1
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Castillo-Pérez J, Martínez-Lobo FJ, Frómeta R, Castro JM, Simarro I, Prieto C. Linear epitopes of PRRSV-1 envelope proteins ectodomains are not correlated with broad neutralization. Porcine Health Manag 2024; 10:44. [PMID: 39434120 PMCID: PMC11492654 DOI: 10.1186/s40813-024-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Neutralizing antibodies against PRRSV are capable of conferring protection against viral reinfection, but they tend to be strain specific and usually have poor cross-reactivity. Nonetheless, it has been described that there are individuals capable of efficiently neutralizing viruses of different origin, so it is expected that there are conserved neutralizing epitopes relevant for broad neutralization. However, although immunodominant regions and neutralizing epitopes have been described in different envelope proteins, their role in broad neutralization is unknown. The main objective of this study was to determine whether the linear epitopes existing in the ectodomains of PRRSV envelope proteins play a role in cross-neutralization. RESULTS A pepscan analysis was carried out using synthetic peptides against the ectodomains of PRRSV envelope proteins and PRRSV-hyperimmune sera of different cross-reactivity. The results obtained confirm the existence of antigenic regions in the ectodomains of the GP2, GP3, GP4 and GP5 that tend to be relatively conserved among different PRRSV isolates. Nonetheless, these antigenic regions have poor immunogenicity since they are only recognized by a limited number of sera. Furthermore, no differences were found between the reactivity of sera with broad cross-neutralization capacity and sera with poor heterologous neutralization activity, which indicate that linear epitopes existing in the ectodomains of PRRSV envelope proteins are not relevant for the development of broadly reactive neutralizing antibodies. Subsequently, some selected peptides were used in competition assays with the virus for binding to the cell receptors and in seroneutralization inhibition assays by incubation with hyperimmune sera. Firstly, some peptides that interfere with virus infectivity were identified in competition assays, but only in the case of one viral isolate, which points to the possible existence of a strain-dependent inhibition. However, the results of the seroneutralization inhibition assay indicate that, under the conditions of our study, none of the peptides used was capable of inhibiting virus neutralization by the hyperimmune sera. CONCLUSIONS The results obtained indicate that the linear peptides analyzed in this study do not play a major role in the induction of broadly reactive neutralizing antibodies, which could probably depend on conformational neutralizing.
Collapse
Affiliation(s)
- Jaime Castillo-Pérez
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Raquel Frómeta
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Rowland RRR, Brandariz-Nuñez A. Role of CD163 in PRRSV infection. Virology 2024; 600:110262. [PMID: 39423600 DOI: 10.1016/j.virol.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious agent that poses a significant economic threat to the global swine industry. Efficient viral entry relies on interactions with cellular receptors, with CD163-a cysteine-rich scavenger receptor found on porcine alveolar macrophages (PAMs)-playing a critical role. Extensive evidence supports CD163's essential function in PRRSV infection. This review synthesizes current knowledge about CD163's role, examining its structure-function relationship and identifying specific regions crucial for viral entry. We evaluate the established role of CD163 in PRRSV pathogenesis and highlight areas requiring further investigation, along with the potential for targeted therapeutic interventions. Understanding the molecular determinants of CD163's function is vital for developing effective strategies to control PRRSV infection and mitigate its economic impact on swine production. Further research into the PRRSV-CD163 interactions will be crucial for creating novel antiviral strategies.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
6
|
Matczuk AK, Kublicka A, Chodaczek G, Siedlecka M. Dual topology of equine arteritis virus GP3 protein and the role of arginine motif RXR in GP3 ER retention. Virology 2024; 597:110122. [PMID: 38850896 DOI: 10.1016/j.virol.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Glycoprotein 3 (GP3) serves as a structural protein in equine arteritis virus (EAV), forming a heterotrimeric complex that plays a pivotal role in virus tropism. In this study, we tested the membrane topology of GP3, both when expressed separately and during infection with recombinant tagged EAV GP3-HA. In our antibody accessibility experiment, we made a noteworthy discovery: GP3, when expressed separately, exhibits a dual topology. We introduced an additional N-glycosylation site, which was only partially used, providing further evidence for the dual topology of GP3. Intriguingly, this mutated GP3 was secreted into the medium, a result of the disruption of the ER retention motif RXR. The additional glycosylation site was not used when we examined the recombinant EAV virus with the same mutation. Despite the fact of higher expression levels of mutant GP3-HA, the protein was not secreted, and the recombinant mutant virus did not have growth delay compared to the EAV wild-type virus. This finding suggests that GP3 has a single type one membrane topology in virus infected cells, whereas the expression of GP3 in trans results in the dual topology of this protein. The RXR motif in the C-terminus is a co-factor of ER retention of the protein, but the main retention signal remains elusive.
Collapse
Affiliation(s)
- Anna K Matczuk
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agata Kublicka
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Grzegorz Chodaczek
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Magdalena Siedlecka
- Department of Epizootiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Shaw TM, Huey D, Mousa-Makky M, Compaleo J, Nennig K, Shah AP, Jiang F, Qiu X, Klipsic D, Rowland RRR, Slukvin II, Sullender ME, Baldridge MT, Li H, Warren CJ, Bailey AL. The neonatal Fc receptor (FcRn) is a pan-arterivirus receptor. Nat Commun 2024; 15:6726. [PMID: 39112502 PMCID: PMC11306234 DOI: 10.1038/s41467-024-51142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection. We also show that FcRn synergizes with another known arterivirus entry factor, CD163, to mediate arterivirus entry. Overexpression of FcRn and CD163 sensitizes non-permissive cells to infection and enables the culture of fastidious arteriviruses. Treatment of multiple cell lines with a pre-clinical anti-FcRn monoclonal antibody blocked infection and rescued cells from arterivirus-induced death. Altogether, this study identifies FcRn as a novel pan-arterivirus receptor, with implications for arterivirus emergence, cross-species infection, and host-directed pan-arterivirus countermeasure development.
Collapse
Affiliation(s)
- Teressa M Shaw
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Devra Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Makky Mousa-Makky
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jared Compaleo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Kylie Nennig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Aadit P Shah
- Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fei Jiang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xueer Qiu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Devon Klipsic
- Research Animal Resources and Compliance (RARC), University of Wisconsin-Madison, Madison, WI, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Igor I Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Meagan E Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Haichang Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Cody J Warren
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA.
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.
| | - Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Yang H, Sun M, Qiu H, Xu H, Deng Z, Gu H, Wang N, Du L, Shi F, Zhou J, He F. Nanobody peptide conjugate: a novel CD163 based broad neutralizing strategy against porcine reproductive and respiratory syndrome virus. J Nanobiotechnology 2024; 22:388. [PMID: 38956618 PMCID: PMC11218349 DOI: 10.1186/s12951-024-02662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-β activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.
Collapse
Affiliation(s)
- Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Meiqi Sun
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Huiling Xu
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Han Gu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Nan Wang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China.
| |
Collapse
|
9
|
Clilverd H, Li Y, Martín-Valls G, Aguirre L, Martín M, Cortey M, Mateu E. Selection of viral variants with enhanced transmission and reduced neutralization susceptibility alongside lateral introductions may explain the persistence of porcine reproductive and respiratory syndrome virus in vaccinated breeding herds. Virus Evol 2024; 10:veae041. [PMID: 38817667 PMCID: PMC11137674 DOI: 10.1093/ve/veae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
This study investigates the long-term evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV-1) in an endemically infected and vaccinated pig herd. Over a one year and a half period, piglets from seven farrowing batches in a 300-sow PRRSV-vaccinated farm were monitored from birth to nine weeks of age by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Eighty-five PRRSV-positive samples were subjected to whole genome sequencing (Illumina Miseq), and 251 samples to open reading frame 5 (ORF5) sequencing. Farm-specific PRRSV variants' impact on anti-PRRSV antibodies was evaluated using enzyme-linked immunosorbent and neutralizing antibody assays. The replication kinetics and cytokine inhibition capabilities (IFN-α and TNF-α) of these variants were assessed in porcine alveolar macrophages. The study revealed fluctuating PRRSV-1 incidences in farrowing units and nurseries, attributed to two key evolutionary events: an escape variant emergence and a lateral introduction of a new strain. Initially, strain 1 variant α was swiftly replaced within weeks by variant 1β (99.5 per cent genomic similarity), with twenty-five amino acid mutations, primarily in nsp1α, GP2, GP3, and GP5, including an additional glycosylation site and a deletion downstream the neutralization epitope of GP5. This shift to 1β correlated with increased incidence in nurseries and higher viral loads, with sera from 1α-exposed animals showing reduced neutralization against 1β. Consistently for in vitro assays, variant 1β demonstrated enhanced replication in porcine alveolar macrophages but no difference regarding IFN-α or TNF-α responses. Later, a new strain (strain 2, 83.3 per cent similarity to strain 1) emerged and led to incidence resurgence because of the low cross reactivity with the previous antibodies. The study highlights PRRSV's rapid adaptability and challenges in controlling its spread, underscoring the necessity for more effective vaccines and eradication approaches.
Collapse
Affiliation(s)
- Hepzibar Clilverd
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Yanli Li
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Laia Aguirre
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Marga Martín
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Martí Cortey
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
10
|
Rowland RR, Brandariz-Nuñez A. Role of N-linked glycosylation in porcine reproductive and respiratory syndrome virus (PRRSV) infection. J Gen Virol 2024; 105:001994. [PMID: 38776134 PMCID: PMC11165596 DOI: 10.1099/jgv.0.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.
Collapse
Affiliation(s)
- Raymond R.R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
11
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
12
|
Deng Z, Zhang S, Sun M, Yang H, Lu Y, Wang M, Fang W, Shi F, He F. Nanobodies against porcine CD163 as PRRSV broad inhibitor. Int J Biol Macromol 2023; 253:127493. [PMID: 37858656 DOI: 10.1016/j.ijbiomac.2023.127493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
PRRSV (Porcine Reproductive and Respiratory Syndrome Virus) is a major swine pathogen causing economic losses. To the date, effective broad PRRSV inhibitory strategies have not been available in practice yet. Targeting the key viral receptor CD163 to block PRRSV entry has emerged as an alternative approach beside vaccines for PRRSV inhibition. As an effective therapeutic tool, nanoantibodies (Nbs) have been widely used in antiviral research. In this study, a phage display VHH library was constructed for the selection of Nbs against porcine CD163 scavenger receptor cysteine-rich 5-9 domain (SRCR5-9). After five rounds of bio-panning and indirect ELISA, seven CD163-specific Nbs (Nb1-Nb7) were identified. All obtained Nbs displayed strong affinity to CD163 receptor and excellent antiviral activity. In particular, Nb2 exhibited significant broad inhibitory effects on variable PRRSV lineages and downregulated virus-related NF-κB signaling. Further studies suggested that Nbs mainly exerted antiviral functions by interfering with virus attachment stage, and also decreased the transcription of CD163. The conformational epitopes recognized by Nbs were localized in the SRCR5 domain of CD163, a crucial region in PRRSV infection. Overall, our findings provide a novel insight into the biofunction of CD163 in antiviral infection and the development of broad-spectrum strategies against PRRSV.
Collapse
Affiliation(s)
- Zhuofan Deng
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Shengkun Zhang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Meiqi Sun
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Haotian Yang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Ying Lu
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Maopeng Wang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou 325000, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fang He
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Liu B, Luo L, Shi Z, Ju H, Yu L, Li G, Cui J. Research Progress of Porcine Reproductive and Respiratory Syndrome Virus NSP2 Protein. Viruses 2023; 15:2310. [PMID: 38140551 PMCID: PMC10747760 DOI: 10.3390/v15122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is globally prevalent and seriously harms the economic efficiency of pig farming. Because of its immunosuppression and high incidence of mutant recombination, PRRSV poses a great challenge for disease prevention and control. Nonstructural protein 2 (NSP2) is the most variable functional protein in the PRRSV genome and can generate NSP2N and NSP2TF variants due to programmed ribosomal frameshifts. These variants are broad and complex in function and play key roles in numerous aspects of viral protein maturation, viral particle assembly, regulation of immunity, autophagy, apoptosis, cell cycle and cell morphology. In this paper, we review the structural composition, programmed ribosomal frameshift and biological properties of NSP2 to facilitate basic research on PRRSV and to provide theoretical support for disease prevention and control and therapeutic drug development.
Collapse
Affiliation(s)
- Benjin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Lingzhi Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Houbin Ju
- Shanghai Animal Disease Prevention and Control Center, Shanghai 201103, China;
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| |
Collapse
|
14
|
Zhang H, Duan K, Du Y, Xiao S, Fang L, Zhou Y. One-Step Assembly of a PRRSV Infectious cDNA Clone and a Convenient CRISPR/Cas9-Based Gene-Editing Technology for Manipulation of PRRSV Genome. Viruses 2023; 15:1816. [PMID: 37766223 PMCID: PMC10536534 DOI: 10.3390/v15091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.
Collapse
Affiliation(s)
- Hejin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kaiqi Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbin Du
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
15
|
Cui Z, Zhou L, Zhao S, Li W, Li J, Chen J, Zhang Y, Xia P. The Host E3-Ubiquitin Ligase TRIM28 Impedes Viral Protein GP4 Ubiquitination and Promotes PRRSV Replication. Int J Mol Sci 2023; 24:10965. [PMID: 37446143 DOI: 10.3390/ijms241310965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a highly pathogenic porcine virus that brings tremendous economic losses to the global swine industry. PRRSVs have evolved multiple elegant strategies to manipulate the host proteins and circumvent against the antiviral responses to establish infection. Therefore, the identification of virus-host interactions is critical for understanding the pathogenesis of PRRSVs. Tripartite motif protein 28 (TRIM28) is a transcriptional co-repressor involved in the regulation of viral and cellular transcriptional programs; however, its precise role in regulating PRRSV infection remains unknown. In this study, we found that the mRNA and protein levels of TRIM28 were up-regulated in PRRSV-infected porcine alveolar macrophages (PAMs) and MARC-145 cells. Ectopic TRIM28 expression dramatically increased viral yields, whereas the siRNA-mediated knockdown of TRIM28 significantly inhibited PRRSV replication. Furthermore, we used a co-immunoprecipitation (co-IP) assay to demonstrate that TRIM28 interacted with envelope glycoprotein 4 (GP4) among PRRSV viral proteins. Intriguingly, TRIM28 inhibited the degradation of PRRSV GP4 by impeding its ubiquitination. Taken together, our work provides evidence that the host E3-ubiquitin ligase TRIM28 suppresses GP4 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM28, as a potential target in the development of anti-viral drugs against PRRSV.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jiahui Li
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
16
|
Cai H, Zhang H, Cheng H, Liu M, Wen S, Ren J. Progress in PRRSV Infection and Adaptive Immune Response Mechanisms. Viruses 2023; 15:1442. [PMID: 37515130 PMCID: PMC10385784 DOI: 10.3390/v15071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Since its discovery, Porcine reproductive and respiratory syndrome (PRRS) has had a huge impact on the farming industry. The virus that causes PRRS is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and because of its genetic diversity and the complexity of the immune response, the eradication of PRRS has been a challenge. To provide scientific references for PRRSV control and vaccine development, this study describes the processes of PRRSV-induced infection and escape, as well as the host adaptive immune response to PRRSV. It also discusses the relationship between PRRSV and the adaptive immune response.
Collapse
Affiliation(s)
- Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang 471099, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| | - Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| |
Collapse
|
17
|
Zhu J, He X, Bernard D, Shen J, Su Y, Wolek A, Issacs B, Mishra N, Tian X, Garmendia A, Tang Y. Identification of New Compounds against PRRSV Infection by Directly Targeting CD163. J Virol 2023; 97:e0005423. [PMID: 37133376 PMCID: PMC10231194 DOI: 10.1128/jvi.00054-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The porcine reproductive and respiratory syndrome viruses (PRRSV) led to a global panzootic and huge economical losses to the pork industry. PRRSV targets the scavenger receptor CD163 for productive infection. However, currently no effective treatment is available to control the spread of this disease. Using bimolecular fluorescence complementation (BiFC) assays, we screened a set of small molecules potentially targeting the scavenger receptor cysteine-rich domain 5 (SRCR5) of CD163. We found that the assay examining protein-protein interactions (PPI) between PRRSV glycoprotein 4 (GP4) and the CD163-SRCR5 domain mainly identifies compounds that potently inhibit PRRSV infection, while examining the PPI between PRRSV-GP2a and the SRCR5 domain maximized the identification of positive compounds, including additional ones with various antiviral capabilities. These positive compounds significantly inhibited both types 1 and 2 PRRSV infection of porcine alveolar macrophages. We confirmed that the highly active compounds physically bind to the CD163-SRCR5 protein, with dissociation constant (KD) values ranging from 28 to 39 μM. Structure-activity-relationship (SAR) analysis revealed that although both the 3-(morpholinosulfonyl)anilino and benzenesulfonamide moieties in these compounds are critical for the potency to inhibit PRRSV infection, the morpholinosulfonyl group can be replaced by chlorine substituents without significant loss of antiviral potency. Our study established a system for throughput screening of natural or synthetic compounds highly effective on blocking of PRRSV infection and shed light on further SAR modification of these compounds. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Current vaccines cannot provide cross protection against different strains, and there are no effective treatments available to hamper the spread of this disease. In this study, we identified a group of new small molecules that can inhibit the PRRSV interaction with its specific receptor CD163 and dramatically block the infection of both types 1 and type 2 PRRSVs to host cells. We also demonstrated the physical association of these compounds with the SRCR5 domain of CD163. In addition, molecular docking and structure-activity relationship analyses provided new insights for the CD163/PRRSV glycoprotein interaction and further improvement of these compounds against PRRSV infection.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Xin He
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Jianing Shen
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew Wolek
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Brianna Issacs
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Neha Mishra
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuchun Tian
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Chen X, Pan J, Huang L, Zhao M. Research progress on the E protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1139628. [PMID: 37256059 PMCID: PMC10226392 DOI: 10.3389/fmicb.2023.1139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease impacting the global pig industry, and it is characterized by reproductive disorder in sows and respiratory disorder in pigs of all ages. The PRRSV E protein is a nonglycosylated structural protein encoded by the ORF2b gene. The E protein is not necessary for the assembly of virus particles, but deletion of the E protein leads to transmissible virus particles not being produced. To better understand the structure and function of the E protein, we reviewed its genetic and evolutionary analysis, characteristics, subcellular localization and topology, ion channel activity, cellular immune response, additional biological functions, interactions with host proteins, interactions with PRRSV proteins, roles in infection, pathogenicity, and drugs. Therefore, this review can provide a theoretical basis for gaining an in-depth understanding of the E protein of PRRSV-2.
Collapse
Affiliation(s)
- Xiuqiao Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - JingHua Pan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| |
Collapse
|
19
|
Guo H, Gaowa W, Zhao H, Liu C, Hou L, Wen Y, Wang F. Glycosylated protein 4-deficient PRRSV in complementing cell line shows low virus titer. Res Vet Sci 2023; 158:84-95. [PMID: 36958176 DOI: 10.1016/j.rvsc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) threats the swine industry seriously. The spread of live vaccine virus leads to the emergence of recombinant virus, which brings biosafety problems. The replication-deficient virus as a vaccine candidate would avoid this problem. In the present study, the recombinant lentiviral plasmid pLV-EF1α-EGFP-2A-ORF4 was co-transfected with lentivirus in HEK293FT cells. The transfection mixture was harvested and transduced into Marc-145 to screen a cell line stably expressing the PRRSV ORF4 with puromycin. The cell line Marc-145-GP4 was confirmed with PCR, RT-PCR, IFA, and Western blotting using a monoclonal antibody against Glycoprotein 4 (GP4) of PRRSV. To obtain a replication-deficient PRRSV, Western blotting the recombinant plasmid pNM09-ΔORF4 was constructed by Overlap PCR and DNA recombinant technology with the pNM09 as a backbone plasmid. The pNM09-ΔORF4 was transfected into Marc-145-GP4 with electroporation after transcription in vitro. The replication-deficient virus was rescued on Marc-145-GP4 cells with trans-complementation of ORF4 gene and verified by RT-PCR and IFA. The results indicated that a cell line Marc-145-GP4 stably expressed PRRSV ORF4 was obtained. The recombinant GP4 was successfully expressed and obtained a monoclonal antibody Anti-A-GP4-70, which can specifically react with the virus. Finally, the replication-deficient virus rNM09-ΔORF4 can be rescued with low titer and could only reproduce on the Marc-145-GP4 cells. Unfortunately, the rNM09-ΔORF4 showed too low virus replication titer to determine it. This study lays the foundation for the rapid detection of PRRS and the functional study of GP4 and provides experience for replication-deficient PRRSV.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wudong Gaowa
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hongzhe Zhao
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chunyu Liu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Hou
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongjun Wen
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Fengxue Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
20
|
Makau DN, Prieto C, Martínez-Lobo FJ, Paploski IAD, VanderWaal K. Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of Machine Learning. Microbiol Spectr 2023; 11:e0408522. [PMID: 36511691 PMCID: PMC9927307 DOI: 10.1128/spectrum.04085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) remains a significant challenge due to the genetic and antigenic variability of the causative virus (PRRSV). Predominantly, PRRSV management includes using vaccines and live virus inoculations to confer immunity against PRRSV on farms. While understanding cross-protection among strains is crucial for the continued success of these interventions, understanding how genetic diversity translates to antigenic diversity remains elusive. We developed machine learning algorithms to estimate antigenic distance in silico, based on genetic sequence data, and identify differences in specific amino acid sites associated with antigenic differences between viruses. First, we obtained antigenic distance estimates derived from serum neutralization assays cross-reacting PRRSV monospecific antisera with virus isolates from 27 PRRSV1 viruses circulating in Europe. Antigenic distances were weakly to moderately associated with ectodomain amino acid distance for open reading frames (ORFs) 2 to 4 (ρ < 0.2) and ORF5 (ρ = 0.3), respectively. Dividing the antigenic distance values at the median, we then categorized the sera-virus pairs into two levels: low and high antigenic distance (dissimilarity). In the machine learning models, we used amino acid distances in the ectodomains of ORFs 2 to 5 and site-wise amino acid differences between the viruses as potential predictors of antigenic dissimilarity. Using mixed-effect gradient boosting models, we estimated the antigenic distance (high versus low) between serum-virus pairs with an accuracy of 81% (95% confidence interval, 76 to 85%); sensitivity and specificity were 86% and 75%, respectively. We demonstrate that using sequence data we can estimate antigenic distance and potential cross-protection between PRRSV1 strains. IMPORTANCE Understanding cross-protection between cocirculating PRRSV1 strains is crucial to reducing losses associated with PRRS outbreaks on farms. While experimental studies to determine cross-protection are instrumental, these in vivo studies are not always practical or timely for the many cocirculating and emerging PRRSV strains. In this study, we demonstrate the ability to rapidly estimate potential immunologic cross-reaction between different PRRSV1 strains in silico using sequence data routinely collected by production systems. These models can provide fast turn-around information crucial for improving PRRS management decisions such as selecting vaccines/live virus inoculation to be used on farms and assessing the risk of outbreaks by emerging strains on farms previously exposed to certain PRRSV strains and vaccine development among others.
Collapse
Affiliation(s)
- Dennis N. Makau
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Cinta Prieto
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - I. A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
21
|
Chaudhari J, Leme RA, Durazo-Martinez K, Sillman S, Workman AM, Vu HLX. A Single Amino Acid Substitution in Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 2 Significantly Impairs Its Infectivity in Macrophages. Viruses 2022; 14:v14122822. [PMID: 36560826 PMCID: PMC9781675 DOI: 10.3390/v14122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted tropism for macrophages and CD163 is a key receptor for infection. In this study, the PRRSV strain NCV1 was passaged on MARC-145 cells for 95 passages, and two plaque-clones (C1 and C2) were randomly selected for further analysis. The C1 virus nearly lost the ability to infect porcine alveolar macrophages (PAMs), as well as porcine kidney cells expressing porcine CD163 (PK15-pCD163), while the C2 virus replicates well in these two cell types. Pretreatment of MARC-145 cells with an anti-CD163 antibody nearly blocked C1 virus infection, indicating that the virus still required CD163 to infect cells. The C1 virus carried four unique amino acid substitutions: three in the nonstructural proteins and a K160I in GP2. The introduction of an I160K substitution in GP2 of the C1 virus restored its infectivity in PAMs and PK15-pCD163 cells, while the introduction of a K160I substitution in GP2 of the low-passaged, virulent PRRSV strain NCV13 significantly impaired its infectivity. Importantly, pigs inoculated with the rNCV13-K160I mutant exhibited lower viremia levels and lung lesions than those infected with the parental rNCV13. These results demonstrated that the K160 residue in GP2 is one of the key determinants of PRRSV tropism.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Raquel Arruda Leme
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Clinal Research Department, Dechra Pharmaceuticals, Londrina 86030, Brazil
| | - Kassandra Durazo-Martinez
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aspen M. Workman
- United State Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
22
|
Li C, Xu H, Zhao J, Gong B, Sun Q, Xiang L, Li W, Guo Z, Li J, Tang YD, Leng C, Peng J, Wang Q, An T, Cai X, Tian ZJ, Zhou G, Zhang H. Epidemiological investigation and genetic evolutionary analysis of PRRSV-1 on a pig farm in China. Front Microbiol 2022; 13:1067173. [PMID: 36532471 PMCID: PMC9751794 DOI: 10.3389/fmicb.2022.1067173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has brought serious economic losses to pig industry. PRRSV-1 have existed in China for more than 25 years. The prevalence and features of PRRSV-1 on Chinese farms are unclear. We continuously monitored PRRSV in a pig farm with strict biosafety measures in Henan Province, China, in 2020. The results showed that multiple types of PRRSV coexisted on this single pig farm. PRRSV-1 was one of the main circulating strains on the farm and was responsible for infections throughout nearly the entire epidemic cycle. Phylogenetic analysis showed that PRRSV-1 isolates from this pig farm formed an independent branch, with all isolates belonging to BJEU06-1-like PRRSV. The analysis of selection pressure on ORF5 on this branch identified 5 amino acids as positive selection sites, indicating that PRRSV-1 had undergone adaptive evolution on this farm. According to the analysis of ORF5 of PRRSV-1 on this farm, the evolutionary rate of the BJEU06-1-like branch was estimated to be 1.01 × 10-2 substitutions/site/year. To further understand the genome-wide characteristics of PRRSV-1 on this pig farm, two full-length PRRSV-1 genomes representative of pig farms were obtained. The results of amino acid alignment revealed that although one NSP2 deletion was consistent with BJEU06-1, different new features were found in ORF3 and ORF4. According to the above results, PRRSV-1 has undergone considerable evolution in China. This study is the first to report the prevalence and characteristics of PRRSV-1 on a large farm in mainland China, which will provide a reference for the identification and further prevention and control of PRRSV-1.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
23
|
Deb R, Yadav AK, Sengar GS, Sonowal J, Lalita D, Pegu SR, Singh I, Linda N, Das PJ, Kumar S, Pal P, Paul S, Rajkhowa S, Gupta VK. Development of CD163 receptor-based enzyme-linked immunosorbent assay for diagnosis of porcine reproductive and respiratory syndrome virus. 3 Biotech 2022; 12:325. [PMID: 36276438 PMCID: PMC9569409 DOI: 10.1007/s13205-022-03376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important economical disease in the global swine industry. The accurate detection of the PRRS virus (PRRSV) antigen is essential for the disease control and prevention programme. In this study, an indirect enzyme-linked immunosorbent test (PRRSVCD163-iELISA) was developed for the detection of the PRRSV antigen in samples of post-mortem swine tissue using the recombinant pig CD163 receptor protein as the capture ligand. The test was found to be specific for PRRSV, with no cross-reactions with other prevalent pig viral pathogens. The assay was validated by testing 217 post-mortem porcine tissue samples and the results were found to be satisfactory with a relative accuracy of 88.88%. Our assay is also quite precise, with intra- and inter-assay CVs of 6% and 10%, respectively. These findings imply that the PRRSVCD163-iELISA developed is capable of detecting the PRRSV antigen in swine post-mortem tissue samples. This research showed that porcine CD163, the PRRSV cellular receptor, can be exploited to build a diagnostic technique for the detection of PRRSV antigen. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03376-z.
Collapse
Affiliation(s)
- Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - Ajay Kumar Yadav
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP India
| | | | - Joyshikh Sonowal
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - D. Lalita
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP India
| | - Seema Rani Pegu
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | | | | | - Pranab Jyoti Das
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - Satish Kumar
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - Prasanna Pal
- ICAR-National Dairy Research Institute, Karnal, Haryana India
| | - Souvik Paul
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - Swaraj Rajkhowa
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati, Assam 781131 India
| |
Collapse
|
24
|
Using Alphafold2 to Predict the Structure of the Gp5/M Dimer of Porcine Respiratory and Reproductive Syndrome Virus. Int J Mol Sci 2022; 23:ijms232113209. [DOI: 10.3390/ijms232113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven β-strands from each protein, which interact via β-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.
Collapse
|
25
|
Ye N, Wang B, Feng W, Tang D, Zeng Z. PRRS virus receptors and an alternative pathway for viral invasion. Virus Res 2022; 320:198885. [PMID: 35948131 DOI: 10.1016/j.virusres.2022.198885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a highly restricted cell tropism, which is closely related to the specific receptors associated with PRRSV infection. At least nine cellular molecules have been identified as putative receptors for PRRSV, including CD163, a cysteine-rich scavenger receptor. With the participation of the CD163 receptor and other cofactors, PRRSV invades cells via low pH-dependent clathrin-mediated endocytosis. In addition, PRRSV utilizes viral apoptotic mimicry to infect cells though macropinocytosis as an alternative pathway. In this review, we discuss recent advances in the studies on receptors and pathways that play an important role in PRRSV invasion, and simultaneously explore the use of specific antibodies, small molecules, and blockers targeting receptor-ligand interactions, as a potential strategy for controlling PRRSV infection. Novel antiviral strategies against PRRSV could be developed by identifying the interaction between receptors and ligands.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
26
|
Genomic Analysis of Porcine Reproductive and Respiratory Syndrome Virus 1 Revealed Extensive Recombination and Potential Introduction Events in China. Vet Sci 2022; 9:vetsci9090450. [PMID: 36136666 PMCID: PMC9505194 DOI: 10.3390/vetsci9090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome, caused by the porcine reproductive and respiratory syndrome virus, is considered one of the most devastating swine diseases worldwide. Porcine reproductive and respiratory syndrome virus 1 was first isolated in China in 2006, and there have been few reports concerning its genetic characteristics in China. We hope to find out the regularity of genetic diversity, recombination, and evolution of the virus by analyzing all available genomic sequences during 1991–2018. We found that high-frequency recombination regions were concentrated in non-structural protein 2 and structural proteins 2 to 4 and extensive deletions in non-structural protein 2; phylogenetic analysis revealed four independent introductions in China. Our results suggest that attention should be paid to the prevention and control of porcine reproductive and respiratory syndrome virus 1 and the rational use of vaccine strains. These results will help us to understand the recombination of porcine reproductive and respiratory syndrome virus and strengthen viral inspection before mixing herds of swine to reduce the probability of novel recombinant variants. Moreover, our study might form the basis of monitoring and control measures to prevent the spread of this economically important virus. Abstract Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is considered one of the most devastating swine diseases worldwide. PRRSV-1 was first isolated in China in 2006. However, there were few reports concerning the genetic characteristics of PRRSV-1 in China. In this study, three PRRSV-1 strains (HL85, HeB3, and HeB47) were detected by a general RT-qPCR method from clinical samples in 2018. HeB47 was identified as a recombinant between the BJEU06-1 and CReSA228-like strains. To further analyze the recombination and deletion features of PRRSV-1, all the available 88 complete genome sequences (isolated in 19 countries) from 1991 to 2018 in GenBank were analyzed. The high-frequency recombination regions were concentrated in NSP2 and GP2 to GP4. More importantly, phylogenetic analysis of PRRSV-1 revealed four independent introductions in China. Therefore, it is necessary to strengthen the important monitoring of breeding pigs and pork products and epidemiological surveys on pig farms to prevent the further spread of PRRSV-1.
Collapse
|
27
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
28
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
29
|
Stoian AM, Rowland RR, Brandariz-Nuñez A. Identification of CD163 regions that are required for porcine reproductive and respiratory syndrome virus (PRRSV) infection but not for binding to viral envelope glycoproteins. Virology 2022; 574:71-83. [DOI: 10.1016/j.virol.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
|
30
|
Research Progress in Porcine Reproductive and Respiratory Syndrome Virus–Host Protein Interactions. Animals (Basel) 2022; 12:ani12111381. [PMID: 35681845 PMCID: PMC9179581 DOI: 10.3390/ani12111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which has been regarded as a persistent challenge for the pig industry in many countries. PRRSV is internalized into host cells by the interaction between PRRSV proteins and cellular receptors. When the virus invades the cells, the host antiviral immune system is quickly activated to suppress the replication of the viruses. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate the host machine and circumvent against the host antiviral responses. Therefore, identification of virus–host interactions is critical for understanding the host defense against viral infections and the pathogenesis of the viral infectious diseases. Most viruses, including PRRSV, interact with host proteins during infection. On the one hand, such interaction promotes the virus from escaping the host immune system to complete its replication. On the other hand, the interactions regulate the host cell immune response to inhibit viral infections. As common antiviral drugs become increasingly inefficient under the pressure of viral selectivity, therapeutic agents targeting the intrinsic immune factors of the host protein are more promising because the host protein has a lower probability of mutation under drug-mediated selective pressure. This review elaborates on the virus–host interactions during PRRSV infection to summarize the pathogenic mechanisms of PRRSV, and we hope this can provide insights for designing effective vaccines or drugs to prevent and control the spread of PRRS.
Collapse
|
31
|
Li L, Sun W, Hu Q, Wang T, Zhu G, Zhao Q, Zhou EM. Identification of MYH9 Key Domain Involved in the Entry of PRRSV Into Permissive Cells. Front Microbiol 2022; 13:865343. [PMID: 35694306 PMCID: PMC9174932 DOI: 10.3389/fmicb.2022.865343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge losses economically to the pig industry worldwide. Previous research suggested that receptor dependence is necessary for PRRSV infection. MYH9 and CD163 are indispensable for PRRSV entry into a porcine alveolar macrophage. In the present study, human MYH9 (hMYH9) and mouse MYH9 (mMYH9), similar to swine MYH9, could also accelerate PRRSV infection in pCD163-mediated cell lines. Knockdown of MYH9 activity using the specific small interfering RNA or inhibitor (blebbistatin) concomitantly decreased PRRSV infection. C-terminal fragment of MYH9 (PRA) proteins from different mammalian species contains a conserved binding domain (aa1676-1791) for PRRSV binding, since the recombinant MYH91676−1791protein could inhibit the PRRSV infection significantly. Furthermore, the specific polyclonal antibody of MYH91676−1791 could block PRRSV infection in host cells. These data strongly supported that MYH9, a very important cofactor, participated in PRRSV entry into target cells, which may facilitate the development of a new therapeutic agent to control PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Liangliang Li
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Qifan Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Guang Zhu
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| |
Collapse
|
32
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
33
|
Stoian AMM, Rowland RRR, Brandariz-Nuñez A. Mutations within scavenger receptor cysteine-rich (SRCR) protein domain 5 of porcine CD163 involved in infection with porcine reproductive and respiratory syndrome virus (PRRS). J Gen Virol 2022; 103. [PMID: 35506985 DOI: 10.1099/jgv.0.001740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD163, a macrophage-specific membrane scavenger receptor, serves as a cellular entry receptor for porcine reproductive and respiratory syndrome virus (PRRSV). The removal of scavenger receptor cysteine-rich (SRCR) domain 5 (SRCR5) of CD163 is sufficient to make transfected cells or genetically modified pigs resistant to PRRSV-1 and PRRSV-2 genotypes, and substitution of SRCR5 with SRCR8 from human CD163-like protein (hCD163L1) confers resistance to PRRSV-1 but not PRRSV-2 isolates. However, the specific regions within the SRCR5 polypeptide involved in PRRSV infection remain largely unknown. In this report, we performed mutational studies in order to identify which regions or amino acid sequences in the SRCR5 domain are critical for PRRSV infection. The approach used in this study was to make proline-arginine (PR) insertions along the SRCR5 polypeptide. Constructs were transfected into HEK293T cells, and then evaluated for infection with PRRSV-2 or PRRSV-1. For PRRSV-2, four PR insertions located after amino acids 8 (PR-9), 47 (PR-48), 54 (PR-55), and 99 (PR-100) had the greatest impact on infection. For PRRSV-1, insertions after amino acids 57 (PR-58) and 99 (PR-100) were critical. Computer simulations based on the crystal structure of SRCR5 showed that the mutations that affected infection localized to a similar region on the surface of the 3-D structure. Specifically, we found two surface patches that are essential for PRRSV infection. PR-58 and PR-55, which were separated by only three amino acids, had reciprocal effects on PRRSV-1 and PRRSV-2. Substitution of Glu-58 with Lys-58 reduced PRRSV-1 infection without affecting PRRSV-2, which partially explains the resistance to PRRSV-1 caused by the SRCR5 replacement with the homolog human SRCR8 previously observed. Finally, resistance to infection was observed following the disruption of any of the four conserved disulfide bonds within SRCR5. In summary, the results confirm that there are distinct differences between PRRSV-1 and PRRSV-2 on recognition of CD163; however, all mutations that affect infection locate on a similar region on the same face of SRCR5.
Collapse
Affiliation(s)
- Ana M M Stoian
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Expression of the Heterotrimeric GP2/GP3/GP4 Spike of an Arterivirus in Mammalian Cells. Viruses 2022; 14:v14040749. [PMID: 35458479 PMCID: PMC9030998 DOI: 10.3390/v14040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Equine arteritis virus (EAV), an enveloped positive-strand RNA virus, is an important pathogen of horses and the prototype member of the Arteiviridae family. Unlike many other enveloped viruses, which possess homotrimeric spikes, the spike responsible for cellular tropism in Arteriviruses is a heterotrimer composed of 3 glycoproteins: GP2, GP3, and GP4. Together with the hydrophobic protein E they are the minor components of virus particles. We describe the expression of all 3 minor glycoproteins, each equipped with a different tag, from a multi-cassette system in mammalian BHK-21 cells. Coprecipitation studies suggest that a rather small faction of GP2, GP3, and GP4 form dimeric or trimeric complexes. GP2, GP3, and GP4 co-localize with each other and also, albeit weaker, with the E-protein. The co-localization of GP3-HA and GP2-myc was tested with markers for ER, ERGIC, and cis-Golgi. The co-localization of GP3-HA was the same regardless of whether it was expressed alone or as a complex, whereas the transport of GP2-myc to cis-Golgi was higher when this protein was expressed as a complex. The glycosylation pattern was also independent of whether the proteins were expressed alone or together. The recombinant spike might be a tool for basic research but might also be used as a subunit vaccine for horses.
Collapse
|
35
|
Li Y, Jiao D, Jing Y, He Y, Han W, Li Z, Ma Z, Feng Y, Xiao S. Genetic characterization and pathogenicity of a novel recombinant PRRSV from lineage 1, 8 and 3 in China failed to infect MARC-145 cells. Microb Pathog 2022; 165:105469. [PMID: 35271985 DOI: 10.1016/j.micpath.2022.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023]
Abstract
The diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in China is increasing rapidly along with mutation and recombination. Recombination could occur between inter- and intra-lineage of PRRSV, which accelerated the complexity of pathogenicity and cell tropism of the recombinant strain. In the present study, a novel PRRSV strain named HN-YL1711 was isolated from a pig farm suffering from severe respiratory difficulty in Henan province, China. The whole genomic sequence analysis indicated that the genome of HN-YL1711 was 15018 nt. It shared 86%, 87.3%, 88.1%, 91.1%, 84.2%, and 84.1% nucleotide similarities with PRRSVs VR2332, CH1a, JXA1, NADC30, QYYZ, and GM2, respectively. Based on phylogenetic analysis of Nsp2, ORF5 and complete genomes, HN-YL1711 was classified into lineage 1 of PRRSV. However, seven genomic break points were detected in recombination analysis, which indicated that the HN-YL1711 originated from multiple recombination among NADC30-like (major parent, lineage 1), JXA1-like (minor parent, lineage 8), and QYYZ-like (minor parent, lineage 3) PRRSV. Porcine alveolar macrophages (PAMs), 3D4/21-CD163 and MARC-145 cells were used to explore the viral adaptation of HN-YL1711. The results indicated that it could infect the PAMs but failed to infect MARC-145 cells. Challenge experiments showed that HN-YL1711 exhibits intermediate virulence in pigs, compared with HP-PRRSV JXA1 and LP-PRRSV CH1a. Taken together, our findings suggest that recombination remains an important factor in PRRSV evolution and that recombination further complicates the cell tropism and pathogenicity of PRRSV.
Collapse
Affiliation(s)
- Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiguo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
36
|
Heat Shock Protein Member 8 (HSPA8) Is Involved in Porcine Reproductive and Respiratory Syndrome Virus Attachment and Internalization. Microbiol Spectr 2022; 10:e0186021. [PMID: 35138165 PMCID: PMC8826899 DOI: 10.1128/spectrum.01860-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a porcine arterivirus, causes severe financial losses to global swine industry. Despite much research, the molecular mechanisms of PRRSV infection remains to be fully elucidated. In the current study, we uncovered the involvement of heat shock protein member 8 (HSPA8) in PRRSV attachment and internalization during infection for the first time. In detail, HSPA8 was identified to interact with PRRSV glycoprotein 4 (GP4), a major determinant for viral cellular tropism, dependent on its carboxy-terminal peptide-binding (PB) domain. Chemical inhibitors and specific small interference RNAs (siRNAs) targeting HSPA8 significantly suppressed PRRSV infection as indicated by decreased viral RNA abundance, infectivity, and titers. Especially, PRRSV attachment was inhibited by interference of its binding to HSPA8 with mouse anti-HSPA8 polyclonal antibodies (pAbs) and recombinant soluble HSPA8 protein. HSPA8 was further shown to participate in PRRSV internalization through clathrin-dependent endocytosis (CME). Collectively, these results demonstrate that HSPA8 is important for PRRSV attachment and internalization, which is a potential target to prevent and control the viral infection. IMPORTANCE PRRSV has caused huge economic losses to the pork industry around the world. Currently, safe and effective strategies are still urgently required to prevent and control PRRSV infection. As the first steps, PRRSV attachment and internalization are initiated by interactions between viral envelope proteins and host cell receptors/factors, which are not fully understood yet. Here, we identified the interaction between PRRSV GP4 and HSPA8, and demonstrated that HSPA8 was involved in PRRSV attachment and internalization. This work deepens our understanding of the molecular mechanisms involved in PRRSV infection, and provides novel insights for the development of antiviral drugs and vaccines against the virus.
Collapse
|
37
|
Identification of Virulence Associated Region during Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus during Attenuation In Vitro: Complex Question with Different Strain Backgrounds. Viruses 2021; 14:v14010040. [PMID: 35062244 PMCID: PMC8780124 DOI: 10.3390/v14010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus PRRSV (HP-PRRSV) was one of the most devastating diseases of the pig industry, among various strategies, vaccination was one of the most useful tools for PRRS control. Attenuated live vaccine was used worldwide, however, the genetic basis of HP-PRRSV virulence change during attenuation remain to be determined. Here, to identify virulence associated regions of HP-PRRSV during attenuation in vitro, six full-length infectious cDNA clones with interchanges of 5′UTR + ORF1a, ORF1b, and ORF2-7 + 3′UTR regions between HP-PRRSV strain HuN4-F5 and its attenuated vaccine strain HuN4-F112 were generated, and chimeric viruses were rescued. Piglets were inoculated with chimeric viruses and their parental viruses, and rectal temperature were recorded daily, and serum were collected for future experiments. Our results showed that ORF1a played an important role on virus replication, cytokine response and lung damage, the exchange of ORF1b and ORF2-7 in different backbone led to different exhibition on virus replication in vivo/vitro and cytokine response. Among 9 PRRSV attenuated series, consistent amino acid changes during PRRSV attenuation were found in NSP4, NSP9, GP2, E, GP3 and GP4. Our study provides a fundamental data for the investigation of PRRSV attenuation, the different results of the virulence change among different studies indicated that different mechanisms might be used during PRRSV virulence enhancement in vivo and attenuation in vitro.
Collapse
|
38
|
Wahyuningtyas R, Lai YS, Wu ML, Chen HW, Chung WB, Chaung HC, Chang KT. Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) Promotes M1 Repolarization of Porcine Alveolar Macrophages and Th1 Type Response. Vaccines (Basel) 2021; 9:vaccines9091009. [PMID: 34579246 PMCID: PMC8473084 DOI: 10.3390/vaccines9091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yin-Siew Lai
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 400, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
39
|
Mélade J, Piorkowski G, Bouzidi HS, Medawar A, Raffy C, de Lamballerie X, Nougairède A. Rapid reconstruction of porcine reproductive and respiratory syndrome virus using synthetic DNA fragments. Comput Struct Biotechnol J 2021; 19:5108-5116. [PMID: 34589186 PMCID: PMC8463744 DOI: 10.1016/j.csbj.2021.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most challenging infectious disease of pig populations causing devastating economic loss to swine industry. Reverse genetics allow to engineer modified viruses such attenuated strains for vaccine development. Some reverse genetic systems were described for PRRSVs but, due to genome complexity of PRRSVs, construction and modification of such systems remain laborious and time-consuming. In this study, we described a reverse genetics approach based on the "Infectious-Subgenomic Amplicons" (ISA) method to rescue infectious PRRSV particles. Permissive cells were transfected with 4 overlapping synthetic DNA fragments covering the entire genome of PRRSV which allowed the rapid reconstruction of the complete virus genome and the subsequent generation of infectious wild-type particles within days. The ISA method represent a rapid alternative of conventional reverse genetic systems. This method will help to generate genetically modified and attenuated strains for the development of sanitary countermeasures in the future.
Collapse
Affiliation(s)
- Julien Mélade
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Hawa Sophia Bouzidi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Alain Medawar
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Claudine Raffy
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
40
|
Glyceraldehyde-3-Phosphate Dehydrogenase Restricted in Cytoplasmic Location by Viral GP5 Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication via Its Glycolytic Activity. J Virol 2021; 95:e0021021. [PMID: 34160254 DOI: 10.1128/jvi.00210-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important endemic swine pathogens, causing enormous losses in the global swine industry. Commercially available vaccines only partially prevent or counteract the virus infection and correlated losses. PRRSV's replication mechanism has not been well understood. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was screened to bind with the viral major envelope glycoprotein 5 (GP5) after PRRSV infection. The interacting sites are located within a 13-amino-acid (aa) region (aa 93 to 105) of GP5 and at Lys227 of GAPDH. Interestingly, viral GP5 restricts the translocation of GAPDH from the cytoplasm to the nucleus. Moreover, cytoplasmic GAPDH facilitates PRRSV replication by virtue of its glycolytic activity. The results suggest that PRRSV GP5 restricts GAPDH to the nucleus and exploits its glycolytic activity to stimulate virus replication. The data provide insight into the role of GAPDH in PRRSV replication and reveal a potential target for controlling viral infection. IMPORTANCE PRRSV poses a severe economic threat to the pig industry. PRRSV GP5, the major viral envelope protein, plays an important role in viral infection, pathogenicity, and immunity. However, interactions between GP5 and host proteins have not yet been well studied. Here, we show that GAPDH interacts with GP5 through binding a 13-aa sequence (aa 93 to 105) in GP5, while GP5 interacts with GAPDH at the K277 amino acid residue of GAPDH. We demonstrate that GP5 interacts with GAPDH in the cytoplasm during PPRSV infection, inhibiting GAPDH entry into the nucleus. PRRSV exploits the glycolytic activity of GAPDH to promote viral replication. These results enrich our understanding of PRRSV infection and pathogenesis and open a new avenue for antiviral prevention and PRRSV treatment strategies.
Collapse
|
41
|
Li X, Guo Y, Song Y, Sun R, Zhu M, Tan Z, Swaiba UE, Zhang L, Huang J. The glycosyltransferase ST3GAL2 modulates virus proliferation and the inflammation response in porcine reproductive and respiratory syndrome virus infection. Arch Virol 2021; 166:2723-2732. [PMID: 34319453 DOI: 10.1007/s00705-021-05180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
β-galactoside α-2,3-sialyltransferase 2 (ST3GAL2) is a member of the sialyltransferase family that mediates terminal modification of glycoproteins and glycolipids. ST3GAL2 has been found to play a role in obesity, aging, and malignant diseases. In this study, we cloned porcine ST3GAL2 (pST3GAL2) from porcine alveolar macrophages (PAMs), and its role in porcine reproductive and respiratory syndrome virus (PRRSV) infection was investigated by transcriptome analysis. pST3GAL2 was found to be located in the Golgi apparatus, and it was expressed at high levels in PRRSV-infected PAMs. Overexpression of pST3GAL2 resulted in a slight increase in PRRSV proliferation, and the interaction between pST3GAL2 and GP2a of PRRSV was detected by coimmunoprecipitation and confocal microscopy. The expression of pro-inflammatory cytokines (IFN-β, IL-2, IL-6, IL-18, IL-1β and TNF-α) was significantly inhibited in pST3GAL2-overexpressing, PRRSV-infected cells and upregulated in PRRSV-infected pST3GAL2-knockout cells, while the pattern of expression of anti-inflammatory cytokines (IL-4 and IL-10) was diametrically opposite. Our results demonstrate that the regulation of pST3GAL2 plays an important role in PRRSV proliferation and functional alterations in virus-infected cells. These results contribute to our understanding of the role of β-galactoside α-2,3-sialyltransferase 2 in antiviral immunity.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yinna Song
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Umm E Swaiba
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
42
|
Zhang M, Han X, Osterrieder K, Veit M. Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth. PLoS Pathog 2021; 17:e1009554. [PMID: 33891658 PMCID: PMC8099100 DOI: 10.1371/journal.ppat.1009554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/05/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly. Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus in the order Nidovirales, is an important pathogen for pigs. Despite its importance in veterinary medicine, basic structural and functional features of its membrane proteins have not been elucidated. Here, we provide evidence for palmitoylation of the PRRSV major membrane proteins GP5 and M at a cluster of membrane-near cysteines. Fatty acid attachment is required for virus growth, since removal of all acylation sites from either M or GP5 prevents recue of infectious particles. Furthermore, viruses lacking individual acylation sites in M and GP5 grow to significantly lower titers in cell culture. The specific infectivity and cell entry of viruses lacking two acylation sites in Gp5 is, however, not reduced. Likewise, these viruses revealed no effect on dimerization of GP5 with M, its transport to budding sites, and incorporation into virus particles. Since cells transfected with a cDNA expressing non-acylated GP5, or non-acylated M release no virus-like particles into the supernatant we propose that the fatty acids are required for the budding process. They might trigger assembly of GP5/M dimers to form a coat inside the lipid bilayer that induces membrane curvature.
Collapse
Affiliation(s)
- Minze Zhang
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Xiaoliang Han
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Klaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Michael Veit
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
44
|
Young JE, Dvorak CMT, Graham SP, Murtaugh MP. Isolation of Porcine Reproductive and Respiratory Syndrome Virus GP5-Specific, Neutralizing Monoclonal Antibodies From Hyperimmune Sows. Front Immunol 2021; 12:638493. [PMID: 33692807 PMCID: PMC7937800 DOI: 10.3389/fimmu.2021.638493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease which impacts the pig industry worldwide. The disease is caused by PRRS viruses (PRRSV-1 and -2) which leads to abortions and other forms of reproductive failure in sows and severe respiratory disease in growing pigs. Current PRRSV vaccines provide limited protection; only providing complete protection against closely related strains. The development of improved PRRSV vaccines would benefit from an increased understanding of epitopes relevant to protection, including those recognized by antibodies which possess the ability to neutralize distantly related strains. In this work, a reverse vaccinology approach was taken; starting first with pigs known to have a broadly neutralizing antibody response and then investigating the responsible B cells/antibodies through the isolation of PRRSV neutralizing monoclonal antibodies (mAbs). PBMCs were harvested from pigs sequentially exposed to a modified-live PRRSV-2 vaccine as well as divergent PRRSV-2 field isolates. Memory B cells were immortalized and a total of 5 PRRSV-specific B-cell populations were isolated. All identified PRRSV-specific antibodies were found to be broadly binding to all PRRSV-2 isolates tested, but not PRRSV-1 isolates. Antibodies against GP5 protein, commonly thought to possess a dominant PRRSV neutralizing epitope, were found to be highly abundant, as four out of five B cells populations were GP5 specific. One of the GP5-specific mAbs was shown to be neutralizing but this was only observed against homologous and not heterologous PRRSV strains. Further investigation of these antibodies, and others, may lead to the elucidation of conserved neutralizing epitopes that can be exploited for improved vaccine design and lays the groundwork for the study of broadly neutralizing antibodies against other porcine pathogens.
Collapse
Affiliation(s)
- Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Cheryl M T Dvorak
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
45
|
Zhang Y, Zhang K, Zheng H, Liu C, Jiang Y, Du N, Li L, Li G, Yu L, Zhou Y, Tong W, Zhao K, Tong G, Gao F. Development of a Monoclonal Antibody Against Porcine CD163 SRCR5 Domain Which Partially Blocks Infection of PRRSV. Front Vet Sci 2020; 7:597843. [PMID: 33251273 PMCID: PMC7674782 DOI: 10.3389/fvets.2020.597843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), which seriously endangers the world pig industry, invades host cells through receptor-mediated endocytosis involving clathrin. CD163 is an essential receptor for PRRSV during its infection of cells. The scavenger receptor cysteine-rich 5 (SRCR5) domain of the CD163 molecule is necessary for PRRSV infection, and interacts with glycoproteins GP2a and GP4 of PRRSV, allowing the virus to infect the host cells. In this study, a monoclonal antibody (mAb) against the SRCR5-6 region of porcine CD163 was developed, and the target epitope of the mAb was determined as 497TWGTVCDSDF506, which is directly adjacent to the ligand-binding pocket (LBP) domain (487-495aa) of CD163. Further study indicated that the mAb could partially block PRRSV infection of its target cells, pulmonary alveolar macrophages. The mAb developed in the study may provide a foundation of antiviral therapy for PRRSV.
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nannan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
47
|
Porcine Reproductive and Respiratory Syndrome Virus Promotes SLA-DR-Mediated Antigen Presentation of Nonstructural Proteins To Evoke a Nonneutralizing Antibody Response In Vivo. J Virol 2020; 94:JVI.01423-20. [PMID: 32796065 DOI: 10.1128/jvi.01423-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The humoral immune response against porcine reproductive and respiratory syndrome virus (PRRSV) infection is characterized by a rapid induction of nonneutralizing antibodies (non-NAbs) against nonstructural proteins (NSPs). Here, we systematically investigated the potential mechanism for the induction of PRRSV NSP-specific non-NAbs. Our data suggested that PRRSV NSP-specific antibodies appeared within 10 days after PRRSV infection in vivo In the in vitro model, functional upregulation of swine leukocyte antigen (SLA)-DR was observed in bone marrow-derived dendritic cells (BMDCs) and porcine alveolar macrophages (PAMs), whereas remarkable inhibition at the mRNA level was observed after infection by both PRRSV-1 and PRRSV-2 isolates. Notably, the inconsistency in SLA-DR expression between the mRNA and protein levels resulted from deubiquitination of SLA-DR via the ovarian tumor (OTU) domain of PRRSV NSP2, which inhibited ubiquitin-mediated degradation. Moreover, mass spectrometry-based immunopeptidome analysis identified immunopeptides originating from multiple PRRSV NSPs within SLA-DR of PRRSV-infected BMDCs. Meanwhile, these PRRSV NSP-derived immunopeptides could be specifically recognized by serum from PRRSV-infected piglets. Notably, certain NSP-derived immunopeptides characterized in vitro could be identified from PAMs or hilar lymph nodes from PRRSV-infected piglets. More importantly, an in vitro neutralizing assay indicated that serum antibodies against NSP immunopeptides were unable to neutralize PRRSV in vitro Conversely, certain structural protein (SP)-derived immunopeptides were identified and could be recognize by pig hyperimmune serum against PRRSV, which further indicates that the NSP-derived antibody response is nonprotective in vivo In conclusion, our data suggested that PRRSV infection interferes with major histocompatibility complex class II (MHC-II) molecule-mediated antigen presentation in antigen-presenting cells (APCs) via promoting SLA-DR expression to present immunopeptides from PRRSV NSPs, which contributes to the induction of non-NAbs in vivo IMPORTANCE PRRSV has haunted the swine industry for over 30 years since its emergence. Besides the limited efficacy of PRRSV modified live vaccines (MLVs) against heterogeneous PRRSV isolates, rapid induction of nonneutralizing antibodies (non-NAbs) against PRRSV NSPs after MLV immunization or wild-strain infection is one of the reasons why development of an effective vaccine has been hampered. By using in vitro-generated BMDCs as models to understand the antigen presentation process of PRRSV, we obtained data indicating that PRRSV infection of BMDCs promotes functional SLA-DR upregulation to present PRRSV NSP-derived immunopeptides for evoking a non-NAb response in vivo Our work not only uncovered a novel mechanism for interference in host antigen presentation by PRRSV but also revealed a novel insight for understanding the rapid production of nonneutralizing antibodies against PRRSV NSPs, which may have benefit for developing an effective vaccine against PRRSV in the future.
Collapse
|
48
|
Xu H, Liu Z, Zheng S, Han G, He F. CD163 Antibodies Inhibit PRRSV Infection via Receptor Blocking and Transcription Suppression. Vaccines (Basel) 2020; 8:vaccines8040592. [PMID: 33050150 PMCID: PMC7711879 DOI: 10.3390/vaccines8040592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
CD163 has been identified as the essential receptor for Porcine reproductive and respiratory syndrome (PRRSV), a major etiologic agent of pigs. Scavenger receptor cysteine-rich domain 5–9 (SRCR5–9) in CD163 was shown to be responsible for the virus interaction. In this study, monoclonal antibodies (mAbs) 6E8 and 9A10 against SRCR5–9 were selected based on the significant activity to inhibit PRRSV infection in Porcine Alveolar Macrophage (PAMs) and Marc-145. Both mAbs are capable of blocking variable PRRSV strains in a dose-dependent manner. Meanwhile, as candidates for both prevention and therapeutics, the antibodies successfully inhibit PRRSV infection and the related NF-κB pathway either before or after virus attachment. Besides, the antibody treatment with either mAb leads to a remarkable decrease of CD163 transcription in PAMs and Marc-145. It is potentially caused by the excessive accumulation of membrane associated CD163 due to the failure in CD163 cleavage with the antibody binding. Further, conformational epitopes targeted by 6E8 and 9A10 are identified to be spanning residues 570SXDVGXV576 in SRCR5 and Q797 in SRCR7, respectively. CD163 with mutated epitopes expressed in 3D4 cells fails to support PRRSV infection while wild type CD163 recovers PRRSV infection, indicating the critical role of these residues in PRRSV invasion. These findings promote the understanding in the interaction between PRRSV and the receptor and provide novel broad antiviral strategies for PRRSV prevention and treatment via alternative mechanisms.
Collapse
Affiliation(s)
- Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Suya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
49
|
Huang C, Zhu J, Wang L, Chu A, Yin Y, Vali K, Garmendia A, Tang Y. Cryptotanshinone protects porcine alveolar macrophages from infection with porcine reproductive and respiratory syndrome virus. Antiviral Res 2020; 183:104937. [PMID: 32961199 DOI: 10.1016/j.antiviral.2020.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV) infection, imposes enormous economic impact to the world pork industry. Currently there is no effective treatment to prevent PRRSV infection in swine. We report that the natural compound cryptotanshinone (Cpt) effectively inhibits the infection of various strains of PRRSV to porcine alveolar macrophages (PAMs), the primary cell target of PRRSV in vivo. Mechanistically, Cpt inhibits the activation of signal transducer and activator of transcription 3 (STAT3), and blocks the interleukin 10 (IL-10) stimulated as well as the basal level CD163 expression in PAMs. Cpt-treatment of PAMs is effective when applied either before or after PRRSV infection, with the combined pre- and post-PRRSV infection treatment resulting in the most significant, dose-dependent inhibition of PRRSV infection. Cpt inhibited both type I/II PRRSV infection in PAMs. Our study identified a new approach to prevent/treat PRRSV infection of pigs with natural compounds.
Collapse
Affiliation(s)
- Chang Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Alexander Chu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Yexuan Yin
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Kaneha Vali
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, 61 North Eagleville Road, Storrs, CT, 06269, USA.
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
50
|
Evaluation of Antibody Response Directed against Porcine Reproductive and Respiratory Syndrome Virus Structural Proteins. Vaccines (Basel) 2020; 8:vaccines8030533. [PMID: 32947931 PMCID: PMC7564207 DOI: 10.3390/vaccines8030533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Luciferase-immunoprecipitation system (LIPS), a liquid phase immunoassay, was used to evaluate antibody responses directed against the structural proteins of PRRSV in pigs that were experimentally infected with virulent PRRSV strains. First, the viral N protein was used as a model antigen to validate the assay. The LIPS results were highly comparable to that of the commercial IDEXX PRRS X3 ELISA. Subsequently, the assay was applied to simultaneously measure antibody reactivity against all eight structural proteins of PRRSV. The highest immunoreactivities were detected against GP3, M, and N proteins while the lowest reactivity was detected against ORF5a protein. Comparative analysis of the kinetics of antibody appearance revealed that antibodies specific to N protein appeared earlier than antibodies against GP3. Finally, the assay was applied to measure immunoreactivities of clinical serum samples against N and GP3. The diagnostic sensitivity of the LIPS with N protein was superior to that of the LIPS with GP3. Collectively, the results provide additional information about the host antibody response to PRRSV infection.
Collapse
|