1
|
Gach-Janczak K, Piekielna-Ciesielska J, Waśkiewicz J, Krakowiak K, Wtorek K, Janecka A. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. Molecules 2025; 30:163. [PMID: 39795219 PMCID: PMC11721932 DOI: 10.3390/molecules30010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Quinolinones, also called quinolones, are a group of heterocyclic compounds with a broad spectrum of biological activities. These compounds occur naturally in plants and microorganisms but can also be obtained synthetically. The first synthesis of quinolinones took place at the end of the 19th century, and the most recent methods were published just a few years ago. They allow for obtaining an unlimited number of analogs differing in biological properties. In this review, we described the plethora of methods leading to quinolin-4-ones. Several of these compounds have been used as antibiotics for over four decades, but recently, their antiproliferative effects have been of particular interest to researchers. This review summarizes the experimental progress made in the synthetic development of various routes leading to quinoline-4-ones and presents an overview of the structures, their evolution, and their relation to activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (J.P.-C.); (J.W.); (K.K.); (K.W.)
| |
Collapse
|
2
|
Adachi K, Manabe T, Yamasaki T, Suma A, Orita T, Furuzono T, Adachi T, Ohata Y, Akiyama Y, Miyazaki S. Design and synthesis of novel and potent allosteric HIV-1 integrase inhibitors with a spirocyclic moiety. Bioorg Med Chem Lett 2024; 110:129864. [PMID: 38942126 DOI: 10.1016/j.bmcl.2024.129864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
We report herein the design and discovery of novel allosteric HIV-1 integrase inhibitors. Our design concept utilized the spirocyclic moiety to restrain the flexibility of the conformation of the lipophilic part of the inhibitor. Compound 5 showed antiviral activity by binding to the nuclear lens epithelium-derived growth factor (LEDGF/p75) binding site of HIV-1 integrase (IN). The introduction of a lipophilic amide substituent into the central benzene ring resulted in a significant increase in antiviral activity against HIV-1 WT X-ray crystallography of compound 15 in complex with the integrase revealed the presence of a hydrogen bond between the oxygen atom of the amide of compound 15 and the hydroxyl group of the T125 side chain. Chiral compound 17 showed high antiviral activity, good bioavailability, and low clearance in rats.
Collapse
Affiliation(s)
- Kaoru Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Tomoyuki Manabe
- Innovation to Implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Yamasaki
- Department of Research Planning, Preclinical, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akira Suma
- Innovation to Implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Orita
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomoko Furuzono
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshitsugu Ohata
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshiyuki Akiyama
- DMPK Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Susumu Miyazaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
3
|
Sanna C, D’Abrosca B, Fiorentino A, Giammarino F, Vicenti I, Corona A, Caredda A, Tramontano E, Esposito F. HIV-1 Integrase Inhibition Activity by Spiroketals Derived from Plagius flosculosus, an Endemic Plant of Sardinia (Italy) and Corsica (France). Pharmaceuticals (Basel) 2023; 16:1118. [PMID: 37631033 PMCID: PMC10457970 DOI: 10.3390/ph16081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In this work we investigated, for the first time, the effect of Plagius flosculosus (L.) Alavi & Heywood, a Sardinian-Corsican endemic plant, on HIV-1 integrase (IN) activity. The phytochemical analysis of the leaves chloroform extract led us to isolate and characterize three compounds (SPK1, SPK2, and SPK3) belonging to the spiroketals, a group of naturally occurring metabolites of phytochemical relevance with interesting biological properties. Due to their structural diversity, these cyclic ketals have attracted the interest of chemists and biologists. SPK1, SPK2, and SPK3 were evaluated here for their ability to inhibit HIV-1 integrase activity in biochemical assays. The results showed that all the compounds inhibited HIV-1 IN activity. In particular, the most active one was SPK3, which interfered in a low molecular range (IC50 of 1.46 ± 0.16 µM) with HIV-1 IN activity in the presence/absence of the LEDGF cellular cofactor. To investigate the mechanism of action, the three spiroketals were also tested on HIV-1 RT-associated Ribonuclease H (RNase H) activity, proving to be active in inhibiting this function. Although SPK3 was unable to inhibit viral replication in cell culture, it promoted the IN multimerization. We hypothesize that SPK3 inhibited HIV-1 IN through an allosteric mechanism of action.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Brigida D’Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Federica Giammarino
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.G.); (I.V.)
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.G.); (I.V.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| |
Collapse
|
4
|
Bonnard D, Le Rouzic E, Singer MR, Yu Z, Le Strat F, Batisse C, Batisse J, Amadori C, Chasset S, Pye VE, Emiliani S, Ledoussal B, Ruff M, Moreau F, Cherepanov P, Benarous R. Biological and Structural Analyses of New Potent Allosteric Inhibitors of HIV-1 Integrase. Antimicrob Agents Chemother 2023; 67:e0046223. [PMID: 37310224 PMCID: PMC10353390 DOI: 10.1128/aac.00462-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.
Collapse
Affiliation(s)
| | | | - Matthew R. Singer
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | - Zhe Yu
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Claire Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Julien Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Céline Amadori
- Biodim, Romainville, France
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | | | - Marc Ruff
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
5
|
Singer MR, Dinh T, Levintov L, Annamalai AS, Rey JS, Briganti L, Cook NJ, Pye VE, Taylor IA, Kim K, Engelman AN, Kim B, Perilla JR, Kvaratskhelia M, Cherepanov P. The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function. mBio 2023; 14:e0356022. [PMID: 36744954 PMCID: PMC9973045 DOI: 10.1128/mbio.03560-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.
Collapse
Affiliation(s)
- Matthew R. Singer
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tung Dinh
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nicola J. Cook
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Valerie E. Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Baek Kim
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Sasano M, Hayashi H, Kawaji K, Usui E, Kodama EN. Establishing an accurate and sensitive in vitro drug screening system for human adenovirus infection with human corneal cells. Virology 2023; 581:34-38. [PMID: 36848735 DOI: 10.1016/j.virol.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Epidemic keratoconjunctivitis (EKC) is a hazardous and highly contagious disease, with the potential to cause epidemic outbreaks in hospitals and other community settings. There are currently no approved drugs for human adenovirus (HAdV), the causative agent of EKC. To establish a novel drug screening system for ocular HAdV infections, we employed CRL11516, a non-cancerous but immortalized human corneal epithelial cell line. Brincidoforvir and 3'-deoxy-3'-fluorothymidine inhibit replication of HAdV species C type 1 (C1), C2, E4, and C6 to the same extent. This alternative assay system may allow for the evaluation of anti-HAdV activity and cell cytotoxicity of compounds within 2 days and without the need of the rabbit eye infection model.
Collapse
Affiliation(s)
- Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-0845, Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-0845, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-0845, Japan
| | - Emiko Usui
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-0845, Japan
| | - Eiich N Kodama
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-0845, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Department of Infectious Diseases, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
7
|
Allosteric Integrase Inhibitor Influences on HIV-1 Integration and Roles of LEDGF/p75 and HDGFL2 Host Factors. Viruses 2022; 14:v14091883. [PMID: 36146690 PMCID: PMC9502684 DOI: 10.3390/v14091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.
Collapse
|
8
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|