221) in Neural Precursor Cells (NPCs). We found that miR-221 directly targets at the 3'-UTR of suppressor of cytokine signaling 1 (SOCS1) and suppresses SOCS1 expression at the both mRNA and protein levels. MiR-221 overexpression restrained HCMV replication by promoting type I interferon (IFN) and interferon stimulating genes (ISGs) production, whereas reintroduction of SOCS1 abrogated the miR-221-induced effects on HCMV replication. Importantly, miR-221 positively regulated the phosphorylation and activation of NF-κB by suppressing SOCS1. What's more, miR-221 agomir alleviated MCMV-induced tissue injury by promoting type I IFN antiviral activities in vivo. Thus, miR-221 modulates the infection and replication of HCMV as an intrinsic antiviral factor, and could be developed as a treatment target for anti-HCMV treatment.
Collapse
Affiliation(s)
- Beizhan Yan
- Blood Transfusion Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The Role of MicroRNA-21 in Venous Neointimal Hyperplasia: Implications for Targeting miR-21 for VNH Treatment. Mol Ther 2019; 27:1681-1693. [PMID: 31326400 PMCID: PMC6731518 DOI: 10.1016/j.ymthe.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
The molecular mechanism of hemodialysis access arteriovenous fistula (AVF) failure due to venous neointimal hyperplasia (VNH) is not known. The role of microRNA-21 (miR-21) in VNH associated with AVF failure was investigated by performing in vivo and in vitro experiments. In situ hybridization results revealed that miR-21 expression increased and was associated with fibroblasts in failed AVFs from patients. In a murine AVF model, qRT-PCR gene expression results showed a significant increase in miR-21 and a decrease in miR-21 target genes in graft veins (GVs) compared to contralateral veins in mouse AVF. miR-21 knockdown in GVs was performed using a lentivirus-mediated small hairpin RNA (shRNA), and this improved AVF patency with a decrease in neointima compared to control GVs. Moreover, loss of miR-21 in GVs significantly decreased the Tgfβ1, Col-Ia, and Col-Iva genes. Immunohistochemistry demonstrated a significant decrease in myofibroblasts and proliferation with an increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining in miR-21-knockdown vessels, along with a decrease in hypoxia-inducible factor-1 alpha (HIF-1α) and phospho-SMAD2 (pSMAD-2) and phospho-SMAD3 (pSMAD-3) and an increase in phosphatase and tensin homolog (PTEN) staining. Hypoxic fibroblast knockdown for miR-21 showed a significant decrease in Tgfβ-1 expression and pSMAD-2 and -3 levels and a decrease in myofibroblasts. These results indicate that miR-21 upregulation causes VNH formation by fibroblast-to-myofibroblast differentiation.
Collapse
|
26
|
Impact of HVT Vaccination on Splenic miRNA Expression in Marek's Disease Virus Infections. Genes (Basel) 2019; 10:genes10020115. [PMID: 30764490 PMCID: PMC6409792 DOI: 10.3390/genes10020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Marek’s Disease is a lymphoproliferative disease of chickens caused by Marek’s Disease Virus. Similar to other herpesviruses, Marek’s Disease Virus (MDV) encodes its own small non-coding regulatory RNAs termed microRNAs (miRNAs). We previously found that the expression profile of these viral miRNAs is affected by vaccination with Herpesvirus of Turkeys (HVT). To further characterize miRNA-mediated gene regulation in MDV infections, in the current study we examine the impact of HVT vaccination on cellular miRNA expression in MDV-infected specific-pathogen-free (SPF) chickens. We used small RNA-seq to identify 24 cellular miRNAs that exhibited altered splenic expression in MDV infected chickens (42 dpi) compared to age-matched uninfected birds. We then used Real Time-quantitative PCR (RT-qPCR) to develop expression profiles of a select group of these host miRNAs in chickens receiving the HVT vaccine and in vaccinated chickens subsequently infected with MDV. As was seen with viral miRNA, host miRNAs had unique splenic expression profiles between chickens infected with HVT, MDV, or co-infected birds. We also discovered a group of transcription factors, using a yeast one-hybrid screen, which regulates immune responses and cell growth pathways and also likely regulates the expression of these cellular miRNAs. Overall, this study suggests cellular miRNAs are likely a critical component of both protection from and progression of Marek’s Disease.
Collapse
|
27
|
Zhong Q, Hu Z, Li Q, Yi T, Li J, Yang H. Cyclin D1 silencing impairs DNA double strand break repair, sensitizes BRCA1 wildtype ovarian cancer cells to olaparib. Gynecol Oncol 2018; 152:157-165. [PMID: 30414739 DOI: 10.1016/j.ygyno.2018.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase inhibitors (PARPi) are active in cancer cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Strategies that disrupt HR may sensitize HR-proficient tumors to PARP inhibition. As a component of the core cell cycle machinery, cyclin D1 has unexpected function in DNA repair, suggesting that targeting cyclin D1 may represent a plausible strategy for expanding the utility of PARPi in ovarian cancer. METHODS BRCA1 wildtype ovarian cancer cells (A2780 and SKOV3) were treated with a combination of CCND1 siRNA and olaparib in vitro. Cell viability was assessed by MTT. The effects of the combined treatment on DNA damage repair and cell cycle progression were examined to dissect molecular mechanisms. In vivo studies were performed in an orthotopic ovarian cancer mouse model. Animals were treated with a combination of lentivirus-mediated CCND1 shRNA and olaparib or olaparib plus scrambled shRNA. Molecular downstream effects were examined by immunohistochemistry. RESULTS Silencing of cyclin D1 sensitized ovarian cancer cells to olaparib through interfering with RAD51 accumulation and inducing cell cycle G0/G1 arrest. Treatment of lentivirus-mediated CCND1-shRNA in nude mice statistically significantly augmented the olaparib response (mean tumor weight ± SD, CCND1-shRNA plus olaparib vs scrambled shRNA plus olaparib: 0.172 ± 0.070 g vs 0.324 ± 0.044 g, P< 0.05). CONCLUSIONS Silencing of cyclin D1 combined with olaparib may lead to substantial benefit for ovarian cancer management by mimicking a BRCAness phenotype, and induction of G0/G1 cell cycle arrest.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China.
| | - Zhongyi Hu
- Center for Research on Reproduction & Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiao Li
- Physical Examination Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Yi
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China
| | - Jinke Li
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| |
Collapse
|
28
|
Piletic K, Kunej T. MicroRNA-Target Interactions Reloaded: Identification of Potentially Functional Sequence Variants Within Validated MicroRNA-Target Interactions. ACTA ACUST UNITED AC 2018; 22:700-708. [DOI: 10.1089/omi.2018.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Klara Piletic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
29
|
Wu CC, Jiang X, Wang XZ, Liu XJ, Li XJ, Yang B, Ye HQ, Harwardt T, Jiang M, Xia HM, Wang W, Britt WJ, Paulus C, Nevels M, Luo MH. Human Cytomegalovirus Immediate Early 1 Protein Causes Loss of SOX2 from Neural Progenitor Cells by Trapping Unphosphorylated STAT3 in the Nucleus. J Virol 2018; 92:e00340-18. [PMID: 29950413 PMCID: PMC6096794 DOI: 10.1128/jvi.00340-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/19/2018] [Indexed: 01/25/2023] Open
Abstract
The mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV infection to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here, we show that HCMV infection of NPCs results in loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 downregulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection.IMPORTANCE Human cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss, and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.
Collapse
Affiliation(s)
- Cong-Cong Wu
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Juan Liu
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
| | - Xiao-Jun Li
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
| | - Han-Qing Ye
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
| | - Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Min Xia
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael Nevels
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | - Min-Hua Luo
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
31
|
Jiang X, Dong X, Li SH, Zhou YP, Rayner S, Xia HM, Gao GF, Yuan H, Tang YP, Luo MH. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex. Front Microbiol 2018; 9:1067. [PMID: 29922247 PMCID: PMC5996093 DOI: 10.3389/fmicb.2018.01067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.
Collapse
Affiliation(s)
- Xuan Jiang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Dong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shi-Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Hui-Min Xia
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hui Yuan
- Department of Medicine, Medical College, Jianghan University, Wuhan, China
| | - Ya-Ping Tang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Min-Hua Luo
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Xia B, Lu J, Wang R, Yang Z, Zhou X, Huang P. miR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front Cell Infect Microbiol 2018; 8:175. [PMID: 29888214 PMCID: PMC5981164 DOI: 10.3389/fcimb.2018.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is responsible for severe morbidity and mortality in animals and humans worldwide. miRNAs are a class of small noncoding single-stranded RNA molecules that can negatively regulate gene expression and play important roles in virus-host interaction. However, the roles of miRNAs in IAV infection are still not fully understood. Here, we profiled the cellular miRNAs of A549 cells infected with A/goose/Jilin/hb/2003 (H5N1) and a comparison A/Beijing/501/2009 (H1N1). miRNA microarray and quantitative PCR analysis showed that several miRNAs were differentially expressed in A549 cells during IAV infection. Subsequently, we demonstrated that IAV replication was essential for the regulation of these miRNAs, and bioinformatic analysis revealed that the targets of these miRNAs affected biological processes relevant to IAV replication. Specifically, miR-21-3p was found to be down-regulated in IAV-infected A549 cells and selected for further detailed analysis. Target prediction and functional study illustrated that miR-21-3p repressed the expression of HDAC8 by targeting its 3′UTR. Furthermore, we confirmed miR-21-3p could promote virus replication, which was similar to the result of knocking down HDAC8, indicating that miR-21-3p promoted IAV replication by suppressing HDAC8 expression. Altogether, our results suggest a potential host defense against IAV through down-regulation of miR-21-3p.
Collapse
Affiliation(s)
- Binghui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaowei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
33
|
He X, Teng J, Cui C, Li D, Wen L. MicroRNA-182 inhibits HCMV replication through activation of type I IFN response by targeting FOXO3 in neural cells. Exp Cell Res 2018; 369:197-207. [PMID: 29792850 DOI: 10.1016/j.yexcr.2018.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) has led to kinds of clinical disorders and great morbidity worldwide, such as sensorineural hearing loss (SNHL), mental retardation, and developmental delays in immunocompromised individuals. Congenital HCMV infection is a leading cause of birth defects, primarily manifesting as neurological disorders. Previous studies reported that HCMV has evolved a variety of mechanisms to evade the immune system, such as dysregulation of miRNAs. However, reports concerning the role of miRNA in HCMV infection in neural cells are limited. Here, we reported that a host microRNA, miR-182, was significantly up-regulated by HCMV infection in U-251MG and NPCs cells. Subsequently, our results of in vitro and in vivo experiments demonstrated that miR-182 was a positive regulator of interferon regulatory factor 7 (IRF7) by directly targeting FOXO3, resulting in the induction of IFN-I response and suppression of HCMV replication in neural cells. Taken together, our findings provide detailed molecular mechanisms of the antiviral function of miR-182 against HCMV infection in neural cells, and suggest an intrinsic anti-HCMV therapeutic target.
Collapse
Affiliation(s)
- Xia He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Can Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dongrui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lijun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
34
|
WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress. J Virol 2018; 92:JVI.00207-18. [PMID: 29437978 DOI: 10.1128/jvi.00207-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target.IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy.
Collapse
|
35
|
Abstract
As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many important roles in the development of disease and cancer. Recently, however, their role in viral and bacterial gene regulation as well as host gene regulation during disease progression has become a field of interest. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, increased virulence, to manipulation of host immune responses to provide a more ideal environment for these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated disease truly is.
Collapse
|
36
|
Wen L, Qiu Y, Cheng S, Jiang X, Ma YP, Fang W, Wang W, Cui J, Ruan Q, Zhao F, Hu F, Luo MH. Serologic and viral genome prevalence of HSV, EBV, and HCMV among healthy adults in Wuhan, China. J Med Virol 2018; 90:571-581. [PMID: 29091300 DOI: 10.1002/jmv.24989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/28/2017] [Indexed: 12/27/2022]
Abstract
The worldwide infection rate of herpesvirus is high, but the detailed prevalence in China, especially the central area, remains unclear. In the present study, the prevalence of herpes simplex virus (HSV), Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV) was investigated in 303 healthy adults in Wuhan, a representative city in Central China. Viral-specific IgG and IgM titers were examined in the serum by chemiluminescent immunoassay, and the existence of viral genomic DNA in blood cells was determined by nested PCR. The overall IgG seroprevalences were 81.5%, 95.4%, and 93.7% for HSV, EBV, and HCMV, while the corresponding IgM seroprevalences were only 6.3%, 2.3%, and 0. The viral genomic DNA of HSV, EBV, and HCMV was identified in the blood samples of 5.9%, 14.2%, and 22.8% of the tested donors, respectively. Significantly, less HSV IgM-positive samples were found in the population over 20 years old than below 20 group; female displayed higher chances for HSV IgG and genome positivity; and occupations such as waiters and medical staffs were shown to be with higher risk for HCMV genome positivity. This study provided useful reference data for the HSV, EBV, and HCMV prevalence in central China, and suggested the potential importance of detecting viral genome to complement serum test data.
Collapse
Affiliation(s)
- Le Wen
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Qiu
- Wuhan Brain Hospital, Ministry of Transportation, Wuhan, China
| | - Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Ping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Fang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Wang
- The Third Xiangya Hospital, South Central University, Changsha, China
| | - Jie Cui
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Hu
- Wuhan Brain Hospital, Ministry of Transportation, Wuhan, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| |
Collapse
|
37
|
Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Immunol 2017; 8:1775. [PMID: 29312306 PMCID: PMC5732478 DOI: 10.3389/fimmu.2017.01775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Snakehead vesiculovirus (SHVV), a new rhabdovirus isolated from diseased hybrid snakehead, has emerged as an important pathogen during the past few years in China with great economical losses in snakehead fish cultures. However, little is known about the mechanism of its pathogenicity. MicroRNAs are small noncoding RNAs that posttranscriptionally modulate gene expression and have been indicated to regulate almost all cellular processes. Our previous study has revealed that miR-214 was downregulated upon SHVV infection. Results The overexpression of miR-214 in striped snakehead (SSN-1) cells inhibited SHVV replication and promoted IFN-α expression, while miR-214 inhibitor facilitated SHVV replication and reduced IFN-α expression. These findings suggested that miR-214 negatively regulated SHVV replication probably through positively regulating IFN-α expression. Further investigation revealed that adenosine 5′-monophosphate-activated protein kinase (AMPK) was a target gene of miR-214. Knockdown of AMPK by siRNA inhibited SHVV replication and promoted IFN-α expression, suggesting that cellular AMPK positively regulated SHVV replication and negatively regulated IFN-α expression. Moreover, we found that siAMPK-mediated inhibition of SHVV replication could be partially restored by miR-214 inhibitor, indicating that miR-214 inhibited SHVV replication at least partially via targeting AMPK. Conclusion The findings of this study complemented our early study, and provide insights for the mechanism of SHVV pathogenicity. SHVV infection downregulated miR-214, and in turn, the downregulated miR-214 increased the expression of its target gene AMPK, which promoted SHVV replication via reducing IFN-α expression. It can therefore assume that cellular circumstance with low level of miR-214 is beneficial for SHVV replication and that SHVV evades host antiviral innate immunity through decreasing IFN-α expression via regulating cellular miR-214 expression.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Xie N, Li Z, Zuo R, Qi S, Zhu T, Liu L, Wan L, Yuan J. Serum SAA1 and APOE are novel indicators for human cytomegalovirus infection. Sci Rep 2017; 7:13407. [PMID: 29042594 PMCID: PMC5645357 DOI: 10.1038/s41598-017-13591-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is a global concern and highly infectious. HCMV-infected individuals are often carriers with damaged immunity. However few diagnostic indicators block HMCV control and prevention. Thus, we measured 21 serum proteins related to HCMV infection using iTRAQ-labeling based quantitative proteomic approaches and SAA1 and APOE were confirmed as candidate serum indicators for identification of HMCV infection according to ROC curve analysis and that co-occurrence of SAA1 and APOE are better markers than individual proteins.
Collapse
Affiliation(s)
- Ni Xie
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Sungang West Road, Shenzhen, 518000, China
| | - Zhonghang Li
- College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Ran Zuo
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Suwen Qi
- College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Ting Zhu
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Sungang West Road, Shenzhen, 518000, China
| | - Litao Liu
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Sungang West Road, Shenzhen, 518000, China
| | - Lili Wan
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Sungang West Road, Shenzhen, 518000, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
39
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
40
|
Liu XJ, Yang B, Huang SN, Wu CC, Li XJ, Cheng S, Jiang X, Hu F, Ming YZ, Nevels M, Britt WJ, Rayner S, Tang Q, Zeng WB, Zhao F, Luo MH. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase. PLoS Pathog 2017; 13:e1006542. [PMID: 28750047 PMCID: PMC5549770 DOI: 10.1371/journal.ppat.1006542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs). As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1) is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1) is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase. Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children, but the underlying pathogenesis of this infection remains unclear. Hes1, an important effector of Notch signaling, governs the fate of neural progenitor cells (NPCs) and fetal brain development. Here we demonstrate that: (1) HCMV infection results in loss of Hes1 protein in NPCs; (2) the HCMV immediate-early 1 protein (IE1) mediates Hes1 protein downregulation through direct interaction, which requires amino acids 451–475; (3) IE1 assembles a Hes1 ubiquitination complex and mediates Hes1 ubiquitination; and (4) IE1 also assembles an Sp100A ubiquitination complex and mediates Sp100A ubiquitination, but does not require amino acids 451–475. These results suggest that HCMV IE1 is a potential E3 ubiquitin ligase. Downregulation of Hes1 by HCMV infection and IE1 implies a novel mechanism linking Hes1 depletion to virus-induced neuropathogenesis.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cong-Cong Wu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Jun Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Fei Hu
- Wuhan Brain Hospital, Ministry of Transportation, Wuhan, Hubei, China
| | - Ying-Zi Ming
- The Third Xiangya Hospital, South Central University, Changsha, Hunan, China
| | - Michael Nevels
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - William J. Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Simon Rayner
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Department of Medical Genetics, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington DC, United States of America
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (WBZ); (FZ); (MHL)
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (WBZ); (FZ); (MHL)
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- * E-mail: (WBZ); (FZ); (MHL)
| |
Collapse
|
41
|
Cheng S, Jiang X, Yang B, Wen L, Zhao F, Zeng WB, Liu XJ, Dong X, Sun JY, Ming YZ, Zhu H, Rayner S, Tang Q, Fortunato E, Luo MH. Infected T98G glioblastoma cells support human cytomegalovirus reactivation from latency. Virology 2017; 510:205-215. [PMID: 28750324 DOI: 10.1016/j.virol.2017.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
T98G cells have been shown to support long-term human cytomegalovirus (HCMV) genome maintenance without infectious virus release. However, it remains unclear whether these viral genomes could be reactivated. To address this question, a recombinant HCMV (rHCMV) containing a GFP gene was used to infect T98G cells, and the infected cells absent of infectious virus production were designated T98G-LrV. Upon dibutyryl cAMP plus IBMX (cAMP/IBMX) treatment, a serial of phenomena were observed, including GFP signal increase, viral genome replication, lytic genes expression and infectious viruses release, indicating the reactivation of HCMV in T98G-LrV cells from a latent status. Mechanistically, HCMV reactivation in the T98G-LrV cells induced by cAMP/IBMX was associated with the PKA-CREB signaling pathway. These results demonstrate that HCMV was latent in T98G-LrV cells and could be reactivated. The T98G-LrV cells represent an effective model for investigating the mechanisms of HCMV reactivation from latency in the context of neural cells.
Collapse
Affiliation(s)
- Shuang Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuan Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bo Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Le Wen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xi-Juan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiao Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ying-Zi Ming
- The 3rd Xiangya Hospital, Central-South University, Changsha 410013, China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo 0316, Norway
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington, DC 20059, USA
| | - Elizabeth Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3051, USA.
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Mohammad AA, Costa H, Landázuri N, Lui WO, Hultenby K, Rahbar A, Yaiw KC, Söderberg-Nauclér C. Human cytomegalovirus microRNAs are carried by virions and dense bodies and are delivered to target cells. J Gen Virol 2017; 98:1058-1072. [PMID: 28589873 PMCID: PMC5656795 DOI: 10.1099/jgv.0.000736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection results in the production of virions, dense bodies (DBs) and non-infectious enveloped particles, all of which incorporate proteins and RNAs that can be transferred to host cells. Here, we investigated whether virions and DBs also carry microRNAs (miRNAs) and assessed their delivery and functionality in cells. Human lung fibroblasts (MRC-5) were infected with the HCMV strain AD169, and conditioned cell culture medium was collected and centrifuged. The pellets were treated with RNase-ONE, and the virions and DBs were purified with a potassium tartrate–glycerol gradient and dialysed. The virions and DBs were incubated with micrococcal nuclease, DNA and RNA were extracted and then analysed with TaqMan PCR assays, while the proteins were examined with Western blots. To assess the delivery of miRNAs to cells and their functionality, virions and DBs were irradiated with UV light. The purity of the virions and DBs was confirmed by typical morphology, the presence of the structural protein pp65 and the HCMV genome, the ability to infect MRC-5 cells and the absence of the host genome. RNA analysis revealed the presence of 14 HCMV-encoded miRNAs (UL22A-5p, US25-1-5p, UL22A-3p, US5-2-3p, UL112-3p, US25-2-3p, US25-2-5p, US33-3p, US5-1, UL36-5p, US4-5p, UL36-3p, UL70-5p and US25-1-3p), HCMV immediate-early mRNA and long non-coding RNA2.7, moreover, two host-encoded miRNAs (hsa-miR-218-5p and hsa-miR-21-5p) and beta-2-microglobulin RNA. UV-irradiated virions and DBs delivered viral miRNAs (US25-1-5p and UL112-3p) to the host cells, and miR-US25-1-5p was functional in a luciferase reporter assay. We conclude that virions and DBs carry miRNAs that are biologically functional and can be delivered to cells, which may affect cellular processes.
Collapse
Affiliation(s)
- Abdul-Aleem Mohammad
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Helena Costa
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Natalia Landázuri
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Koon-Chu Yaiw
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Experimental Cardiovascular Unit, Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells. J Virol 2017; 91:JVI.00127-17. [PMID: 28356523 DOI: 10.1128/jvi.00127-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Although a varicella-zoster virus (VZV) vaccine has been used for many years, the neuropathy caused by VZV infection is still a major health concern. Open reading frame 7 (ORF7) of VZV has been recognized as a neurotropic gene in vivo, but its neurovirulent role remains unclear. In the present study, we investigated the effect of ORF7 deletion on VZV replication cycle at virus entry, genome replication, gene expression, capsid assembly and cytoplasmic envelopment, and transcellular transmission in differentiated neural progenitor cells (dNPCs) and neuroblastoma SH-SY5Y (dSY5Y) cells. Our results demonstrate that the ORF7 protein is a component of the tegument layer of VZV virions. Deleting ORF7 did not affect viral entry, viral genome replication, or the expression of typical viral genes but clearly impacted cytoplasmic envelopment of VZV capsids, resulting in a dramatic increase of envelope-defective particles and a decrease in intact virions. The defect was more severe in differentiated neuronal cells of dNPCs and dSY5Y. ORF7 deletion also impaired transmission of ORF7-deficient virus among the neuronal cells. These results indicate that ORF7 is required for cytoplasmic envelopment of VZV capsids, virus transmission among neuronal cells, and probably the neuropathy induced by VZV infection.IMPORTANCE The neurological damage caused by varicella-zoster virus (VZV) reactivation is commonly manifested as clinical problems. Thus, identifying viral neurovirulent genes and characterizing their functions are important for relieving VZV related neurological complications. ORF7 has been previously identified as a potential neurotropic gene, but its involvement in VZV replication is unclear. In this study, we found that ORF7 is required for VZV cytoplasmic envelopment in differentiated neuronal cells, and the envelopment deficiency caused by ORF7 deletion results in poor dissemination of VZV among neuronal cells. These findings imply that ORF7 plays a role in neuropathy, highlighting a potential strategy to develop a neurovirulence-attenuated vaccine against chickenpox and herpes zoster and providing a new target for intervention of neuropathy induced by VZV.
Collapse
|
44
|
Liu XJ, Jiang X, Huang SN, Sun JY, Zhao F, Zeng WB, Luo MH. Human cytomegalovirus infection dysregulates neural progenitor cell fate by disrupting Hes1 rhythm and down-regulating its expression. Virol Sin 2017; 32:188-198. [PMID: 28451898 DOI: 10.1007/s12250-017-3956-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily affecting the central nervous system and causing its maldevelopment. As the essential downstream effector of Notch signaling pathway, Hes1, and its dynamic expression, plays an essential role on maintaining neural progenitor /stem cells (NPCs) cell fate and fetal brain development. In the present study, we reported the first observation of Hes1 oscillatory expression in human NPCs, with an approximately 1.5 hour periodicity and a Hes1 protein half-life of about 17 (17.6 ± 0.2) minutes. HCMV infection disrupts the Hes1 rhythm and down-regulates its expression. Furthermore, we discovered that depleting Hes1 protein disturbed NPCs cell fate by suppressing NPCs proliferation and neurosphere formation, and driving NPCs abnormal differentiation. These results suggested a novel mechanism linking disruption of Hes1 rhythm and down-regulation of Hes1 expression to neurodevelopmental disorders caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,The Joint Center of Translational Precision Medicine; Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510000, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
45
|
Feng C, Fu Y, Chen D, Wang H, Su A, Zhang L, Chang L, Zheng N, Wu Z. miR-127-5p negatively regulates enterovirus 71 replication by directly targeting SCARB2. FEBS Open Bio 2017; 7:747-758. [PMID: 28593131 PMCID: PMC5458453 DOI: 10.1002/2211-5463.12197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/27/2016] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand‐foot‐and‐mouth disease in young children and can cause severe cerebral and pulmonary complications and even fatality. This study aimed at elucidating whether and how EV71 infection is regulated by a cellular microRNA, miR‐127‐5p. We found that miR‐127‐5p can downregulate the expression of SCARB2, a main receptor of EV71, by targeting two potential sites in its 3′ UTR region and inhibit EV71 infection. Meanwhile, miR‐127‐5p expression was upregulated during EV71 infection. Notably, transfecting cells with miR‐127‐5p mimics led to a significant decrease in viral replication, while inhibition of endogenous miR‐127‐5p facilitated viral replication. Furthermore, our evidence showed that miR‐127‐5p did not affect postentry viral replication. Taken together, these results indicated that miR‐127‐5p inhibited EV71 replication by targeting the SCARB2 mRNA.
Collapse
Affiliation(s)
- Chunhong Feng
- Center for Public Health Research Medical School Nanjing University China.,School of life sciences Nanjing University China
| | - Yuxuan Fu
- Center for Public Health Research Medical School Nanjing University China
| | - Deyan Chen
- Center for Public Health Research Medical School Nanjing University China
| | - Huanru Wang
- Center for Public Health Research Medical School Nanjing University China
| | - Airong Su
- Center for Public Health Research Medical School Nanjing University China
| | - Li Zhang
- Center for Public Health Research Medical School Nanjing University China
| | - Liang Chang
- Center for Public Health Research Medical School Nanjing University China
| | - Nan Zheng
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| | - Zhiwei Wu
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| |
Collapse
|
46
|
Fu YZ, Su S, Gao YQ, Wang PP, Huang ZF, Hu MM, Luo WW, Li S, Luo MH, Wang YY, Shu HB. Human Cytomegalovirus Tegument Protein UL82 Inhibits STING-Mediated Signaling to Evade Antiviral Immunity. Cell Host Microbe 2017; 21:231-243. [PMID: 28132838 DOI: 10.1016/j.chom.2017.01.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 01/02/2017] [Indexed: 01/06/2023]
Abstract
Recognition of human cytomegalovirus (HCMV) DNA by the cytosolic sensor cGAS initiates STING-dependent innate antiviral responses. HCMV can antagonize host immune responses to promote latency infection. However, it is unknown whether and how HCMV targets the cGAS-STING axis for immune evasion. Here we identified the HCMV tegument protein UL82 as a negative regulator of STING-dependent antiviral responses. UL82 interacted with STING and impaired STING-mediated signaling via two mechanisms. UL82 inhibited the translocation of STING from the ER to perinuclear microsomes by disrupting the STING-iRhom2-TRAPβ translocation complex. UL82 also impaired the recruitment of TBK1 and IRF3 to the STING complex. The levels of downstream antiviral genes induced by UL82-deficient HCMV were higher than those induced by wild-type HCMV. Conversely, wild-type HCMV replicated more efficiently than the UL82-deficient mutant. These findings reveal an important mechanism of immune evasion by HCMV.
Collapse
Affiliation(s)
- Yu-Zhi Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Shan Su
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, China 430071
| | - Yi-Qun Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Pei-Pei Wang
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, China 430071
| | - Zhe-Fu Huang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China 430071
| | - Ming-Ming Hu
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, China 430071
| | - Wei-Wei Luo
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, China 430071
| | - Shu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Min-Hua Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China 430071
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China 430071
| | - Hong-Bing Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China 430072; Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, China 430071.
| |
Collapse
|
47
|
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2016; 6:35509-21. [PMID: 26431329 PMCID: PMC4742121 DOI: 10.18632/oncotarget.5899] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
A major issue in aging research is how cellular phenomena affect aging at the systemic level. Emerging evidence suggests that DNA damage response (DDR) signaling is a key mechanism linking DNA damage accumulation, cell senescence, and organism aging. DDR activation in senescent cells promotes acquisition of a proinflammatory secretory phenotype (SASP), which in turn elicits DDR and SASP activation in neighboring cells, thereby creating a proinflammatory environment extending at the local and eventually the systemic level. DDR activation is triggered by genomic lesions as well as emerging bacterial and viral metagenomes. Therefore, the buildup of cells with an activated DDR probably fuels inflamm-aging and predisposes to the development of the major age-related diseases (ARDs). Micro (mi)-RNAs - non-coding RNAs involved in gene expression modulation - are released locally and systemically by a variety of shuttles (exosomes, lipoproteins, proteins) that likely affect the efficiency of their biological effects. Here we suggest that some miRNAs, previously found to be associated with inflammation and senescence - miR-146, miR-155, and miR-21 - play a central role in the interplay among DDR, cell senescence and inflamm-aging. The identification of the functions of shuttled senescence-associated miRNAs is expected to shed light on the aging process and on how to delay ARD development.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Artan Ceka
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Kaminski H, Fishman JA. The Cell Biology of Cytomegalovirus: Implications for Transplantation. Am J Transplant 2016; 16:2254-69. [PMID: 26991039 DOI: 10.1111/ajt.13791] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Interpretation of clinical data regarding the impact of cytomegalovirus (CMV) infection on allograft function is complicated by the diversity of viral strains and substantial variability of cellular receptors and viral gene expression in different tissues. Variation also exists in nonspecific (monocytes and dendritic cells) and specific (NK cells, antibodies) responses that augment T cell antiviral activities. Innate immune signaling pathways and expanded pools of memory NK cells and γδ T cells also serve to amplify host responses to infection. The clinical impact of specific memory T cell anti-CMV responses that cross-react with graft antigens and alloantigens is uncertain but appears to contribute to graft injury and to the abrogation of allograft tolerance. These responses are modified by diverse immunosuppressive regimens and by underlying host immune deficits. The impact of CMV infection on the transplant recipient reflects cellular changes and corresponding host responses, the convergence of which has been termed the "indirect effects" of CMV infection. Future studies will clarify interactions between CMV infection and allograft injury and will guide interventions that may enhance clinical outcomes in transplantation.
Collapse
Affiliation(s)
- H Kaminski
- Kidney Transplant Unit, CHU Bordeaux Pellegrin, Place Raba Léon, Bordeaux, France
| | - J A Fishman
- Transplant Infectious Disease and Immunocompromised Host Program and MGH Transplant Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
49
|
Yang S, Pei Y, Li X, Zhao S, Zhu M, Zhao A. miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2. Virol J 2016; 13:105. [PMID: 27329300 PMCID: PMC4915174 DOI: 10.1186/s12985-016-0562-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes acute viral encephalitis in humans. Pigs are important amplifier hosts of JEV. Emerging evidence indicates that host microRNAs (miRNAs) play key roles in modulating viral infection and pathogenesis. However, mechanistic studies delineating the roles of miRNAs in regulating host-JEV interactions remain scarce. Results In this study, we demonstrated that miR-124 inhibited JEV replication in porcine kidney epithelial PK15 cells. Furthermore, using bioinformatics tools, we identified dynamin2 (DNM2), a GTPase responsible for vesicle scission, as a target of miR-124. Small interfering RNA (siRNA) depletion studies inicated that dynamin2 was required for efficient JEV replication. We also demonstrated that upregulation of miR-124 expression corresponded to decreased expression of its target, DNM2, in the JEV-infected PK15 cells. Conclusions Overall, these results suggest the importance of miR-124 in modulating JEV replication and provide a scientific basis for using cellular miRNAs in anti-JEV therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0562-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Songbai Yang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Yue Pei
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China.
| |
Collapse
|
50
|
Involvement of miR-15a in G0/G1 Phase Cell Cycle Arrest Induced by Porcine Circovirus Type 2 Replication. Sci Rep 2016; 6:27917. [PMID: 27302568 PMCID: PMC4908419 DOI: 10.1038/srep27917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Many viruses exploit the host cell division cycle to favour their own growth. Here we demonstrated that porcine circovirus type 2 (PCV2), which is a major causative agent of an emerging and important swine disease complex, PCV2-associated diseases, caused G0/G1 cell cycle arrest through degradation of cyclin D1 and E followed by reduction of retinoblastoma phosphorylation in synchronized PCV2-infected cells dependent upon virus replication. This induction of G0/G1 cell cycle arrest promoted PCV2 replication as evidenced by increased viral protein expression and progeny virus production in the synchronized PCV2-infected cells. To delineate a mechanism of miRNAs in regulating PCV2-induced G0/G1 cell cycle arrest, we determined expression levels of some relevant miRNAs and found that only miR-15a but not miR-16, miR-21, and miR-34a was significantly changed in the PCV2-infected cells. We further demonstrated that upregulation of miR-15a promoted PCV2-induced G0/G1 cell cycle arrest via mediating cyclins D1 and E degradation, in which involves PCV2 growth. These results reveal that G0/G1 cell cycle arrest induced by PCV2 may provide favourable conditions for viral protein expression and progeny production and that miR-15a is implicated in PCV2-induced cell cycle control, thereby contributing to efficient viral replication.
Collapse
|